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1. Introduction    

Virtual reality (VR) has been used for diverse purposes, including medical surgery training, 
visualizing metabolic pathways, socio psychological experiments, flight and driving 
simulation, as well as industrial and architectural design [1-5]. In these applications the role 
of VR is to represent objects for visual experience by a human expert. In engineering and 
design applications the purpose is to verify the performance of a design object with respect 
to the criteria involved in the task during a search for superior solutions. In computational 
design, where this verification and search process are performed by means of computation, 
the instantiation of objects in virtual reality may become a necessary feature. The necessity 
occurs when the verification process requires the presence of ‘physical’ object attributes 
beyond the parameters that are subject to identification through search. For example, in an 
architectural design the goal may be to determine the most suitable position of an object, 
while the suitability is verified based on visual perception characteristics of the object. That 
is, the verification requires the presence of object features beyond the object’s location in 
order to exercise the evaluation of the object’s performance regarding the perception-based 
requirements. These features are provided when the object is instantiated in VR. This way a 
measurement process driving the evaluation, such as a virtual perception process in the 
form of a stochastic sampling process, can be executed to assess the perceptual properties of 
the object concerned. 
This paper elucidates the role of VR in computational design by means of two applications, 
where VR is a necessary feature for the effectiveness of the applications. The applications 
concern a computational design system implemented in VR that identifies suitable solutions 
to design problems. The effectiveness of the system has been established in previous work 
[6], while the general significance of the role that VR plays in the system has not been 
addressed. This will be accomplished in this paper, which is organized as follows. In section 
two the computational system is described. In section three the role that VR is playing in the 
system is described and demonstrated with two applications from the domain of 
architectural design. This is followed by conclusions. 

2. A computational design system implemented in Virtual Reality 

In several instances during a design process VR enables decision makers to better 
comprehend the implications of design decisions. Two aspects can be distinguished in this 
process.  
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First, a design’s implication in terms of the degree that it satisfies the objectives pursued is 
subject to assessment. This process may be termed as verification, as it entails the verification of 
the requirements’ satisfaction during a search to maximize the satisfaction degree. It is noted 
that the concept of Pareto optimality plays an important role in the search for optimality. 
Namely in general it is problematic for a decision maker to commit himself for a specific 
relative importance among the major goals for the design at hand prior to knowing the 
implications of such a commitment. This is due to the generally abstract nature of the goals in 
design. For example the aims to have high functionality or low cost, clearly are difficult to put 
in perspective prior to knowing what solutions may be attained when maximizing the 
satisfaction of these goals in the present task. Pareto optimality addresses this issue by 
permitting to postpone the commitment on relative importance until a set of equivalent 
solutions is obtained that cannot be improved further. This is achieved by establishing those 
solutions where no others exist that outperform them in all goals at the same time. 
A second process concerns validation of the objectives. That is, the question if the right 
objectives are pursued during verification is addressed. The latter process requires insights 
beyond knowing how to reach optimality for the given goals at hand. Namely contingent 
requirements that have not been put into the play during verification are to be pin-pointed. 
It is clear that the latter process requires verification to occur before it, since otherwise there 
is no rationale to modify the objectives. That is, based on the Pareto optimal solutions found, 
a designer is to compare these solutions against his/ her preferences, yielding clues on the 
modification of criteria. The relation between the verification and validation process in 
design are shown in figure 1.  
The reason why VR facilitates validation is that it allows considering the solution in the 
physical domain beyond an abstract description of the targeted performance features, so 
that a decision maker may become aware of directions for modifying the objectives. The 
validation process is especially soft, since it is highly contingent to circumstances so that 
potentially a vast amount of desirable objectives may be subject to inclusion in a design task, 
and it is generally problematic to have a hint about which ones to include as well as their 
relative importance [7]. Therefore it is a challenging issue to provide computational support 
for the validation process. 
In order to investigate the role of VR in the search for optimality during verification, we take 
a closer look at verification and its associated search process. A computational system 
accomplishing this task is shown in figure 2. It aims to establish set of Pareto optimal 
solutions for a number of requirements, where the requirements are allowed to be soft in 
character, i.e. they may contain imprecision and uncertainty. 
 

 
Fig. 1. Verification and validation in design 
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Fig. 2. Computational design system implemented in virtual reality 

From the figure it is noted that the system consists of four components: a multi-objective 
genetic algorithm; a neuro-fuzzy model; object instantiation in VR; and instantiation of 
Pareto optimal solutions in VR. The genetic algorithm is marked by the red box, the fuzzy 
model is marked by the green box. The two components involving VR are shown in the blue 
boxes. In order to pin-point the role VR plays in the system, first it is necessary to explain 
the evolutionary and the fuzzy system components. The role of VR is described in section 
three. 

2.1 Evolutionary search for multi-objective optimality 
The task of the multi-objective search algorithm in the design system above is to gear the 
process towards desirable solutions. Multi-objective optimization deals with optimization 
where several objectives are involved. In design generally multiple objectives are subject to 
simultaneous satisfaction. Such objectives e.g. are high functionality and low cost. These 
objectives are conflicting or in competition among themselves. For a single objective case 
there are traditionally many algorithms in continuous search space, where gradient-based 
algorithms are most suitable in many instances. In discrete search spaces, in the last decade 
evolutionary algorithms are ubiquitously used for optimization, where genetic algorithms 
(GA) are predominantly applied. However, in many real engineering or design problems, 
more than two objectives need to be optimized simultaneously. To deal with multi-
objectivity, evolutionary algorithms with genetic operators are effective in defining the 
search direction for rapid and effective convergence [8]. Basically, in a multi-objective case 
the search direction is not one but may be many, so that during the search a single preferred 
direction cannot be identified and even this is not desirable. To deal with multi-objectivity 
evolutionary algorithms are effective in defining the search direction, since they are based 
on a population of solutions. Basically, in a multi-objective case the search direction is not 
one but may be many, so that during the search a single preferred direction cannot be 
identified. In this case a population of candidate solutions can easily hint about the desired 
directions of the search and let the candidate solutions during the search process be more 
probable for the ultimate goal. Essential machinery of evolutionary algorithms is the 
principles of GA optimization, which are the genetic operations. Genetic operations entail 
the probabilistic combination among favourable solutions in order to provoke the 
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emergence of more suitable solutions. Use of these principles is inspired from the 
phenomenon of biological evolution. It proves to be effective for multi-modal objective 
functions, i.e. problems involving many local optima. Therefore the evolutionary approach 
is robust and suitable for real-world problems.  
Next to the evolutionary principles, in Multi-objective (MO) algorithms, in many cases the 
use of Pareto ranking is a fundamental selection method. Its effectiveness is clearly 
demonstrated for a moderate number of objectives, which are subject to optimization 
simultaneously. Pareto ranking refers to a solution surface in a multidimensional solution 
space formed by multiple criteria representing the objectives. On this surface, the solutions 
are diverse but they are assumed to be equivalently valid. The driving mechanism of the 
Pareto ranking based algorithms is the conflicting nature of criteria, i.e. increased 
satisfaction of one criterion implies loss with respect to satisfaction of another criterion. 
Therefore the formation of Pareto front is based on objective functions of the weighted N 
objectives f1, f2,…, fN which are of the form 

