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1. Introduction  

Time series prediction has important applications in various domains such as medicine, 
ecology, meteorology, industrial control or finance. Generally the characteristics of the 
phenomenon which generates the series are unknown. The information available for the 
prediction is limited to the past values of the series. The relations which describe the 
evolution should be deduced from these values, in the form of functional relation 
approximations between the past and the future values.  

The most usually adopted approach to consider the future values ( )1tx̂ +  consists in using a 

function f  which takes as input a time window of fixed size M  representing the recent 

history of the time series. 

 ( ) ( ) ( ) ( )( )[ ]τ−−τ−= 1Mtx,,tx,txt …x   (1) 

 ( ) ( )( )tftx̂ x=τ+   (2) 

where ( )tx , for lt0 ≤≤ , is the time series data that can be used for building a model. 

Most of the current work on single-step-ahead prediction relies on a result released in 

(Takens, 1981) which shows that under several assumptions (among which the absence of 

noise), it is possible to obtain a perfect estimate of ( )τ+tx  according to (2) if 1d2M +≥ , 

where d  is the dimension of the stationary attractor generating the time series. In this 

approach, the memory of the past is preserved in the sliding time window.  

In multi-step-ahead prediction, given ( ) ( ) ( ){ }…… ,ntx,,tx,tx τ−τ− , one is looking for a good 

estimate ( )τ+ htx̂  of ( )τ+ htx , h  being the number of steps ahead. 
Given their universal approximation properties, neural networks, such as multi-layer 
perceptrons (MLPs) or recurrent networks (RNs), are good candidate models for the global 
approaches. Among the many neural network architectures employed for time series 
prediction, one can mention MLPs with a time window in the input (Weigend et al., 1990), 
MLPs with finite impulse response (FIR) connections (equivalent to time windows) both 
from the input to the hidden layer and from the hidden layer to the output (Wan, 1994), 
recurrent networks obtained by providing MLPs with a feedback from the output 
(Czernichow, 1996), simple recurrent networks (Suykens & Vandewalle, 1995), recurrent 
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networks with FIR connections (El Hihi & Bengio, 1996), (Lin et al., 1996) and recurrent 
networks with both internal loops and feedback from the output (Parlos et al., 2000). 
But the use of these architectures for time-series prediction has inherent limitations, since 
the size of the time window or the number of time delays of the FIR connections is difficult 
to choose.  

An alternative solution is to keep a small length (usually 1M = ) time window and enable 

the model to develop on its own a memory of the past. This memory is expected to 
represent the past information that is actually needed for performing the task more 
accurately. Time series prediction with RNNs usually corresponds to such a solution. 
Memory of the past – of variable length, see e.g. (Aussem, 2002; Hammer & Tino, 2003) – is 

maintained in the internal state of the model, ( )ts , of finite dimension d  at time t , which 

evolves (for 1M = ) according to: 

 
( ) ( ) ( )( )tx,tt sgs =τ+   (3) 

where g  is a mapping function assumed to be continuous and differentiable. The time 

variable t  can either be continuous or discrete and h  is the output function. Assuming that 

the system is noise free, the observed output is related to the internal dynamics of the 

system by:  

 ( ) ( )( )x̂ t tτ+ = h s   (4) 

where ( )τ+tx̂  is the estimate of ( )τ+tx  and the function h  is called the measurement 

function.  
Globally feed-forward architectures, both very common and with a short calculation time, 
are widely used. They share the characteristic of having been initially elaborated for using 
the error gradient back-propagation of feed-forward neural networks (some of which have 
an adapted version today (Campolucci et al., 1999)). Hence the locally recurrent globally 
feed-forward networks (Tsoi & Back, 1994) introduce particular neurons, with local 
feedback loops. In the most general form, these neurons feature delays in inputs as well as 
in their loops. All these architectures remain limited: hidden neurons are mutually 
independent and therefore, cannot pick up some complex behaviors which require the 
collaboration of several neurons of the hidden layer. In order to overcome this problem, a 
certain number of recurrent architectures have been suggested (see (Lin et al., 1996) for a 
presentation). It has been shown that in practice the use of delay connections in these 
networks gives rise to a reduction in learning time (Guignot & Gallinari, 1994) as well as an 
improvement in the taking into account of long term dependencies (Lin et al., 1996; Boné et 
al., 2002). The resulting network is named Time Delay Recurrent Neural Networks 
(TDRNN). In this case, unless to apply an algorithm for selective addition of connections 
with time delays (Boné et al., 2002), which improve forecasting performance capacity but at 
the cost of increasing computations, the networks finally retained are often oversized and 
use meta-connections with consecutive delay connections, also named Finite Impulse 
Response (FIR) connections or, if they contain loops, Infinite Impulse Response (IIR) 
connections (Tsoi & Back, 1994).  
Recurrent neural networks (RNNs) is a class of neural networks where connections between 
neurons form a directed cycle. They possess an internal memory owing to cycles in their 
connection graph and do no longer need a time window to take into account the past values 
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of the time series. They are able to model temporal dependencies of unspecified duration 
between the inputs and the associated desired outputs, by using internal memory. The 
passage of information from one neuron to the other through a connection is not 
instantaneous (one time step), unlike MLP, and thus the presence of the loops makes it 
possible to keep the influence of the information for a variable time period, theoretically 
infinite. The memory is coded by the recurrent connections and the outputs of the neurons 
themselves. Throughout the training, the network learns how to complete three 
complementary tasks: the selection of useful inputs, their retention in coded form and their 
use in the calculation of its outputs.  
RNNs are computationally more powerful than feed-forward networks (Siegelmann et al, 
1997), and valuable approximation results were obtained for dynamical systems (Seidl & 
Lorenz, 2001). 

