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1. Introduction 

The goal of this chapter is firstly to give a survey of some explicit and approximated 
solutions for heat and mass transfer problems in which a free or moving interface is 
involved. Secondly, we show simultaneously some new recent problems for heat and mass 
transfer, in which a free or moving interface is also involved.  We will consider the following 
problems: 
1. Phase-change process (Lamé-Clapeyron-Stefan problem) for a semi-infinite material:  
i. The Lamé-Clapeyron solution for the one-phase solidification problem (modeling the 

solidification of the Earth with a square root law of time); 
ii. The pseudo-steady-state approximation for the one-phase problem; 
iii. The heat balance integral method (Goodman method) and the approximate solution for 

the one-phase problem; 
iv. The Stefan solution for the planar phase-change surface moving with constant speed; 
v. The Solomon-Wilson-Alexiades model for the phase-change process with a mushy 

region and its similarity solution for the one-phase case;  
vi. The Cho-Sunderland solution for the one-phase problem with temperature-dependent 

thermal conductivity; 
vii. The Neumann solution for the two-phase problem for prescribed surface temperature at 

the fixed face; 
viii. The Neumann-type solution for the two-phase problem for a particular prescribed heat 

flux at the fixed face, and the necessary and sufficient condition to have an 
instantaneous phase-change process; 

ix. The Neumann-type solution for the two-phase problem for a particular prescribed 
convective condition (Newton law) at the fixed face, and the necessary and sufficient 
condition to have an instantaneous phase-change process; 

x. The similarity solution for the two-phase Lamé-Clapeyron-Stefan problem with a 
mushy region. 

xi. The similarity solution for the phase-change problem by considering a density jump; 
xii. The determination of one or two unknown thermal coefficients through an over-

specified condition at the fixed face for one or two-phase cases. 
xiii. A similarity solution for the thawing in a saturated porous medium by considering a 

density jump and the influence of the pressure on the melting temperature. 
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2. Free boundary problems for the diffusion equation:  
i. The oxygen diffusion-consumption problem and its relationship with the phase-change 

problem; 
ii. The Rubinstein solution for the binary alloy solidification problem; 
iii. The Zel’dovich-Kompaneets-Barenblatt solution for the gas flow through a porous 

medium; 
iv. Luikov coupled heat and mass transfer for a phase-change process; 
v. A mixed saturated-unsaturated flow problem representing absorption of water by a soil 

with a constant pond depth at the surface and an explicit solution for a particular 
diffusivity; 

vi. Estimation of the diffusion coefficient in a gas-solid system; 
vii. The coupled heat and mass transfer during the freezing of the high-water content 

materials with two free boundaries: the freezing and sublimation fronts. 

2. Explicit solutions for phase-change process (Lamé-Clapeyron-Stefan 
problem) for a semi-infinite material  

Heat transfer problems with a phase-change such as melting and freezing have been studied 

in the last century due to their wide scientific and technological applications. A review of a 

long bibliography on moving and free boundary problems for phase-change materials 

(PCM) for the heat equation is shown in (Tarzia, 2000a). Some previous reviews on explicit 

or approximated solutions were presented in (Garguichevich & Sanziel, 1984; Howison, 

1988; Tarzia, 1991b & 1993). Some reviews, books or booklets in the subject are (Alexiades & 

Solomon, 1993; Bankoff, 1964; Brillouin, 1930; Cannon, 1984; Carslaw & Jaeger, 1959; Crank, 

1984; Duvaut, 1976; Elliott & Ockendon, 1982; Fasano, 1987 & 2005; Friedman, 1964; Gupta, 

2003; Hill, 1987; Luikov, 1968; Lunardini, 1981 & 1991; Muehlbauer & Sunderland, 1965; 

Primicerio, 1981; Rubinstein, 1971; Tarzia, 1984b & 2000b; Tayler, 1986). 

2.1 The Lamé-Clapeyron solution for the one-phase solidification problem (modeling 
the solidification of the Earth with a square root law of time) 

We consider the solidification of semi-infinite material, represented by x 0> . We will find the 

interface solid-liquid x s t( )=  and the temperature T T x t( , )=  of the solid phase defined by 

 ( ) ( ) ( )( )f

T x t if x s t t
T x t

T if s t x t

, 0 , 0
,

, 0

⎧ < < >⎪= ⎨ ≤ >⎪⎩  (1) 

which satisfy the following free boundary problem:  

 ( )t xxcT kT x s t t0 , 0 , 0ρ − = < < >  (2) 

 ( ) fT t T T t00, , 0= < >  (3) 

 ( )( ) fT s t t T t, , 0= >  (4) 

 ( )( ) ( )xkT s t t s t t, , 0ρ= >$`   (5) 
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 s(0) 0=  (6) 

Eq. (2) represents the heat equation for the solid phase, k is the thermal conductivity, ρ is 

the mass density, c is the heat capacity, ` is the latent heat of fusion by unit of mass, T0  is 

the imposed temperature at the fixed face x 0= , and the material is initially at the melting 

temperature fT . The problem (2)-(6) is known in literature as the one-phase Stefan problem 

(Lamé-Clapeyron-Stefan problem) and the condition (5) as the Stefan condition. Free 

boundary problems of this type were presented by the first time in (Lamé & Clapeyron, 

1831) in order to study the solidification of the Earth and was continued independently by 

(Stefan, 1891a, b & 1990) in order to study the thickness of polar ice. We remark here that 