 
1,

( ) ( ) ( ), 1,2,...,
j N

i i ji j
j j i

F f f i N
=

= ≠
= + =∑ ax x x  (1) 

where Fi(x) are the new objective functions; aji is the designated amount of gain in the j-th 
objective function for a loss of one unit in the i-th objective function. Therefore the sign of aji 

is always negative. The above set of equations requires fixing the matrix a. This matrix has 
all ones in its diagonal elements. To find the Pareto front of a maximization problem we 
assume that a solution parameter vector x1 dominates another solution x2 if F(x1)≥F(x2) for all 
objectives. At the same time a contingent equality is not valid for at least one objective. 
In solving multi-objective optimization, the effectiveness of Pareto-ranking based 
evolutionary algorithms has been well established. For this purpose there are quite a few 
algorithms which are running quite well especially with low dimensionality of the 
multidimensional objective space [9]. However, with the increase of the number of objective 
functions, i.e. with high dimensionality, the effectiveness of the evolutionary algorithms is 
hampered. Namely with many objectives most solutions of the population will be 
considered non-dominated, although the search process is still at a premature stage. This 
means the search has little information to distinguish among solutions, so that the selection 
pressure pushing the population into the desirable region is too low. This means the 
algorithm prematurely eliminates potential solutions from the population, exhausting the 
exploratory potential inherent to the population. As a result the search arrives at an inferior 
Pareto front, and with aggregation of solutions along this front [10]. One measure of 
effectiveness is the expansion of Pareto front where the solution diversity is a desired 
property. For this purpose, the search space is exhaustively examined with some methods, 
e.g. niched Pareto ranking, e.g. [11]. However these algorithms are rather involved so that the 
search needs extensive computer time for a satisfactory solution in terms of a Pareto front. 
Because of this extensive time requirement, distributed computing of Pareto-optimal 
solutions is proposed [12], where multiple processors are needed.  
The issue of solution diversity and effective solution for multi-objective optimization 
problem described above can be understood considering that the conventional Pareto 
ranking implies a kind of greedy algorithm which considers the solutions at the search area 
delimited by orthogonal axes of the multidimensional space, i.e. aji in Eq. 1 becomes zero. 
This is shown in figure 3 by means of the orthogonal lines delimiting the dominated region. 
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                    (a)                                                                         (b) 

Fig. 3. Contour lines defining the dominated region in relaxed versus greedy case (a); 
implementation of the relaxation concept during the evolutionary search process (b) 

The point P in figure 3a is ultimately subject to identification as an ideal solution. To 
increase the pressure pushing the Pareto surface towards to the maximally attainable 
solution point is the main problem, and relaxation of the orthogonality with a systematic 
approach is needed and applied in this work. From figure 3a it is noted that by increasing 
the angle at P from the conventional orthogonal angle to a larger angle implies that the 
conventional dominated region is expanded by domains of relaxation. This also entails that 
theoretically a Pareto front is to be reached that is located closer towards the ideal Point P.  
Such an increase of the angle delimiting the search domain implies a deviation from the 
conventional concept of Pareto dominance, namely the strict Pareto dominance criterion is 
relaxed in the sense that next to non-dominated solutions also some dominated solutions are 
considered at each generation. This is seen from figure 3b, where the point P denotes one of 
the individuals among the population in the context of genetic algorithm (GA) based 
evolutionary search. In the greedy search many potential favourable solutions are 
prematurely excluded from the search process. This is because each solution in the 
population is represented by the point P and the dominance is measured in relation to the 
number of solutions falling into the search domain within the angle θ=π/2. To avoid the 
premature elimination of the potential solutions, a relaxed dominance concept is 
implemented where the angle θ can be considered as the angle for tolerance provided θ>π/ 2. 
The resulting Pareto front corresponds to a non-orthogonal search domain as shown in figure 
3. The wider the angle beyond π/ 2 the more tolerant the search process and vice versa. For 
θ<π/ 2, θ becomes the angle for greediness. Domains of relaxations are also indicated in Figure 
3b. In the greedy case the solutions are expected to be more effective but to be aggregated. 
In the latter case, the solutions are expected to be more diversified but less effective. That is 
because such dominated solutions can be potentially favourable solutions in the present 
generation, so that they can give birth to non-dominated solutions in the following 
generation.  
Although, some relaxation of the dominance is addressed in literature [13, 14], in a 
multidimensional space, to identify the size of relaxation corresponding to a volume is not 
explicitly determined. In such a volume next to non-dominated solutions, dominated but 
potentially favourable solutions, as described above, lie. To determine this volume 
optimally as to the circumstantial conditions of the search process is a major and a 
challenging task. The solution for this task is essentially due to the mathematical treatment 
of the problem where the volume in question is identified adaptively during the search that 
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it yields a measured pressure to the Pareto front toward to the desired direction, at each 
generation as follows.  
The fitness of the solutions can be ranked by the fitness function 

 
1

( )N nθ= +fitR  (2) 

where n  is the number of potential solutions falling into the search domain consisting of the 
conventional orthogonal quadrant, with the added areas of relaxation. To obtain n in Eq. 2, 
for each solution point, say P in Figure 3b, the point is temporarily considered to be a 
reference point as origin, and all the other solution points in the orthogonal coordinate 
system are converted to the non-orthogonal system coordinates. This is accomplished by 
means of the matrix operation given by Eq. 3 [15],  
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where the angles φ, ϕ, … θ represent the respective relaxation angles between one axis of the 
coordinate system and the other axes. After coordinate transformation using Eq 3, all points 
which have positive coordinates in the non-orthogonal system correspond to potential 
solutions contributing to the next generation in the evolutionary computation. If any point 
possesses a negative component in the new coordinate system, the respective solution does 
not dominate P and therefore is not counted. This is because otherwise such a solution may 
lead the search in a direction away from P. The importance of this coordinate transformation 
becomes dramatic especially with greater amounts of objective dimensions. In such cases the 
spatial distribution of domains of relaxation becomes complex and is therefore difficult to 
implement. Namely, in multidimensional space the volume of a relaxation domain is 
difficult to imagine, and more importantly it is difficult to identify the population in such 
domains. Therefore many different methods for effective Pareto front formation in the 
literature [10, 16] are reported. However Eq. 3 provides a decisive and easy technique 
revealed in this work for the same goal. The approach through the coordinate 
transformation is a systematic and elegant approach, alleviating the bottleneck of 
conventional Pareto ranking dealing with many objectives to some extend, so that the 
evolutionary paradigm becomes more apt for applications in design usually containing a 
great many requirements.  
In order to maximize the effectiveness of the relaxation, the determination of the suitable 
relaxation angle is a contingent issue, i.e. it depends on the particular conditions occurring 
during the stochastic search process. For instance, during a prematurely developed Pareto 
front, applying large relaxation angles may not permit effective distinction among the 
solutions regarding their suitability for the ultimate goal. Or during later stages of Pareto 
front development, a smaller angle will exhaust the diversity in the population and thus 
diminish the selection pressure towards the desirable regions. This means fixing the 
relaxation angle in advance may not be able to let the population arrive at a Pareto front as 
close to the ideal point compared to a strategy where the angle is adaptively changing 
during the search, taking the present conditionality of the Pareto front into account. 
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Adaptively changing the angle implies that the angle used to grade the individual solution’s 
suitability is considered in perspective with the relaxation angles presently associated to the 
other solutions in the population. This is implemented by means of Eq. 4, where the ratio 
between the relaxation angle and average relaxation angle is used. N(θ) in Eq. 4 can be 
considered as expressing the amount of virtual solutions that are accrued to the counted 
number of dominant solutions given by  n in Eq. 2, reflecting the fact that when we take the 
greedy dominance concept solutions that are dominated by s more solutions may turn out to 
be favourable in the search process although they normally would be eliminated due to 
greediness of the algorithm. 