2. RNNs learning  

During the last two decades, several methods for supervised training of RNNs have been 
explored. BackPropagation Through Time (BPTT) is probably the most widely used method. 
BPTT is an adaptation of the well-known backpropagation training method known from 
feedforward networks. It is therefore a gradient-based training method.  
 

w21

w12

( )y t2

w11
w22

( )s t1 ( )s t2

x t1( )

 

Fig. 1. A recurrent neural network  

The feedforward backpropagation algorithm cannot be directly transferred to RNNs, 
because the backpropagation pass presupposes that the connections between the neurons 

induce a cycle-free ordering. Considering a time series of length l , the central idea of BPTT 
algorithm is to unfold the original recurrent networks (Fig. 1) in time so as to obtain a 

feedforward network with l  layers (Fig. 2), which in turn makes it possible to apply the 
learning method by backpropagation of gradient of the error through time. BPTT unfolds 
the network in time by stacking identical copies of the RNN, and duplicating connections 
within the network to obtain connections between subsequent copies.  
The weights between successive layers must remain identical in order to be able to show up 
in the original recurrent network. In practice, it amounts to cumulating the changes of the 
weights for all the copies of a particular connection and to adding the sum of the changes to 
all these copies after each learning iteration. 

Let us consider the application of BPTT for the training of recurrent networks between time 

1t  and lt . if  is the transfer function of neuron i , ( )tsi  its output at time t , and ijw  its 

connection from neuron j . A value, provided to the neuron at time t , coming from outside, 

is noted ( )txi . 
The algorithm supposes an evolution of neurons of recurrent networks given by the 
following equations: 
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( )w21 1 ( )w12 1

( )w11 3 ( )w22 3

( )s1 1 ( )s2 1

( )s1 2 ( )s2 2

( )s1 3 ( )s2 3

( )s1 4 ( )s2 4

( )w11 2

( )w11 1

( )w22 2

( )w22 1

( )w12 2

( )w12 3

( )w21 2

( )w21 3

( )x1 1

( )y2 1

( )x1 2

( )x1 3

( )x1 4

( )y2 2

( )y2 3

( )y2 4

 

Fig. 2. RNN of Fig. 1 unfolded in time 

 
( ) ( )( ) ( ) N,,1i;tx1tnetfts iii …=+−=   (5) 

 

( ) ( ) ( )1ts1tw1tnet j
)i(predj

iji −−=− ∑∈   (6) 

The set ( )iPred  contains, for each neuron i , the index of the incoming neurons 

( ) ( ){ }ijij ,wNjiPred τ∃∈= . Likewise, we have defined the successors of a neuron i : 

( ) ( ){ }jiji ,wNjiSucc τ∃∈= . 

The variation of the weight for all the sequence is calculated by the sum of the variations of 

this weight on each element of the sequence. By noting ( )τT  the set of neurons which have a 

desired output ( )τpd  at time τ , we define the mean quadratic error ( )l1 t,tE  of the 

recurrent neural networks between time 1t  and lt as:  

 

( ) ( ) ( )( )
( )∑ ∑= ∈

−= l

1

t

tt tTp

2
ppl1 tstd

2

1
t,tE

  (7) 

To minimize total error, gradient descent is used to change each weight in proportion to its 
derivative with respect to the error, provided the non-linear activation functions are 
differentiable ( η  is the learning step): 

 

( ) ( )( )∑−=τ τ∂
∂η−=∂

∂η−=−Δ 1t

t ij

l1

ij

l1
l1ij

l

1
w

t,tE

w

t,tE
)1t,t(w   (8) 
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with 

 

( )( ) ( )( ) ( )( )τ∂
τ∂

τ∂
∂=τ∂

∂
ij

i

i

l1

ij

l1

w

net

net

t,tE

w

t,tE
  (9) 

where  ( )τijw  is the duplication of the weight ijw  of the original recurrent networks, for the 

time τ=t . We expand ( ) ( )τ∂∂ il1 nett,tE : 

 

( )( ) ( )( ) ( )( )τ∂
+τ∂

+τ∂
∂=τ∂

∂
i

i

i

l1

i

l1

net

1s

1s

t,tE

net

t,tE

 
with

 

( )( ) ( )( )τ=τ∂
+τ∂

i
'

i

i netf
net

1s

  
(10)

 

If neuron i belongs to the last layer ( 1t l −=τ ): 

 
( )( ) ( )( ) ( ) ( ) ( )( )1 l

i l i l
i T 1i i l

E t , t e t
s t d t

s 1 s t
l

τ
∂ ∂ δ∂ τ ∂ ∈ += = −+   (11) 

where ( ) 1
1Ti
=δ +τ∈  if ( )1Ti +τ∈  and 0 otherwise. If neuron i belongs to the preceding layers: 

 

( )( ) ( )( ) ( )( )
( )
( )( )∑∈ ⎟⎟⎠

⎞
⎜⎜⎝
⎛

+τ∂
+τ∂

+τ∂
∂++τ∂

+τ∂=+τ∂
∂

iSuccj i

j

j

l1

ii

l1

1s

1net

1net

t,tE

1s

1e

1s

t,tE
  (12) 

As ( ) ( ) ( )1w1s1net jiij +τ=+τ∂+τ∂ , the equations of BPTT algorithm are finally obtained: 

 

( ) ( )( ) ( )∑−=τ ττ∂
∂η−=−Δ 1t

t
j

i

l1
l1ij

l

1

s
net

t,tE
1t,tw

 

 (13)

 • with, for the output layer 

 

( )( ) ( ) ( )[ ] ( )( ) ( )
⎪⎩
⎪⎨⎧ +τ∈τ−=τ∂

∂
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t,tE i
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(14)

 • and for the hidden layer 
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  (15) 

Eq. (13) to (15) allow to apply error gradient backpropagation through time: after the 

forward pass, witch consists in updating the unfolded network, starting from the first copy 

of the recurrent network and working upwards through the layers, ( ) ( )τ∂∂ il1 net/t,tE  is 

computed, by proceeding backwards through the layers lt ,.., 1t .  
One epoch requires O(lM) multiplications and additions, where M is the total number of 
network connections. Many speed-up techniques for gradient descent approach are 
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described in the literature, e.g. dynamic learning rate adaptation schemes. Another 
approach to achieve faster convergence is to use second-order gradient descent techniques. 
Unfortunately, the gradient descent algorithms which are commonly used for training 
RNNs have several limitations, the most important one being the difficulty of dealing with 
long-term dependencies in the time series (Bengio et al, 1994; Hochreiter & Schmidhuber 
1997)  i.e. problems for which the desired output depends on the inputs presented at times 
far in the past. 
Backpropagated error gradient information tends to "dilute" exponentially over time. This 
phenomenon is called “vanishing gradient” or “forgetting behavior” (Frasconi et al., 1992; 
Bengio et al, 1994). (Bengio et al, 1994) have demonstrated the existence of a condition on the 
eigenvalues of the RNN Jacobian to be able to store information for a long period of time in 
the presence of noise. But this implies that the portion of gradient due to information at 
times t<<τ  is insignificant compared to the portion of gradient at times near t.  

 

w21

w12

( )y t2

w11
w22

( )s t1 ( )s t2

x t1( ) B

 

Fig. 3. Delayed connection added to a RNN (dotted line) 

 

 

Fig. 4. The RNN of Fig. 3 unfolded in time. Duplicated dotted connections correspond to the 
added connection  
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We can give a more intuitive explanation for backpropagated gradient vanishing. 
Considering eq.  (13) to (15), gradient calculation for each layer is done by a product with 
transfer function derivate.  Most of the time, this last value is bounded between 0 and 1 (i.e. 
sigmoid function). Each time the signal is backpropagated through a layer, the gradient 
contribution of the forward layers is attenuated. Along the time-delayed connections the 
signal does no longer cross nonlinear activation functions between successive time steps (see 
Fig. 3 and Fig. 4). 
Adding connections with time delays to the RNN (El Hihi & Bengio, 1996; Lin, T., et al., 
1996) often allows gradient descent algorithms to find better solutions in these cases. Indeed, 
by acting as a linear link between two distant moments, such a connection has beneficial 
effects on the expression of the gradient. Adding a delayed connection to an RNN (Fig. 3) 
creates several connections in the unfolded network (Fig. 4) jumping as many layers as the 
delay. Gradient backpropagated by these connections avoids attenuation of intermediate 
layers.  
But in the absence of prior knowledge concerning the problem to solve, how can one choose 
the locations and the delays associated to these new connections? By systematically adding 
meta-connections with consecutive delay connections, also named Finite Impulse Response 
(FIR) connections, one obtains oversized networks which are slow to train and have poor 
generalization abilities. Various regularization techniques can be employed in order to 
improve generalization and this further increases the computational cost.  
Constructive approaches for adapting the architecture of a neural network are usually more 
economical. An algorithm for the addition of time-delayed connections to recurrent networks 
should start with a simple, ordinary RNN and progressively add new connections according 
to some heuristic. An alternative solution could be found in the learning of the connection 
delays themselves. We suggested, for an RNN that associates a delay to each connection, an 
algorithm based on the gradient which simultaneously adjusts weights and delays. 
To improve the obtained results, we may also adapt general methods which authorize to 
improve the performances of various models. One such approach is to use a combination of 
models to obtain a more precise estimate than the one obtained by a single model. One such 
procedure is known under the name of boosting. 

3. Constructive algorithms  

Instead of systematically adding finite impulse response (FIR) connections  to a recurrent 
network, each connection encompassing a whole range of delays, we opted for a 
constructive approach: starting with an RN having no time-delayed connections, then 
selectively adding a few such connections. The two algorithms we present in the following 
allow us to choose the location and the delay associated with a time-delayed connection 
which is added to an RN. The assumption we make is that significantly better results can be 
obtained by the addition of a small number of time-delayed connections to a recurrent 
network. The reader is invited to consult (Boné et al., 2000a; Boné et al, 2000b; Boné et al., 
2002) for a more detailed discussion regarding the role of time-delayed connections in RNs. 
The iterative and constructive aspects diminish the effect of the vanishing gradient on the 
outcome of the algorithm. Indeed, by reinforcing the long-term dependencies in the 
network, the first time-delayed connections favor the subsequent learning steps. A high 
selectivity should allow us to avoid over-parameterized networks. For every iteration, we 
rank the candidate connections according to their relevance. 
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We retained two alternative methods for defining the relevance of a candidate connection. 
The first one is based on the amount by which the error diminishes after the addition of the 
connection. The second one relies on a more detailed study of various quantities computed 
inside the network during gradient descent. 

3.1 Bounded exploration for the addition of time-delayed connections 

The first heuristic is a breadth-first search (BFS). It explores the alternatives for the location 

and the delay associated with a new connection by adding that connection and performing a 

few iterations of the underlying learning algorithm. The connection that produces the 

largest increase in performance during these few iterations is then added, and the learning 

continues until error increases on the stop set. Another exploratory stage begins for the 

addition of a new connection.  The algorithm eventually ends when the error on the stop set 

no longer decreases upon the addition of a new connection, or a (user-specified) bound on 

the number of new connections is reached. We employed BPTT as the underlying learning 

algorithm and we called this constructive algorithm Exploratory Back-Propagation Through 

Time (EBPTT). We must note that the breadth-first heuristic does not need any gradient 

information and can be applied in combination with learning algorithms which are not 

based on the gradient. 