 ( )( )
1 /

s
N θ θ θ= +  (4) 

Considering Eq. 2 and Eq. 4 together it is clear that the purpose is to reward a chromosome 
for affording a wide relaxation angle θ, relative to the average angle of the population θ , 
and still having a low dominance count, denoted by n. The wide angle provides more 
diversity in the population for the next generation. However, when the relaxation angle 
would be excessively big, the population for the next generation can be crowded with trivial 
solutions. To prevent that, in Eq. 2 the number of non-dominated solutions with respect to 
the particular solution considered denoted by n, is summed up with the function of the 
angle N(θ). This means that between two solutions with the same amount of non-dominated 
solutions, the one with the wider angle is preferred. This is done for every solution in the 
population. This implies that the average angle θ  is changing for every generation 
adaptively. It is noted that the number s appearing in Eq. 4 is a constant number, used to 
adjust the relative significance of relaxation angle versus count n. This means the value of s 
should be selected bearing in particular the population size in mind, so that for instance 
solutions using wide angles are adequately rewarded.  

2.2 A fuzzy model for performance evaluation  
The fuzzy model marked by the letter m in figure 2 enables the multi-objective search 
process to evaluate the solutions it generates and combines genetically, using some human-
like reasoning capabilities. That is, the solutions are evaluated with respect to complex, 
vague objectives having a linguistic character. Design tasks, in particular in the domain of 
built environment, involve goals with such properties, e.g. functionality, or sustainability. 
During the search for optimality in design the suitability of a solution for the goals needs to 
be estimated. This means beyond observing the direct physical features of a solution, they 
need to be interpreted with respect to the goals pursued. For example, designing a space it 
may be desirable that the space is large or it is nearby another space. Clearly these 
requirements have to do with the size of the space, and the distance among spaces 
respectively, which are physical properties of the design. However, it is clearly noted that 
largeness is a concept, i.e. it does not correspond immediately to a physical measurement, 
but it is an abstract feature of an object. It is also noted that there is generally no sharp 
boundary from on which one may attribute such a linguistic feature to an object. For 
instance there is generally no specific size of a room from on which it is to be considered 
large, and below which it is not large. Many design requirements have this character, i.e. 
they do not pin-point a single acceptable parameter value for a solution, but a range of 
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Fig. 4. Two fuzzy sets expressing two elemental design requirements 

values that are more or less satisfactory. This is essentially because design involves 
conflicting requirements, such as spaciousness versus low cost. Therefore many 
requirements are bound to be merely partially fulfilled. Such requirements characterized as 
soft, and they can be modelled using fuzzy sets and fuzzy logic from the soft computing 
paradigm [17]. A fuzzy set is characterized via a function termed fuzzy membership function 
(mf), which is an expression of some domain knowledge. Through a fuzzy set an object is 
associated to the set by means of a membership degree μ. Two examples of fuzzy sets are 
shown in figure 4. By means of fuzzy membership functions a physical property of a design, 
such as size, can be interpreted as a degree of satisfaction of an elemental requirement. The 
degree of satisfaction is represented by the membership degree. 
The requirements considered in figure 4 are relatively simple, whereas the ultimate 
requirement for a design - namely a high design performance - is complex and abstract. 
Namely the latter one is determined by the simultaneous satisfaction of a number of 
elemental requirements. 
 

 

Fig. 5. The structure of a fuzzy neural tree model for performance evaluation 
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                          (a)                                   (b)                        (c) 

Fig. 6. Different type of node connections in the neuro-fuzzy model in figure 5 

In this work the performance is computed using a fuzzy neural tree. It is particularly 
suitable to deal with the complex linguistic concepts like performance of a design. A neural 
tree is composed of one or several model output units, referred to as root nodes that are 
connected to input units termed terminal nodes, and the connections are via logic processors 
termed internal nodes. An example of a fuzzy neural tree for performance evaluation of a 
design is shown in Figure 5. The neural tree is used for the evaluation by structuring the 
relations among the aspects of performance. The root node takes the meaning of high 
sustainability performance and the inner nodes one level below are the aspects of the 
performance. The meaning of each of these aspects may vary from design project to project 
and it is determined by experts. The model inputs are shown by means of squares in Figures 
5 and 6, and they are fuzzy sets, such as those given in Figure 4. 
The detailed structure of the nodal connections with respect to the different connection 
types is shown in Figure 7, where the output of i-th node is denoted μi and it is introduced 
to another node j. The weights wij are given by domain experts, expressing the relative 
significance of the node i as a component of node j.  
The centres of the basis functions are set to be the same as the weights of the connections 
arriving at that node. Therefore, for a terminal node connected to an inner node, the inner 
node output denoted by Oj, is obtained by [18]. 

 

2
( 1)1

exp( )
2 /

n
i

j
j iji

O
w

μ
σ
⎡ ⎤−= − ⎢ ⎥⎢ ⎥⎣ ⎦∑  (5) 

where j is the number of the node; i denotes consecutive numbers associated to each input of 
the inner node; n denotes the highest number of the inputs arriving at node j; wi denotes the 
degree of membership being the output of the i-th terminal node; wij is the weight associated 
with the connection between the i-th terminal node and the inner node j; and σj denotes the 
width of the Gaussian of node j.  
It is noted that the inputs to an inner node are fuzzified before the AND operation takes 
place. This is shown in Figure 7a. It is also noted that the model requires establishing the 
width parameter σj at every node. This is accomplished by means of imposing a consistency 
condition on the model [18]. This is illustrated in figure 7b where the left part of the 
Gaussian is approximated by a straight line. In figure 7b, optimizing the σj parameter, we 
obtain 
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                             (a)                                                  (b) 

Fig. 7. Fuzzification of an input at an inner node (a); linear approximation to Gaussian 
function at AND operation (b)  

 jO μ≅  (6) 

for the values μ and Oj can take between zero and one. In any case, for a node in the neural 
tree, Eq. 6 is satisfied for μ=Oj=0 (approximately) and for μ=Oj=1 (exact) inherently, while g1 
and g2 are increasing function of μ1 and μ2. Therefore a linear relationship between Oj and μ 
in the range between 0 and 1 is a first choice from the fuzzy logic viewpoint; namely, as to 
the AND operation at the respective node, if inputs are equal, that is μ=μ1=μ2 then the 
output of the node of μ1 AND μ2 is determined by the respective triangular membership 
functions in the antecedent space. Triangular fuzzy membership functions are the most 
prominent type of membership functions in fuzzy logic applications. For five inputs to a 
neural tree node, these membership functions are represented by the data sets given by 
Table 1 and Table 2. 
 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

Table 1. Dataset at neural tree node input 
 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

Table 2. Dataset at neural tree node output 

In general, the data sets given in Table 1 and Table 2 are named in this work as ‘consistency 
conditions’ . They are used to calibrate the membership function parameter σ. This is 
accomplished through optimization. The consistency condition is to ensure that when all 
inputs take a certain value, then the model output yields this very same value, i.e. μ1=μ2≈Oj 
This is illustrated in Figure 7b by means of linear approximation to the Gaussian. The 
consistency is ensured by means of gradient adaptive optimization, identifying optimal σj 
values for each node. It is emphasized that the fuzzy logic operation performed at each node 
is an AND operation among the input components μi coming to the node. This entails for 
instance that in case all elemental requirements are highly fulfilled, then the design 
performance is high as well. In the same way, for any other pattern of satisfaction on the 
elemental level, the performance is computed and obtained at the root node output. The 
fuzzy neural tree can be seen as a means to aggregate elemental requirements yielding fewer 
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requirement items at higher levels of generalization compared to the lower level 
requirements. This is seen from Figure 8. 
  