If the RNN we start with does not account well for the medium or long-term dependencies 
in the data, and these dependencies are not too complex, then by adding the appropriate 
connection the error is likely to diminish relatively fast.  
Three new parameters are required for this constructive algorithm: the maximal value for 

the delay of a new connection, the maximal number of new connections and the number of 

BPTT steps performed for each candidate connection during the exploratory stage. In 

choosing the value of the first parameter one should ideally use prior knowledge related to 

the problem. If such information is not available one can rely on simple, linear measures 

such as auto or cross-correlations to find a bound for the long-term dependencies. 

Computational cost governs the choice of the two other parameters. However, the 

experiments we present in the following show that the contribution of the new connections 

diminishes quickly as their number increases. The complexity of the exploratory stage may 

seem quite high, O(N4), since after the addition of each candidate connection we carry out 

several steps of the BPTT algorithm on the entire network. The user is supposed to find a 

tradeoff between the quality of the results and the computation cost. When compared to the 

complete exploration of all the alternative architectures, this breadth-first search is only 

interesting if good results can be obtained with few learning steps during the exploratory 

stage. Fortunately, experimental evidence shows that this appears to be the case, so the 

global cost of the algorithm remains low. 

3.2 Internal correlations 

The second heuristic for defining the relevance of a candidate connection is closely 

dependent on BPTT-like underlying learning algorithms. Since this method makes use of 

quantities computed during gradient descent, its computation cost is significantly lower 

than for the breadth-first search. 

When applying BPTT on the training set between 1t  and lt , we obtain the following 

expression for the variation of one weight of delay k , ( ) ( )1t,tw l1
k

ij
−Δ : 
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( )( ) ( )( ) ( )( )( )∑ ∑−

+=τ

−

+=τ τ∂
∂η−=τΔ=−Δ 1t

kt

1t

kt
k

ij

l1k
ijl1

k
ij

l

1

l

1
w

t,tE
w1t,tw   (16) 

( )( )τk
ijw  being the copy of ( )k

ijw  for τ=t  in the unfolded network employed by BPTT. We 

may write 

 

( )
( ) ( ) ( )( ) ( ) [ ]1t;ktks

net

t,tE

w

t,tE
l1j

i

l1

k
ij

l1 −+∈τ−τ⋅τ∂
∂=τ∂

∂
  (17) 

We are looking for connections which are potentially useful in capturing (medium or long-

term) dependencies in the data. A connection ( )k
ijw  is then useful only if it has a significant 

contribution to the computation of the gradient, i.e. ( ) ( )( )τ∂∂ k
ijl1 wt,tE  is significantly 

different from zero for many iterations of the learning algorithm. We select the output of a 

neuron ( )ks j −τ  which best contributes to a reduction in error by means of ( ) ( )τ∂∂ il1 nett,tE . 

The resulting algorithm, called Constructive Back Propagation Through Time (CBPTT), 

computes during several BPTT steps the correlation between the values of ( ) ( )τ∂∂ il1 nett,tE  

and ( )ks j −τ  for [ ]1t;kt l1 −+∈τ . The relevance of a candidate connection ( )k
ijw  is defined 

as the absolute value of this correlation. The connection with the highest relevance factor is 

then added to the RNN, its weight is initialized to 0, and learning continues. The process 

stops when a new connection has no further positive effect on the performance of the RNN, 

as evaluated on a stop set. The time complexity and the storage complexity of CBPTT is the 

same as for BPTT. 
This constructive algorithm requires two new parameters: the maximal value for the delays 

of the new connections and the maximal number of new connections. The choice of these 

parameters is independent from the constructive heuristic, so the rules already mentioned 

for EBPTT should be applied. Experiments reported in (Boné et al., 2002) support the view 

that the precise value of this parameter does not have a high influence on the outcome, as 

long as it is higher than the significant linear dependencies in the data, which are given by 

the autocorrelation. The same experiments show that performance is not very sensitive to 

the bound on the number of new connections either, because the contribution of the new 

connections quickly diminishes as their number increases. 

This definition for the relevance of a candidate connection is well adapted to time 

dependencies which are well represented in the available data. If this is not the case for the 

dependencies one is interested in, a more thorough study of the distribution of the product ( ) ( ) ( )τ∂∂⋅−τ il1j nett,tEks  should suggest more adequate measures for the relevance. 

4. Time Delay Learning  

An alternative to the adding of connections with time delays could be found in the learning 

of the connection delays themselves. (Duro & Santos Reyes, 1999) (see also (Pearlmutter 

1990)) have suggested, for a feed-forward neural networks that associate a delay to each 

connection, an algorithm based on the gradient which simultaneously adjusts weights and 

delays. We adapted this technique to a recurrent architecture. 
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Considering an RNN in which two values are associated to each connection from a neuron j 

to a neuron i, these two values are of a usual weight ijw  of the signal and a delay ijτ  which 

is a real value indicating the needed time for the signal to propagate through the connection. 

Note that this parameter is not the same as the maximal order of a FIR connection: indeed, 

when we consider a connection of delay ijτ , we do not have simultaneously 1ij −τ  

connections with integer delays between 1 and ijτ . The neuron output ( )tsi   is given by: 

 
( ) ( )( )1tnetfts iii −=  with ( ) ( )( )∑∈ −τ−=−

iPredj
ijjiji 1tsw1tnet   (15) 

The values ( )1ts ijj −τ−  are obtained by applying a linear interpolation between the two 

nearest whole numbers of the delay ijτ .  

We have adapted the BPTT algorithm to this architecture with a simultaneous learning of 

weights and delays of the connections, inspired from (Duro & Santos Reyes, 1999). The 

variation of a delay ijτ  can be computed as the sum of the variations of this parameter 

copies  corresponding to the times from  1t  to lt . Then we add this variation to all copies of 

ijτ . We will only give here the demonstration of the learning of the delays as the learning of 

the weight can easily be deducted from it. 

We note ( )ττij  the copy of ijτ  for t τ=  in the unfold in time neural net which is virtually 

constructed with BPTT. ⎡ ⎤.  is the operator of upward roundness. 

We apply a back-propagation of the gradient of the mean quadratic error ( )1 lE t , t  which is 

defined as the sum of the instantaneous errors  ( )e t  from  1t  to lt : 

 

( ) ( ) ( ) ( )( )( )∑ ∑∑ = ∈=
−== l

1

l

1

t

tt tTp

2
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t

tt
l1 tstd

2

1
tet,tE   (16) 
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⎡ ⎤

( )( )⎡ ⎤∑∑ −
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∂λ−=ττΔ=∂τ
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t ij
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t
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l1
l1ij

l
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l

ij1

t,tE
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t,tE
)1t,t(   (17) 

We can write  ( ) ( ) ( ) ( ) ( ) ( )ττ∂τ∂•τ∂∂=ττ∂∂ ijiil1ijl1 netnett,tEt,tE . With a first order 

approximation, ( ) ( ) ( ) ( )( )ijjijjijiji s1swnet τ−τ−−τ−τ≈ττ∂τ∂ . We expand ( ) ( )τ∂∂ il1 nett,tE  

following Eq. 10. If neuron i belongs to the last layer ( 1t l −=τ ), we apply Eq. 11. If neuron i 

belongs to one of the preceding layers: 

 

( )( ) ( )( ) ( )( ) ( )( )( )∑∈ ⎟⎟⎠
⎞

⎜⎜⎝
⎛
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+τ+τ∂
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∂++τ∂

+τ∂=+τ∂
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iSuccj i
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l1

ii

l1

1s
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t,tE

1s

1e

1s

t,tE
  (18) 

As ( ) ( ) ( )1w1s1net jiijij +τ=+τ∂+τ+τ∂ , we obtain the final relations to learn the delay 

associated to each connection: 

 

( ) ( )( ) ( ) ( )( )ijjijj
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kt
ij

i

l1
l1ij s1sw

net
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1t,t

l

1
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∂λ−=−τΔ ∑−+=τ   

(19)

 
with for 1t l −=τ
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and for 1t t 1lτ≤ < −  
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5. Boosting Recurrent Neural Networks  

To improve the RNN forecasting results, we may use a combination of models to obtain a 
more precise estimate than the one obtained by a single model. In the boosting algorithm, 
the possible small gain a “weak” model can bring compared to random estimate is boosted 
by the sequential construction of several such models, which concentrate progressively on 
the difficult examples of the original training set. Boosting (Schapire, 1990; Freund & 
Schapire, 1997; Ridgeway et al., 1999) works by sequentially applying a classification 
algorithm to re-weighted versions of the training data, and then taking a weighted majority 
vote of the sequence of classifiers thus produced. Freund and Schapire (Freund & Schapire, 
1997) presented the Adaboost. R algorithm that attacks the regression problem by reducing 
it to a classification problem.  
A different approach to regressor boosting as residual-fitting was developed in (Duffy & 
Helmbold, 2002; Buhlmann & Yu 2003). Instead of being trained on a different sample of the 
same training set, as in previous boosting algorithms, a regressor is trained on a new 
training set having different target values (e.g. the residual error). Before presenting briefly 
our algorithm, studied in (Assaad et al, 2005), let us mention that in (Cook & Robinson, 
1996) a boosting method is applied to the classification of phonemes, with RNNs as learners. 
The authors are the first ones to have noticed the implications of the internal memory of the 
RNNs on the boosting algorithm.  
The boosting algorithm employed should comply with the restrictions imposed by the 
general context of the application. In our case, it must be able to work well when a limited 
amount of data is available and to accept RNNs as regressors. We followed (Assaad et al, 
2008) the generic algorithm of (Freund, 1990). Our updates are based on the suggestion in 
(Drucker, 1999), but we apply a linear transformation to the weights before we employ them 

(see the definition of ( )qD 1n+  in Table 1) in order to prevent the RNNs from simply ignoring 

the easier examples. Then, instead of sampling with replacement according to the updated 
distribution, we prefer to weight the error computed for each example (thus using all the 
data points) at the output of the RNN with the distribution value corresponding to the 
example. 
For stage (2a), BPTT equations (14) and (15) become for the output layer: 

 
[ ] ( )i l i l n i i1

i

s (t )-d (t ) D 1 f (net (τ)) if i T(τ 1)E(t , t )

net (τ) 0 else
l

τ ′⎧ + ∈ +∂ ⎪= ⎨∂ ⎪⎩   (22) 

and for the hidden layer:  
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1. Initialize the weights for the examples: ( ) Q1qD1 = , and Q , the number of 

training examples. Put the iteration counter at 0: 0n =   

2. Iterate 

        (a) increment n . Learn with BPTT an RNN nh  by using the entire 

               training set and by weighting the squared error computed for example q    

               with ( )qDn , the weight of example q  for the iteration n ; 

        (b) update the weights of the examples: 

            (i) compute ( )qLn  for every Q,,1q A=  according to the loss function:          

                ( ) ( )( ) nqq
n

q
linear
n SyxyqL −= , ( ) ( )( ) 2

n

2

qq
n

q
quadratic
n SyxyqL −=    

                ( ) ( )( )( )nqq
n

q
lexponentia

n Syxyexp1qL −−−= , with    

                ( )( ) qq
n

q
q

n yxysupS −=  ; 

            (ii) compute ( ) ( )∑==ε Q

1q
nnn qLqD  and ( ) nnn 1 εε−=α  ; 

            (iii) the weights of the examples become ( nZ  is a normalizing constant) 

                 ( ) ( )
kQ

qpk1
qD 1n

1n +
⋅+= ++  with ( ) ( ) ( )( )

n

1qL
nn

1n
Z

qD
qp

n −
+

α=  until 5.0n <ε . 