 

Fig. 8. Degrees of generalization in the neuro-fuzzy performance evaluation 

At this point a few observations are due, as follows. If a weight wij is zero, this means the 
significance of the input is zero, consequently the associated input has no effect on the node 
output and thus also the system output. Conversely, if a wij is close to unity, this means the 
significance of the input is highest among the competitive weights directed to the same 
node. This means the value of the associated input is extremely important and a small 
change about this value has big impact on the node output Oj. If a weight wij is somewhere 
between zero and one, then the associated input value has some possible effect on the node 
output determined by the respective AND operation via Eq. 5. In this way, the domain 
knowledge is integrated into the logic operations. The general properties of the present 
neural tree structure are as follows: If an input of a node is small (i.e., close to zero) and the 
weight wij is high, then, the output of the node is also small complying with the AND 
operation; If a weight wij is low the associated input cannot have significant effect on the 
node output. This means, quite naturally, such inputs can be ignored; If all input values 
coming to a node are high (i.e., close to unity), the output of the node is also high complying 
with the AND operation; If a weight wij is high the associated input xi can have significant 
effect on the node output. It might be of value to point out that, the AND operation in a 
neural-tree node is executed in fuzzy logic terms and the associated connection weights play 
an important role on the effectiveness of this operation.  

3. The role of VR in the system 

3.1 General considerations 
From the descriptions of the two components in the previous section, it is clear that in order 
for the genetic algorithm to be effective, the suitability of the solutions it generates needs to 
evaluated using the fuzzy model. In conventional applications of Multi-objective GA, for 
instance maximizing the strength of a structural component and minimizing its weight at 
the same time, this evaluation is rather simple. The simplicity is in the sense that the fitness 
function is crisp and the parameters of the function, such as geometric parameters of the 
beam’s cross-section, are directly those parameters that are subject to evolutionary 
identification. In these cases there is no necessity for instantiation of the beam object during 
the search for optimality. However, in other search tasks, as they occur for instance in 
architectural design, the problem requires more elaborate treatment, in particular object 
instantiation in virtual reality. This necessity arises when the parameters that are subject to 
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identification through the genetic algorithm cannot be used as parameters in a fitness 
function because the evaluation of fitness requires the information from other object 
features. As an example let us consider a problem, where optimal positions for a number of 
design elements are pursued, while the determination of the suitability of the positioning 
requires information on the perceptual properties of the objects. A virtual perception 
process is needed that obtains the required input information used in the human-like 
reasoning during the evaluation process. Obtaining the input information requires the 
instantiation of object features beyond the parameters that are subject to identification 
through the search.  
This is seen from figure 2, where the role of VR in the design system is to permit 
instantiation of the candidate solutions, as indicated by the letter i, so that measurements 
required for the fuzzy performance evaluation are executed for these solutions. The 
measurements deliver input information for the human-like reasoning about the suitability 
of a solution using the neuro-fuzzy model marked with the letter m. With this 
understanding the role of VR in the search process can be considered as the interface 
between the two components evolutionary algorithm and fuzzy performance evaluation. In 
particular, referring to figure 8, the instantiation of objects in VR permits the execution of 
measurement procedures that deliver input information from the parameter domain for the 
interpretations with respect to the abstract goals. 
It is noted that for the effective multi-objective optimization in the application below the 
relaxation angle is computed adaptively for every chromosome, and at every generation. 
This is implemented by having the angle be a part of the chromosome of every solution. The 
fitness of a chromosome is obtained by considering two properties of the solution at the 
same time. One is the degree of dominance in terms of the amount of solutions dominating 
an individual, the second is the relaxation angle used to measure this amount. Based on Eqs. 
2 and 4 the fitness in the applications is assessed with s=20, i.e. explicitly  

 

( )
1

20

1 /

fitR

nθ θ
=

++
 (7) 

It is noted that the amount of chromosomes used in the tasks to be described in the 
following sections is 80.  
Next to the need for object instantiation in VR during the search for optimal solutions there 
is a second instance during a design process when virtual reality plays a significant role. 
This is indicated by the letter p in figure 2, and concerns the investigation of the Pareto 
optimal solutions previously obtained. It is noted that generally multi-objective 
optimization involves no information on the relative importance among the objectives. This 
is in particular due to the abstract nature of the major goals making such a-priori 
commitment problematic. It is emphasized that in the present work this is the reason why 
the optimization takes place for the nodes at the penultimate neural level and not for the 
root node. Due to the lacking information on the relative importance among the criteria, 
generally Pareto optimal solutions cannot be distinguished without bringing into play 
higher-order criteria. That is, once a Pareto front is established, the difference among the 
solutions is subject to analysis, in order to determine a preference vector grading the 
objectives w.r.t. each other. In order for this process to be informative, it is required that the 
solutions found through evolutionary search be located at diverse positions on the Pareto 
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front. This is to avoid that potentially interesting regions in objective space remain 
unexplored during the analysis of the Pareto front. It is emphasized that this diversity is 
obtained through the relaxation of the Pareto angle in this work. 
With a diversely populated Pareto front it is possible to explore the front in a way that 
allows a decision-maker to intuitively grasp the relation between parameters of the 
solutions and corresponding performance characteristics, and in this way a decision maker 
is able to approach his most preferred solution among the Pareto optimal ones. Namely, the 
very nature of Pareto front implies that the trade-off that is afforded when moving along the 
Pareto surface is the inevitable trade-off inherent in the problem. This means, in case one is 
moving along the Pareto surface in a certain direction, for example towards better cost 
performance, the reduction of performance in the other dimensions, say the loss of 
functionality, is as small as possible through the definition of Pareto front. This means when 
a decision maker is observing a solution instantiated in virtual reality, i.e. in the parameter 
domain, he may decide to move in objective domain into the direction he wishes to 
‘improve’ this solution, while minimal loss in the other objectives occurs. Clearly, the 
consideration whether the former or the latter solution is better matching the decision-
makers preferences requires instantiation of the new solution in VR, too.  
However, in complex problems the amount of solutions a decision maker needs to consider 
may be high in order to approach to his favourite solution, so that it becomes desirable to 
start the exploration from a solution among the Pareto solutions that is preferable in an 
unbiased sense. This is possible due to the involvement of fuzzy modelling in this work, as 
follows. 
Although Pareto optimal solutions are equivalent in Pareto sense, it is noted that the 
solutions may still be distinguished. From figure 5, at the root node, the performance score 
is computed by the defuzzification process given by 

 1 1 2 2 3 3w f w f w f p+ + =  (8) 

where f1 is the output of the node technical performance; f2 of node utility performance; f3 of 
node experiential performance. That is, they denote the performance values for these aspects of 
the design, which are subject to maximization. The variable p denotes the design 
performance which is also requested to be maximized. In (32) w1, w2, and w3 denote the 
weights associated to the connections from f1, f2 and f3 to the design performance.  It is 
noted that w1+w2+w3=1.  