3. Combine RNNs by using the weighted median. 

Table 1. The boosting algorithm proposed for regression with recurrent neural networks          
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6. Single step ahead prediction results 

The results we present here concern univariate regression only, but our algorithms are 
obviously not limited to such problems. We employed a natural dataset (sunspots) and two 
synthetic datasets (Mackey-Glass), which allow us to perform comparisons since many 
related results are published in the literature.  
We applied our algorithms to RNNs having an input neuron, a linear output neuron, a bias 
unit and a recurrent hidden layer composed of neurons with the symmetric sigmoid (tanh) 
as activation function. We randomly initialized the weights in [-0.3, 0.3]. For the sunspots 
dataset we tested RNNs having 2 to 15 neurons in the hidden layer and for the Mackey-
Glass RNNs having dataset 2 to 8 neurons. Except for boosting, we performed 20 
experiments for each architecture. For boosting, we limited the experiments to 5 trial runs 

for each configuration: (linear, squared or exponential loss functions; value of parameter k ), 

due to heavy calculation time, using the best  architecture found by BPTT (12 neurons in the 
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hidden layer for sunspots, 7 neurons for the Mackey-Glass series). We set the maximal 
number n of RNNs at 50 for each experiment. 
In the following we employ the normalized mean square error (NMSE) which is the ratio 
between the mean square error and the variance of the time series. It is defined, for a time 

series 
l1 t,,tt)t(x …= , by 
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( )
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t

tt
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t
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  (24) 

where )t(x̂  is the prediction given by the RNN and )t(x , 2σ  are the mean value and 

variance estimated from the available data. A value of NMSE=1 is achieved by predicting 

the unconditional mean of a time series. The normalized root mean squared error (NRMSE) 

used for some of the results in the literature is the square root of the NMSE.  
We compared the results obtained using our algorithms to other results in the literature.  

6.1 Sunspots 

The sunspots dataset (Fig. 5) is a natural dataset that contains the yearly number of dark 

spots on the sun from 1700 to 1979. The time series has a pseudo-period of 10 to 11 years. It 

is common practice to use as the training set the data from 1700 to 1920 and to evaluate the 

performance of the model on two sets, composed respectively of the data from 1921 to1955 

(test1) and of the date from 1956 to 1979 (test2). Test2 is considered to be more difficult. 
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Fig. 5. The sunspots time series 

For both CBPTT and EBPTT we set to 20 the upper bound for the delays of the new 

connections, to 4 the maximal number of new connections and to 20 the number of BPTT 

iterations performed for each candidate connection during the exploratory stage of EBPTT. 

Tables 2 and 3 show the NMSE obtained by various models on the two test sets of this 

benchmark, and the total number of parameters. 
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Model Parameters Test1 Test2 

Carbon copy 0 0.427 0.966 

TAR 18 0.097 0.280 

MLP Weigend 43 0.086 0.350 

MLP Kouam 43 0.082 0.320 

RNR/BPTT 181 0.102 0.371 

RNR/EBPTT 20 it. 15 0.096 0.320 

RNR/EBPTT 100 it. 15 0.092 0.308 

RNR/CBPTT 15 0.094 0.281 

RNR/Boosting (quad., 20)  0.090 0.296 

RNR/Boosting (lin., 10)  0.082 0.314 

Table 2. Mean NMSE obtained by various models on the sunspots time series 
 

Model Parameters Test1 Test2 

MLP Czernichow 30 0.078 0.283 

TAR 18 0.097 0.280 

DRNN1 30 0.091 0.273 

DRNN2 45 0.093 0.246 

RNN/BPTT 155 0.084 0.300 

RNN/EBPTT 23 0.078 0.227 

RNN/CBPTT 15 0.092 0.251 

RNN/Delay learning 34 0.081 0.261 

RNN/Boosting (quad., 5)  0.078 0.250 

RNN/Boosting (lin., 10)  0.080 0.270 

Table 3. Best NMSE obtained by various models 

The threshold autoregressive (TAR) model in (Tong & Lim, 1980) employs a threshold to 
switch between two AR models. The MLP in (Weigend et al., 1991) has a time window of 
size 12 in the input layer; Table 2 gives the results obtained with weight decay and pruning, 
which start with 8 hidden neurons and reduce their number to 3. The Dynamical RNNs 
(DRNNs) are RNNs having FIR connections. We show here the best results obtained in 
(Aussem, 1999) on each of the two test sets; mean values were not available. DRNN1 has 2 
hidden neurons, fully connected by FIR connections of order 5. DRNN2 has 5 hidden 
neurons, fully connected by FIR connections of order 2. The author found the order of these 
connections after several trials. 
The best result is obtained by EBPTT with 100 iterations, for an RNR with 3 hidden neurons. 
Constructive algorithms added most of the time 4 connections. For the delay learning 
algorithm, the experiments show an occasionally unstable behaviour, some learning 
attempts being soon blocked with high values of error. The internal state of the network (the 
set of neuron outputs belonging to the hidden layer) happens to be very sensitive to delay 
variation. The choice of the two learning steps, either for the weights or for connection 
delays, requires a very precise tuning. The boosting algorithm develops 9 networks with 
linear and quadratic functions and 36 networks with exponential function. 
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Fig. 6. The predictions obtained with EBPTT on the sunspots test sets  

6.2 Mackey-Glass series 

The Mackey-Glass benchmarks (Mackey and Glass, 1977) are well-known for the evaluation 
of SS and MS prediction methods. The time series are generated by the following nonlinear 
differential equation: 

 
10

dx 0.2 x(t θ)
0.1 x(t)

dt 1 x (t θ)

⋅ −= − ⋅ + + −  (25) 

The behavior is chaotic for τ > 16,8. The results in the literature usually concern τ = 17 

(known as MG17, see Fig. 7) and τ = 30 (MG30). The data is generated and then sampled 
with a period of 6, according to the common practice, see e.g. (Wan 1993). We use the first 
500 values as our learning set and the next 100 values as our test set. 
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Fig. 7. The Mackey-Glass time series for θ = 17 (left) and θ = 30 (right) 

The linear, polynomial, local approaches, RBF and MLP models are mentioned in (Casdagli, 

1989). The FIR MLP put forward in (Wan, 1993) has 15 neurons in the hidden layer. FIR 

connections of order 8 are employed between the inputs and the  hidden neurons, while the 

order of the connections between the hidden neurons and the output is 2. The resulting 

networks have 196 parameters. The feed-forward network employed in (Duro & Santos 

Reyes, 1999) consists of a single input neuron, 20 hidden neurons and one output neuron. A 

delay is associated to every connection in the network, and the value of the delay is 

modified by a learning algorithm inspired by back-propagation. In (McDonnell & Waagen, 

1994) an evolutionary algorithm produces an RNN having 2 hidden neurons with sinusoidal 

transfer functions and several time-delayed connections. 
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Model MG(17) MG(30) 

Linear 269 324 

Polynomial 11.2 39.8 

Local approach 1 33.1 57.5 

Local approach 2 12.9 380.2 

RBF 10.7 25.1 

FFN 10 31.6 

RNN/BPTT 0.99 13.1 

RNN/EBPTT 0.62 1.8 

RNN/CBPTT 1.66 2.51 

Boosting (quad., 100) 0.16 0.45 

Boosting (quad., 200) 0.18 0.45 

Table 4. Mean EQMN (*103)  obtained by various models on the MG time series 

The DRNNs have FIR connections of order 4 between the input and the hidden layer, FIR 
connections of order 2 between the 4 to 7 hidden neurons, and simple connections to the 
output neuron (for a total of 197 parameters). 
Throughout our experiments, for both EBPTT and CBPTT we set to 34 the maximal value for 

the delays of the new connections and to 10 the maximal number of new connections. The 

number of BPTT steps performed for each candidate connection during the exploratory 

stage of EBPTT was always set to 20; a higher value has a negligible effect here. The mean 

results reported in Table 4 were obtained with RNNs having 6 hidden neurons, so with 10 

time-delayed connections we have a maximum of 65 parameters. The best results were 

obtained with RNNs having up to 7 hidden neurons, for a maximum of 81 parameters. 

Our constructive algorithms significantly improve the results reported in the literature for 

the two datasets, with regard both to the mean NMSE and to the lowest NMSE. There is also 

an improvement upon BPTT without the constructive stage. 

During our experiments we noticed that the mean value of the delays associated with the 
new connections was significantly lower for MG(17) than for MG(30). Also, CBPTT added 
on the average fewer connections than EBPTT. Again, only the first new connections 
produce a significant reduction in the NMSE. 
 

Model MG(17) MG(30) 

FIR MLP 4.9 16.2 

TDFFN 0.8  

RNN evolutionary algorithm  2.5 

DRNN 4.7 7.6 

RNRN/BPTT 0.23 0.89 

RNN/EBPTT 0.13 0.05 

RNN/CBPTT 0.14 0.73 

RNN/delay learning 0.15  

Boosting (lin.,150)  0.13 0.45 

Boosting (quad., 100) 0.15 0.41 

Table 5. Best EQMN (*103) obtained by various models on the MG time series 
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7. Multi step ahead prediction results 

While reliable multi-step-ahead (MS) prediction has important applications ranging from 
system identification to ecological modeling, most of the published literature considers 
single-step-ahead (SS) time series prediction. The main reason for this is the inherent 
difficulty of the problems requiring MS prediction and the fact that the results obtained by 
simple extensions of algorithms developed for SS prediction are often disappointing. 
Moreover, if many different techniques perform rather similarly on SS prediction problems, 
significant differences show up when extensions of these techniques are employed on MS 
problems. 
There are several methods for dealing with a MS prediction problem after finding a 
satisfactory solution to the associated SS problem. 
The first and most common method consists in building a predictor for the SS problem and 
using it recursively for the corresponding MS problem. The estimates provided by the 
model for the next time step are fed back to the input of the model until the desired 
prediction horizon is reached. This method is usually called iterated prediction. This simple 
method is plagued by the accumulation of errors on the difficult data points encountered; 
the model can quickly diverge from the desired behavior. 
A better method consists in training the predictor on the SS problem and, at the same time, 
in making use of the propagation of penalties across time steps in order to punish the 
predictor for accumulating errors in MS prediction. This method is called corrected iterated 
prediction. When the models are MLPs or RNNs, such a procedure is directly inspired from 
the BPTT algorithm performing gradient descent on the cumulated error. The model is thus 
simultaneously trained on both the SS and the associated MS prediction problem. 
Unfortunately, the gradient of the error usually “vanishes” when moving away from the 
time step during which the penalty was received (Bengio, 1994).  
According to the direct method, the predictor is no longer concerned with an SS problem 
and is directly trained on the MS problem. By a formal analysis of the expected error, it is 
shown in (Atiya et al., 1999) that the direct method always performs better than the iterated 
method and at least as well as the corrected iterated method. However, this result relies on 
several assumptions, among which the ability of the model to perfectly learn the different 
target functions (the one for SS prediction and the one for direct MS prediction). The results 
of the learning algorithm may been improved, e.g. when it suffers from the vanishing 
gradient phenomenon. For instance, improved results were obtained by using recurrent 
networks and training them with progressively increasing prediction horizons (Suykens & 
Vandewalle, 1995) or including time-delayed connections from the output of the network to 
its input (Parlos et al., 2000). 
We decided to test on MS prediction problems the previous algorithms that were originally 
developed for learning long-term dependencies in time series (Boné & al, 2000) or for 
improving general performance. Constructive algorithms provide a selective addition of 
time-delayed connections to recurrent networks and were shown to produce parsimonious 
models (few parameters, linear prior on the longer-range dependencies) with good results 
on SS prediction problems. These results, together with the fact that a longer-range memory 
embodied in the time delays should allow a network to better retain the past information 
when predicting at a long horizon, let us anticipate improved results on MS prediction 
problems. Some further support for this claim is provided by the experimental evidence in 
(Parlos et al., 2000) concerning the successful use of time delays in recurrent networks for 
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MS prediction. We expected the constructive algorithms to identify the most useful delays 
for a given problem and network architecture, instead of using an entire range of delays. 