In many real-world optimization tasks the cognitive viewpoint plays an important role. This 
means it is initially uncertain what values w1,…w3 should have. Namely, the node outputs f1, 

…, f3 can be considered as the design feature vector, and the reflection of these features can be 
best performed if the weights w1 ; …; w3 define the same direction as that of the feature 
vector. This implies that the performance pmax for each genetic solution is given by [19] 
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f f f
p

f f f

+ += + +  (9) 

Therefore, Eq. 9 is computed for all the design solutions on the Pareto front. Then the 
solution having maximal value of pmax is selected among the Pareto solutions. This way the 
particular design is identified as a solution candidate with the corresponding w1, w2, …., wn 
weights. These weights form a priority vector w*. If for any reason this candidate solution is 

www.intechopen.com



 Virtual Reality 

 

560 

not appealing, the next candidate is searched among the available design solutions with a 
desired design feature vector and the relational attributes, i.e., w1, w2, …., wn . One should 
note that, although performance does not play role in the genetic optimization, Pareto front 
offers a number of design options with fair performance leaving the final choice dependent 
on other environmental preferences. Using Eq. 9, second-order preferences are identified 
that are most promising for the task at hand, where ultimately maximal design performance 
is pursued. 
To this end, to make the analysis explicit we consider a two-dimensional objective space . In 
this case, Eq. 9 becomes [15] 

 
2 2

1 2

1 2

f f
p

f f

+= +  (10) 

which can be put into the form 

 2 2
1 2 1 2 0f f pf pf+ − + =  (11) 

that defines a circle along which the performance is constant. To obtain the circle parameters 
in terms of performance, we write 

 2 2 2 2 2
1 2 1 2 1 1( ) ( )f f pf pf x x y y R+ − + ≡ − + − −  (12) 

From Eq. 12 we obtain the center coordinates x1 , y1 and the radius R of the circle in terms of 
performance as 
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The performance circle with the presence of two different Pareto fronts are schematically 
shown in figure 9a. From this figure, it is seen that the maximum performance is at the 
locations where either of the objectives is maximal at the Pareto front. If both objectives are 
equal, the maximal performance takes its lowest value and the degree of departing from the 
equality means a better performance in Pareto sense. This result is significant since it reveals 
that, a design can have a better performance if some measured extremity in one way or 
other is exercised. It is meant that, if a better performance is obtained, then most presumably 
extremity will be observed in this design. It is noted that the location of an expected superior 
Pareto optimal solution in this unbiased sense depends on the shape of the Pareto front, in 
particular on the degree of symmetry the Pareto front has w.r.t. the line passing from the 
origin of the objective space through the ideal point. This is illustrated in figure 9b, where it 
is seen that for a Pareto front that is asymmetrical w.r.t. to this diagonal a unique location of 
a solution with a superior performance may exist. 

3.2 Implementation nr. 1 
This implementation of the system in VR concerns the design of an interior space. The space 
is based on the main hall of the World Trade Centre in Rotterdam in the Netherlands. The 
aim is to optimally position a number of design objects in this space. The objects are a  
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                         (a)                                                             (b) 

Fig. 9. Dependence of the location of desirable solutions on the shape of Pareto front 

vertical building core hosting the elevators, a mezzanine, stairs, and two vertical ducts. The 
perception of a virtual observer plays a role in this task, because the objective involves a 
number of perception-based requirements. The function fx(x) shown in figure 10b is a 
probability density function (pdf) and given by Eq. 14 [20]. It models the visual attention of 
an unbiased virtual observer along a plane perpendicular to the observer’s frontal direction. 
The unbiasedness refers that the observer has no a-priori preference for any particular 
direction within his visual scope over another one. Integral of the pdf over a certain length 
domain, i.e. of an object, yields perception expressed via a probability in this approach. The 
probability expresses the degree by which the observer is aware of the object.  
The implementation of this model in virtual reality using a virtual observer termed avatar is 
illustrated in figure 11. From the figure it is noted that the avatar pays attention to the 
objects in the space equally in all directions in his visual scope. This is illustrated by means  
 

 

                     (a)                                                                      (b) 

Fig. 10. Probabilistic perception model for a basic geometric situation, where the probability 
density fx(x) models visual attention along a plane object. Plan view (a); perspective view (b) 

x 

x

x=0lo
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Fig. 11. Perception measurement by means of an avatar in virtual reality based on a 
probabilistic theory of perception 

of the rays sent from the eyes of the avatar in random directions and intersecting the objects 
in the scene. The randomness has a uniform probability density w.r.t. the angle θ in figure 
10a. In virtual reality implementation the amount of rays impinging on an object are 
counted and averaged in real time to approximate the perception expressed by a probability.  

 ( )2 2

2
( ) o

x

o

l
f x

l xπ= + ,    o ol x l− < <  (14) 

The perception model requires instantiation of objects to obtain the probability quantifying 
perception. That is, the GA determines the position of the objects, however their geometric 
extent is responsible for the perception of the observer. So, once a candidate scene is 
instantiated in virtual reality, the perception computations involving the geometric features 
of the scene objects are executed. 
The results from the perception measurement are probabilities associated with the objects of 
the scene, that indicate to what extend an object comes to the awareness of an observer 
paying unbiased visual attention to the scene. This crisp information needs to be further 
evaluated with regards to the satisfaction of the goals at hand. The present design task 
involves several perceptual requirements. Two of them are shown in figure 12 as examples. 
One example is that the stairs should not be very noticeable from the avatar’s viewing 
position, in order to increase the privacy in terms of access to the mezzanine floor. At the 
same time the stairs should not be overlooked too easily for people who do need to access 
the mezzanine floor. This is seen from the mf in figure 12a, where x12 denotes the perception 
degree and wo12 denotes the fuzzy membership degree. A second example is that the 
elevators should be positioned in such a way that they are easily noticed from the avatar’s 
viewing position, so that people who wish to access the office floors above the entrance hall 
easily find the elevators. This requirement is expressed by means of the fuzzy membership 
function in figure 12b, where increasing perception denoted by x3  yields increasing 
membership degree wo3.  
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                               (a)                                                    (b) 

Fig. 12. Two requirements subject to satisfaction: perception of the stairs (a) and elevators (b)  

It is noted that the perception computation using the probabilistic perception model yields 
x12 in figure 12b. The task is to optimally place the design objects satisfying a number of 
such perception requirements, and also some functionality requirements. The functionality 
requirements concern for instance the size of the space, which is influenced by the position 
of the building core object. The elemental requirements and their relation with the ultimate 
goal are seen from the fuzzy neural tree structure shown in figure 13. From the structure we 
note that the performance of the entrance hall depends on the performance of the design 
objects forming the scene. From this we note that the amount of objectives to be maximized 
is four, namely the outputs of nodes 4-7, whereas the elemental requirements total an 
amount of 12. 
Figure 14 shows the results from the relaxed Pareto ranking approach. It is noted that the 
objective space has four dimensions, one for the performance of every design object. The 
representation is obtained by first categorizing the solutions as to which of the four  
 

 

Fig. 13. Neural tree structure for the performance evaluation 
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Fig. 14. Pareto optimal designs with respect to the four objective dimensions using relaxed 
Pareto ranking 

quadrants in the two-dimensional objective space formed by the building core and 
mezzanine performance they belong, and then representing in each quadrant a coordinate 
system showing the stairs and ducts performance in this very quadrant. This way four 
dimensions are represented on the two-dimensional page. 
Two Pareto optimal designs are shown in figures 15 and 16 for comparison. The maximal 
performance score as well as the performance feature vector for these solutions is shown in 
Table 1. 
 

 core mezzanine ducts stairs pmax 

D2 0.27 0.73 0.83 0.93 0.78 

D4 0.48 0.49 0.78 0.89 0.71 

Table 1. Performance of design D2 versus D4 

From the table it is seen that design D2 outperforms design D4 with respect to the maximal 
performance pmax obtained using Eq. 9. It is also noted that the performance of D4 as to its 
features varies less compared to D2. The fact that D2 has a greater pmax confirms the 
theoretical expectation illustrated by figure 9 that solutions with more extreme features 
generally have a greater maximal performance compared to solutions with little extremity. 
The greatest absolute difference among D2 and D4 is the performance of the mezzanine. In 
D2 the mezzanine is located closer to associated functions, and this turns out to be more 
important compared to the fact that D4 yields more daylight on the mezzanine. Therefore 
D2 scores higher that D4 regarding the mezzanine. Additionally D2 slightly outperforms D4   
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Fig. 15. Pareto-optimal design D2 in Figure 14 

regarding the performance of the ducts. This is because the ducts do not penetrate the 
mezzanine in D2, whereas in D4 they do. The latter is undesirable, as given by the 
requirements. Regarding the building core D2 is inferior to D4, which is because the 
spaciousness in D4 is greater and also the elevators are located more centrally. Regarding 
the stairs’ performance, the difference among D2 and D4 is negligible. The latter exemplifies 
the fact that an objective may be reached in different ways, i.e. solutions that are quite 
different regarding their physical parameters may yield similar scores as to a certain goal. In 
the present case the greater distance to the stairs in D2 compared to D4 is compensated by 
the fact that the stairs is oriented sideways in D2, so that the final perception degree is 
almost the same. It is noted that D2 is the solution with the greatest maximal performance 
pmax, so that from an unbiased viewpoint it is the most suitable solution among the Pareto 
optimal ones. This solution is most appealing to be selected for construction. This result is 
an act of machine cognition, as it reveals that pursuing maximal performance in the present  
 

 

Fig. 16. Pareto-optimal design D4 in Figure 14 
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task the stairs and ducts are more important compared to the building core from an 
unbiased viewpoint. This information was not known prior to the execution of the 
computational design process. It is interesting to note that the solution that was chosen by a 
human architect in a conventional design process without computational support was also 
similar to solution D2. The benefit of the computational approach is that it ensures 
identification of most suitable solutions, their unbiased comparison, and precise information 
on their respective trade-off as to the abstract objectives. This is difficult to obtain using 
conventional means. The diversity of solutions along the Pareto front, which is due to the 
relaxation of the Pareto concept is significant especially in order to facilitate the process of 
ensuing validation. 

3.3 Implementation nr. 2 
In the second implementation of the computational design system, object instantiation in VR 
is used for evaluation of solutions in a layout problem of a building complex for a 
performance measurement involving multiple objectives. In this task the spatial 
arrangement of a number of spatial units is to be accomplished in such a way that three 
main goals are satisfied simultaneously. These goals are maximizing the building’s 
functionality and energy performance, as well as its performance regarding form related 
preferences. It is noted that the spheres shown in ensuing figures represent the performance 
of a number of alternative solutions for the three objectives of the design task.  
The building subject to design consists of a number of spatial units, referred to as design 
objects, where every unit is designated to a particular purpose in the building. The task is to 
locate the objects optimally on the building site with respect to the three objectives forming 
suitable spatial arrangements.  The objects are seen from figure 17 and their properties, 
which play role during the fitness evaluation of solutions generated by the algorithm, are 
given in table 3.  
 

 

Fig. 17. Design objects subject to optimal positioning on the building site 
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floorsurface 

(m2) 
ceiling height 

(m) 

Specific power 
qI of inner heat 

sources 
(W/ m2) 

surface amount 
of glass in 

façades (%) 

apt_a_1 22000 2.7 2.1 30 
apt_a_2 22000 2.7 2.1 30 
apt_a_3 18500 3.2 2.1 40 
apt_a_4 22000 2.7 2.1 30 
apt_a_5 22000 2.7 2.1 30 
apt_b_1 45000 2.7 2.1 30 
apt_b_2 37000 3.2 2.1 40 
apt_b_3 45000 2.7 2.1 30 
hotel 74000 3 2.1 40 
care 32000 3 2.1 20 
shops 34000 5 4 50 
offices  115000 3.5 3.5 70 
sport 28000 6 3.5 70 

Table 3. Properties of the design objects  

The attributes given in Table 1 play an important role in particular in the evaluation of the 
energy performance of the solutions, which is described in the Appendix A. It is noted that 
the site is located in Rotterdam in the Netherlands, so that climate data from this location is 
used in the energy computations. It is further noted that the energy computations require 
information of the insulation value of the facades expressed by the U-value of the walls, U-
value of windows and glass façade, as well as the g-value of the glass. In this task the U-
value of the walls is 0.15 W/ m2K; U-value of windows is 1.00W/ m2K; and g-value of the 
glass is 0.5.  
In order to let the computer generate a building from the components shown in figure 17, 
i.e. for a solution to be feasible, it is necessary to ensure that all solutions have some basic 
properties. These are that spaces should not overlap, and objects should be adjacent to the 
other objects around and above; also the site boundaries should be observed, in particular 
on the ground floor to permit pedestrian traffic along the waterfront. This is realized in the 
present application by inserting the objects in a particular sequential manner into the site. 
This is illustrated in figure 18. Starting from the same location, one by one the objects are 
moved forward, i.e. in southern direction, until they reach an obstacle. An obstacle may be 
the site boundary or another object previously inserted. When they touch an object they 
change their movement direction from the southern to the eastern direction, moving east 
until they again reach the site boundary or another object. As a final movement step the 
object will move down until it touches the ground plane, which is in order to account for 
different heights the objects have. Packing objects in two dimensions in this way is known as 
bottom-left two heuristic packing routine in literature, e.g. [21]. After the final object has been 
placed in this way, due to the fact that the sum of the objects’ groundplanes exceeds the 
available surface on the site, some objects will overlap the site boundary or be situated 
entirely outside the site boundary. This is illustrated in figure 18d, where in the present 
example two building units – apartments a and sports & leisure are located outside of the 
southern site boundary. The boundary is indicated by means of a white line in the figure.  
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                        (a)                                                                           (b) 

  

                           (c)                                                                            (d) 

  

                            (e)                                                                 (f) 

Fig. 18. Generation process of a solution through sequential insertion of the design objects in 
3D 

The objects exceeding the site will be inserted using a second movement procedure, where 
first the object is moved forward until it reaches an obstacle; then it is moved upwards until 
it reaches an upper boundary for the building, which is set to 140m and not visible in the 
figures. Then the object is moved forward again, until it touches an obstacle. Thereafter it is 
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moved in eastern direction until touching an obstacle, and then down, so that it comes to 
rest on top the building below it. 
It is noted that the decision from which side to insert the building components, and which 
location to use as the starting point for insertion is a matter of judgement, and it will 
strongly influence the solutions obtained. The insertion used in this application is due to the 
preference of the architect is to have the objects line up along the street, which is in northern 
boundary of the site. 
In this task object instantiation is required for several reasons. One of the reasons can be 
already noted considering the above insertion process during the generation of feasible 
solutions. Namely, during the movement of an object into the site it is formidable to 
establish a formalism that can be used to predict the exact geometric condition of the 
configuration that is already found on the site when the object moves into it. The reason is 
that the amount of possible geometric configurations is excessive due to the amount of 
objects and also due to the fact that two of the objects, namely the offices and the hotel unit 
are permitted to have different amounts of floor levels, which is a parameter in the GA. As 
the floor surface amount is requested to remain constant, consequently both the object’s 
height and floor plan is variable for these two objects. 
Effectively, the spatial configuration an object will encounter during its insertion into the 
scene can only be known through execution of the insertion process, i.e. through 
instantiation of the objects on site as well as letting objects move into the site and testing for 
collisions during the movement. In this respect it is noted that the accuracy of placement is 
subject to determination, where the step length of the movement at every time frame during 
object insertion should be set to a small value, however not too small to avoid that the 
collision detection routine is called excessively. Next to the need for VR during this solution 
generation procedure, the instantiation is needed to execute the measurements indicated by 
the letter m in figure 2 as follows. 
For the evaluation of the energy performance of the building it is necessary to compute the 
transmission heat loss denoted by QT [22]. QT quantifies how much energy will be lost 
through the facades of every building component over the period of one year due to 
temperature difference between inside and outside air temperature. In order to obtain this 
value it is necessary to verify for every façade of a building unit, whether it is adjacent to 
another building component, or adjacent to outside air. Also it is necessary to compute the 
solar gain QS, which quantifies the amount of solar energy that penetrates into the building 
unit through the glazing of the facades. For a certain façade surface, QS depends, among 
other factors, on the distance from another building unit located in front of the facade 
causing a shadow. Therefore, to accomplish computation of QT and QS it is necessary to 
measure if another object is adjacent to the façade in question, located in front of the facade 
at some distance close enough to cause a shadow, or if there is no object in front of the 
façade causing a shadow on it. For this purpose a test procedure is executed in the virtual 
reality, where for every façade the distance to objects in front of it is measured. It is clear 
that this test requires object instantiation due to the manifold possible geometric 
configurations in the search. The test is executed by means of rays that are emitted from the 
centre point of the building component in question and the intersection with other objects is 
detected. This is shown in figure 19a. The resulting information is then used in the 
computations of QT and QS in order to compute the heat energy QH required to heat the 
building over the period of one year per m2 of floor surface area. The output QH is the result 
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from energy computations using a steady state model given in the Appendix. From the 
neural tree in figure 20 it is seen that the energy performance evaluation involves a single 
fuzzy membership function, i.e. it does not involve inner nodes. 
 