7.1 Sunspots 

All the tested algorithms perform better than standard BPTT and exhibit a fast degradation 
while simultaneously increasing prediction horizon (Table 6, Fig. 8).  
 

Model Steps 
ahead h BPTT CBPTT EBPTT lin. 10 quad. 20 quad. 5 exp. 20 

1 0.24 0.17 0.19 0.18 0.17 0.18 0.18 

2 0.88 0.69 0.53 0.43 0.40 0.43 0.42 

3 1.14 0.99 0.79 0.54 0.54 0.56 0.67 

4 1.22 1.17 0.80 0.67 0.73 0.64 0.76 

5 1.01 0.99 0.88 0.74 0.69 0.73 0.77 

6 1.02 1.01 0.84 0.73 0.68 0.65 0.74 

10 - - - 0.64 0.69 0.67 0.75 

12 - - - 0.86 0.97 0.77 1.09 

Table 6. Best mean NMSE on the sunspots cumulated set (test1+test2) as a function of the 
prediction horizon 

Boosted architectures give the best results. The boosting algorithm develops around 9 weak 
learners with the linear and quadratic loss functions, and 30 weak learners with the 
exponential function, as for the SS problem. The mean number of networks remains 
practically constant while the horizon increases. 
If we distinguish between the results on test1 and test2 (not shown here) we can see that the 
deterioration is mainly due to test2. It is commonly accepted that the behavior on test2 can 
not be explained (by some longer-range phenomenon) given the available history. Short-
range information available in SS prediction lets the network evaluate the rate of change in 
the number of sunspots. Such information is missing in MS prediction. 
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Fig. 8. Sunspots time series: mean NMSE on the cumulated test set as a function of the 
prediction horizon. Due to their poor results, BPTT and CBPTT algorithms are not 
represented 
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7.2 Mackey-Glass series 

For the two MG series, we obtained (Tables 7 and 8) around 26 networks with the linear 

function, 37 with the squared function and between 46 and 50 for the exponential function. 

The maximal number of networks is set to 50. Tables 7 and 8 show the strong improvements 

obtained on the original BPTT and on the constructive algorithms.  

 
 

Model Steps 
ahead h BPTT CBPTT EBPTT Lin. 150 quad. 100 exp. 100 

1 22 13 1 0.17 0.16 0.17 

2 179 124 101 0.24 0.28 0.25 

3 145 124 16 0.57 0.57 0.52 

4 8 7 4 0.57 0.54 0.52 

5 266 253 181 0.98 1.26 1.27 

6 321 321 232 2.11 15.2 4.66 

10 336 331 219 14.1 12.2 15.0 

11 289 218 252 9.80 12.0 16.8 

12 167 156 158 6.72 8.66 7.57 

Table 7. Best mean results (NMSE*103) on MG17 as a function of the prediction horizon  

Comparisons with other published results concerning MG17 MS prediction can only be 

performed for a horizon of 14; the results presented here are inferior to those of the local 

methods put forward in (Chudy & Farkas 1998; McNames 2000), but for the RNNs trained 

by our algorithm, significantly fewer data points were employed for training (500 compared 

to 3000 or 10000), which is the usual benchmark (Casdagli 1989; Wan, 1994). However, the 

use of a huge number of points for learning the MG17 artificial time series, generated 

without noise, can lead to models with poor generalization to noisy data.    

 
 

Model Steps 
ahead h BPTT CBPTT EBPTT lin. 300 quad. 200 exp. 150 

1 11.7 2.5 1.8 0.45 0.45 0.47 

2 19.9 9.7 3.3 0.49 0.48 0.59 

3 4 2.2 1.6 0.56 0.55 0.64 

4 2.2 2.1 1.6 0.47 0.43 0.48 

5 2.6 2.3 0.9 0.85 0.67 0.72 

6 8.9 8.3 6.4 1.75 1.92 1.80 

7 70.1 65.6 64.3 2.98 4.56 2.72 

8 336 203 112 5.08 109 57.0 

9 801 379 257 84.0 276 3.71 

10 892 383 73.7 2.79 204 2.63 

11 411 230 285 6.34 21.3 8.05 

Table 8. Best mean results (NMSE*103) on MG30 as a function of the prediction horizon  
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8. Conclusion 

Adding time-delayed connections to recurrent neural networks helps gradient descent 
algorithms in learning medium or long-term dependencies. However, by systematically 
adding finite impulse response connections, one obtains oversized networks which are slow 
to train and need regularization techniques in order to improve generalization. We apply 
here two constructive approaches, which starts with a RNN having no time-delayed 
connections and progressively adds some, an approach based on a particular type of neuron 
whose connections have a real value and adapted to recurrent networks and a boosting 
algorithm. The experimental results we obtained on three benchmark problems show that 
by adding only a few time-delayed connections we are able to produce networks having 
comparatively few parameters and good performance for SS problems.  
The results show also that boosting recurrent neural networks improve strongly MS 
forecasting. The boosting effect proved to be less effective for sunspots MS forecasts because 
some short-term dependencies are essential for the prediction of some parts of the data. The 
fact that for the Mackey-Glass datasets the results are better on the most difficult of the two 
sets (MG30) can be explained by noticing that long-range dependencies play a more 
important role for MG30 than for MG17. 
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