  

                                              (a)                                            (b) 

Fig. 19. Verification of thermal environment by means of ray intersection tests for heat loss 
computation (a); measurement of heights of the building for estimating the satisfaction of 
form preferences 

The membership function is shown in figure 21a, where it is seen that the input information 
for the energy evaluation is the heat energy QH expressed as energy per m2 of floor surface 
area and per year. From figure 21a we note that the satisfaction of the energy requirement 
increases with decreasing energy, and that the satisfaction, expressed by the membership 
degree μ reaches its maximum for heat energy consumption below 2.2 kWh/ m2a, and 
satisfaction diminishes for energy amount beyond 4.4 kWh/ m2a. It is noted that this range 
concerns relatively low amount of energy compared to most contemporary building 
projects. This mainly due to the large size of the building units, where the amount of 
exterior surfaces with respect to the floor is relatively small. 
For the evaluation of the performance regarding form preferences for the building, object 
instantiation in VR is required in order to execute other measurements. This is shown in 
figure 19b. From the figure it is seen that from 8 locations above the building test rays are 
sent downwards to measure the building’s height at these locations. This information is 
used to compute to what extend the shape of the building satisfies some form preferences of 
the architect. The form preferences are seen from the fuzzy neural tree shown in figure 20. 
The evaluation of the form preferences has two major aspects, the first one concerns the 
variations of heights in the building’s skyline; the second one concerns the average height of 
the building. For both aspects two sub-aspects are distinguished in the model: the situation 
along the side facing the street (along the southern site boundary), and the side along the 
waterfront (along the northern boundary). For the height variation assessment, the 
difference in height measured between two adjacent measurement points Sn or Wn is 
obtained using the ray-tracing in VR seen from figure 19b. This difference is used as input in 
the membership function shown in figure 21b. From the membership function it is seen that 
the height variation is demanded to be rather large, i.e. the architect aims for a non-
monolithic shape of the building, so that it is deemed to express what may be termed as a 
playful looking shape. This is seen from the maximum of the membership function being 
located at about 76m of height difference. 
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Fig. 20. Fuzzy neural tree for performance evaluation of the candidate solutions 

 

      

                                  (a)                                               (b) 

       

                                   (c)                                                (d)  

Fig. 21. Fuzzy membership functions used for energy performance evaluation (a); for 
evaluation of the height variation in the building’s skyline (b);  for evaluation of the average 
height along the street-side (c); along the waterfront (d) 

Concerning the requirements on average height of the building the architect prefers to have 
a high average height along the street side, and a low average height at the waterfront. This 
is to emphasize the urban character of the street, whereas the lower height along the 
waterfront is to give the building a more accessible expression when perceived by people 
walking along the waterfront. The requirement for a high average height along the street-
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side is seen from the membership function in figure 21c, yielding maximum membership 
degree at 100m and diminishing as the height reduces. The requirement for a low average 
height along the water-front is seen from the membership function in figure 21d, where the 
membership degree diminishes with increasing height. 
In the same way, during evaluation of a design alternative the tree is provided with input 
values obtained from the virtual building instantiated in VR, and the fuzzification processes 
are carried out at the terminal nodes. The fuzzification yields the degree of satisfaction for 
the elemental at the terminal nodes of the neural tree. 
The root node of the neural tree shown in figure 20 describes the ultimate goal subject to 
maximization, namely the design performance and the tree branches form the objectives 
constituting this goal. The connections among the nodes have a weight associated with 
them, as seen from the figure. In the same way as the membership functions at the 
terminals, the weights are given by a designer as an expression of knowledge, and the latter 
specify the relative significance a node has for the node one level closer to the root node. In 
particular the weights connecting the nodes on the penultimate level of the model indicate 
how strongly the output of these nodes influences the output at the root node. It is noted 
that in the multi-objective optimization case the latter weights are not specified a-priori, but 
they are subject to determination after the optimization process is accomplished. 
The fuzzified information is then processed by the inner nodes of the tree. These nodes 
perform the AND operations using Gaussian membership functions as described above, 
where the width-vector of the multi-dimensional Gaussian reflects the relative importance 
among the inputs to a node. Finally this sequence of logic operations starting from the 
model input yield the performance at the penultimate node outputs of the model. This 
means the more satisfied the elemental requirements at the terminal level are, the higher the 
outputs will be at the nodes above, finally increasing the design performance at the root 
node of the tree. Next to the evaluation of the design performance score, due to the fuzzy 
logic operations at the inner nodes of the tree, the performance of any sub-aspect is obtained 
as well. This is a desirable feature in design, which is referred to as transparency 
The multi objective optimization is accomplished using a multi-objective genetic algorithm 
with adaptive Pareto ranking. It is used to determine the optimal sequence of insertion, so 
that the three objectives are maximally fulfilled. Every chromosome contains the 
information for every object, at which rank in the insertion sequence it is to be inserted, as 
well as the information for the relaxation angle to use during the Pareto ranking for the 
particular solution. It is noted that the information a chromosome contains in order to 
determine the sequence of insertion is in the form of float numbers, where one float number 
is assigned to every object. The objects are then sorted based on the size of the float 
numbers, so that an object with a higher number will be inserted before one with a lower 
number. Using float numbers in the chromosome, as opposed to e.g. an integer number 
denoting a unique sequence of insertion, allows a genetic algorithm with conventional 
crossover procedure to generate more suitable solutions from the genetic combination of 
two successful ones. This is because the float number sequence is unbiased with respect the 
objects to be inserted, whereas an integer coding of the sequences has an inherent bias 
making it necessary to reflect this bias in the crossover procedure. 
The performance evaluation model is used during the evolutionary search process aiming to 
identify designs with maximal design performance. In the present case we are interested in 
a variety of alternative solutions that are equivalent in Pareto sense. The design is therefore 
treated as a multi-objective optimization as opposed to a single-objective optimization. In 
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single-objective case exclusively the design performance, i.e. the output at the root node of 
the neural tree, would be subject to maximization. In the latter case, the solution would be 
the outcome of a mere convergence and any cognition aspect would not be exercised. In the 
multi-objective implementation the outputs of the nodes functionality, energy, and form 
preferences, which are the penultimate nodes, are subject to maximization. Their values are 
used in the fitness determination procedure of the genetic algorithm. Employing the fuzzy 
neural tree in this way the genetic search is equipped with some human-like reasoning 
capabilities during the search. The part of the tree beyond the penultimate nodes is for the 
de-fuzzification process, which models cognition, so that ultimately the design performance 
is obtained at the root node. 

3.4 Application results 
To exemplify the solutions on the Pareto front, three resulting Pareto-optimal designs D1-D3 
are shown in figures 22-24 respectively. In the left part of the figures the location of the 
particular solution in the three-dimensional objective space is seen together with the 
locations of the other solutions.  
The solutions in objective space are represented by spheres. The size of the sphere indicates 
the maximal performance value of the corresponding solution. That is, a large sphere 
indicates a high maximal design performance, and conversely a small sphere indicates a low 
performance. 
Design D1 is the design among the Pareto solutions having the highest maximal design 
performance, as obtained by Eq. 9, namely p=.75. It has a high energy and form performance, 
namely .76, and .88 respectively, while its functionality performance is moderate, being only 
.50. The high performance as to form is due to the strong variations of building-height along 
the building’s skyline and the lower water-front versus higher street side, which match to 
the requirements. The low functionality performance is mainly due to low performance of 
office and childcare facilities, where the offices are expected to be a tall building-unit and 
offer a good view of the waterside. 
 

 

Fig. 22. Design D1 having a pmax of .75 being the highest among the Pareto solutions 
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Fig. 23. Design D2 having a high energy performance 
 

 

Fig. 24. Design D3 having a high functionality performance   

Design D2 has the highest energy performance among the Pareto solutions (.91) while form 
and functionality are moderate (.55 and .47). Its maximal design performance is p=.70. The 
high energy performance is due to the very compact overall shape, and also due to the fact 
that the office building, having a large amount of glazing percentage, has a compact shape 
implying few energy loss. 
Design D3 has a high functionality performance (.81), while energy performance is low (.23) 
and form performance is moderate (.41). Its maximal design performance is p=.61. The 
functionality performance is high, because the requirements for office, shops and care are 
highly satisfied. The energy performance is low, because the overall building is not compact 
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and most of the envelope of the office building component is exposed to outside air, which 
yields undesirably high heat energy consumption of the building. 
From the results we note that design D1 has a maximal performance that is higher than for 
the other Pareto optimal designs described by factor 1.07 and 1.23 respectively. That is, D1 
clearly outperforms the other designs regarding their respective maximal performance. This 
means that when there is no a-priori bias for any of the three objectives, it is more proficient 
to be less concerned with functionality, but to aim for maximal energy performance and 
form qualities in the particular design task at hand. That is, in absence of second-order 
preferences, design D1 should be built, rather than the other designs. 

4. Conclusions 

The role of object instantiation in virtual reality during a computational design process is 
described by means of a computational intelligence approach implemented in virtual reality. 
The approach establishes Pareto front in a multi-objective optimization involving a 
stochastic search algorithm and a fuzzy model of the design requirements. The instantiation 
of solutions in VR plays a necessary role in the search process, as it permits evaluating 
solutions with respect to abstract object features that are not readily obtained from the 
parameters subject to identification through the search. Next to its role during the search for 
optimality, VR also facilitates the selection process among the Pareto optimal solutions, and 
the process of validating the criteria used in the search, which is also exemplified. The 
necessary role of VR during the search for optimality is demonstrated in two applications 
from the domain of architectural design, where the object instantiation is needed for the 
effectiveness of several procedures during the search process. In one application it is 
required for execution of a measurement procedure to quantify perceptual qualities of the 
design objects involving a virtual observer. In this task optimal positioning of a number of 
interior elements is obtained satisfying perceptual and functionality related requirements. In 
the second application instantiation in VR is required to facilitate the solution generation 
using a two heuristic packing strategy. Next to that it is needed in this application in order 
to permit measurement of functionality, energy, and form related performance of the 
solutions. A building consisting of several volumes is obtained, where these objectives are 
maximally satisfied. This is accomplished by identifying an optimal sequence of arranging 
the volumes, so that the three objectives pertaining are satisfied. In both applications the 
linguistic nature of the requirements is treated by using a fuzzy neural tree approach that is 
able to handle the imprecision and complexity inherent to the concepts, forming a model. 
This model plays the role of fitness function in the adaptive multi-objective evolutionary 
search algorithm, so that the search process is endowed with some human-like reasoning 
capabilities. The involvement of a fuzzy model requires the crisp input information for 
fuzzification and further processing via the fuzzy model. This is provided through the 
instantiation of objects and ensuing measurements in virtual reality. With this 
understanding VR can be considered to act as interface between the domain of quasi 
physical object features and the domain of abstract goals during the search for optimality. 

Appendix -  Energy Computations 

The input of the fuzzy membership function expressing the energy performance shown in 
the neural tree in figure 21a requires as input the energy demand for heating over the period 
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of one year and per floor surface area. This value is denoted by QH and given in the unit 
kWh/ m2a. The size of the floor surface areas are given in Table 1. QH is computed as follows 
[22]. 

 H L GQ Q Q= −  (A1) 

where QL denotes the sum of the energy losses and QG denotes the sum of energy gains of 
the building unit. Let us first consider the losses: 

 L T VQ Q Q= +  (A2) 

In Eq. A2 QT denotes losses through transmission via the building envelope, and QV denotes 
losses through ventilation. QT is computed by for every façade element n delimiting the unit 
as given by 

 T n n t t
n

Q A U f G= ⋅ ⋅ ⋅∑  (A3) 

where An denotes the surface amount of the n-th façade element in m2; Un denotes the U-
value of the façade element given in the unit W/ m2K; ft denotes a temperature factor to 
account for reduced losses when a façade is touching the earth (.65) versus the normal 
condition of outside air (1.0); Gt denotes the time-integral of the temperature difference 
between inside and outside air temperature given in the unit kKh/ a. In this implementation 
Gt=79.8 kKh/ a.  
QV is computed for a building unit by 

 V V air tQ V n c G= ⋅ ⋅ ⋅  (A4) 

where V denotes the air volume enclosed within the unit given in m3; nV denotes the 
energetically effective air exchange rate of the ventilation system during the heating period 
given in the unit 1/ h, which is nV=0.09/ h in this implementation; cair denotes the heat 
capacity of air cair=0.33 Wh/ m3K.  
Considering the energy gain: QG  is obtained by 

 G G FQ Qη= ⋅  (A5) 

where ηG is a factor denoting the effectiveness of the heat gains, and QF denotes the free heat 
energy due to solar radiation and internal gains, given by 

 F S IQ Q Q= +  (A6) 

where QS denotes the gain due to solar radiation and QI denotes the internal gain: 

 ,S r w n w d
n

Q f g A G= ⋅ ⋅ ⋅∑  (A7) 

In Eq. A7 for the n-th façade of a building unit fr denotes a reduction factor that models the 
effect of a shadow on the façade. In the present implementation this factor is computed 
online using a measurement in VR. The factor gw in Eq. A7 denotes the g-value of the 
window glazing used in the façade. This value expresses the total heat energy flux rate 
permitted through the glass. In the present case gw=0.5. An,w denotes the amount of window 
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surface in the façade in m2; Gd denotes the direction dependent solar radiation energy given 
in the unit kWh/ m2a. In the present climatic situation Gsouth=321 kWh/ m2a; Gnorth=145 
kWh/ m2a; Geast=270 kWh/ m2a and Gwest=187 kWh/ m2a. 
QI in Eq. A6 is given by 

 0.024I I fQ t q A= ⋅ ⋅ ⋅  (A8) 

where the number 0.024 is a conversion factor having the unit kh/ d; t denotes the length of 
the heating period in days. In the present case t=205d. PS denotes the specific power qI of 
inner heat sources like people, lighting, computers, etc. given in the unit W/ m2. For the 
different building units subject to positioning in this task the different values for qI are given 
in Table 3. The factor ηG in Eq. A5 is obtained by  

 
( )
( )

5

6

1 /

1 /

F V
G

F V

Q Q

Q Q
η −= −  (A9) 
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