Lamé & Clapeyron found the important law for the phase-change interface with a square 

root of time.  
Theorem 1. (Lamé-Clapeyron solution). 
The explicit solution to the free boundary problem (2)-(6) is given by  

 
fT T x

T x t T erf s t a t
f a t

0

0( , ) ( ), ( ) 2
( ) 2

ξξ
−= + =

      (7) 

where 
k

a
c

2 α ρ= =  is the diffusion coefficient and 0ξ >  is the unique solution to the 

equation  

 
Ste

E x x( ) , 0π= >    (8) 

with 

 
x

erf x u du E x x erf x x2 2

0

2
( ) exp( ) , ( ) ( ) exp( ),π= − =∫   (9) 

 
fc T T

Ste  
0( )

: Stefan number
−=
`

, (10) 

and the total heat flux at the fixed face = 0x is given by 

 τ τ ρ ξ= =∫ ` 2

0

( ) (0, ) ( )exp( )
t

xQ t kT d s t .  (11) 

Proof. 
We have the following properties: 

 E E E x x(0) 0, ( ) , ( ) 0, 0′= +∞ = +∞ > ∀ > . (12) 

Remark 1.  
From (4) we have  

 ( )( ) ( ) ( )( )x tT s t t s t T s t t t, , 0, 0+ = >$   (13) 
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and therefore the Stefan condition (5) is transformed in  

 ( )( ) ( )( ) ( )x t xx

k
kT s t t T s t t T s t t t

c
2 , , ( ), , 0ρ= − = − >``  (14) 

which implies that the problem (2)-(6) is always a nonlinear problem (Pekeris & Slichter, 
1939).  
Remark 2.  
A generalization of the Lamé-Clapeyron solution is given in (Menaldi & Tarzia, 2003) for a 
particular source in the heat equation. A study of the behaviour of the Lamé-Clapeyron 
solution when the latent heat goes to zero is given in (Guzman, 1982; Sherman, 1971). 

2.2 The pseudo-steady-state approximation for the one-phase problem 

An approximated solution to problem (2)-(6) is given by the pseudo-steady-state 
approximation which must satisfy the following conditions: (3)-(6) and the steady-state 
equation  

 ( )xxT x s t t0 , 0 , 0= < < > .   (15) 

Theorem 2 (Stefan, 1989a) 
The solution to the problem (15), (3)-(6) is given by  

 ( )fT T
T x t T x x s t t

s t

0

0( , ) , 0 , 0
( )

−= + < < >  (16) 

 ap ap

Ste
s t a t( ) 2 ,

2
ξ ξ= =  (17) 

Proof. 
The solution to (15), (3) and (4) is given by (16). Therefore the condition (5) is transformed in 
the ordinary differential equation 

 fk T T s t s t0( ) / ( ) ( )ρλ− = $  (18) 

with the initial condition (6), whose solution is given by  

 f

Ste
s t k T T t a t2 2

0( ) 2 ( ) /( ) 4
2

ρ= − =`  (19) 

that is 

 
fk T T

s t t
02 ( )

( ) ρ
−=
`

 (20) 

Remark 3.  
If the Stefan number is very small, i.e. 

 
fc T T

Ste
0( )

1
−= <<
`

 (21) 
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then the solution ξ  to the equation (8) for the Lamé-Clapeyron solution can be taken as apξ , 

given in (17). This can be obtained by using the following first approximation: 

 x f x x x2 2
exp( ) 1, ( ) , 0 1π≈ ≈ < << . (22) 

Remark 4.  
A study of sufficient conditions on data to estimate the occurrence of a phase-change 
process is given in (Solomon et al., 1983; Tarzia & Turner, 1992 & 1999). 

2.3 The heat balance integral method (Goodman method) and the approximate 
solution for the one-phase problem 
An approximated solution for the following fusion problem (similar to the solidification 
problem (2)-(6))  

 ( )t xxcT kT x s t t0 , 0 , 0ρ − = < < >  (23) 

 ( )T t T t00, 0 , 0= > >   (24) 

 ( )( )T s t t t, 0 , 0= >   (25) 

 ( )( ) ( )xkT s t t s t t, , 0ρ= − >$`   (26) 

 s(0) 0=   (27) 

is given by the heat balance integral method, known by the Goodman method 
(Goodman,1958).   This method consists of replacing the Stefan condition (26) by 

 x xxT s t t T s t t t
c

2( ( ), ) ( ( ), ), 0= >`
 (28) 

and the heat equation (23) by its integral on the domain s t(0, ( ))  given by 

 

s t s t s t s t

t t xx

x x x

d k
T x t dx T x t dx T s t t s t T x t dx T x t dx

dt c

k k
T s t t T t s t T t

c c k

( ) ( ) ( ) ( )

0 0 0 0

( , ) ( , ) ( ( ), ) ( ) ( , ) ( , )

[ ( ( ), ) (0, )] [ ( ) (0, )]

ρ
ρλ

ρ ρ

= + = =
= − = − +

∫ ∫ ∫ ∫$

$
   (29) 

that is 

 
s t

x

d k
T x t dx s t T t

dt c k

( )

0

( , ) [ ( ) (0, )]
ρ

ρ= − +∫ ` $ . (30) 

In order to solve (30), (28), (24), (25) and (27), we propose an approximated temperature 
profile  

 T x t t s t x t s t x x s t t2( , ) ( )( ( ) ) ( )( ( ) ) , 0 ( ), 0α β= − + − < < >  (31) 
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where t t( ), ( ),α α β β= =  and  s s t( )=  are real functions to be determined. Firstly, we can 

obtain  and α β as a function of s  and, therefore, we solve the corresponding ordinary 

differential equation for s s t( )= . 
Theorem 3. 
The Goodman approximated solution is given by: 

 α + −= ` 1 2 1
( )

( )

Ste
t

c s t
 , 

αβ += 0

2

( ) ( )
( )

( )

t s t T
t

s t
 (32) 

 ξ ξ + − += = =+ + + `
01 2 1 2

( ) 2 , 3 ,
5 1 2

g g

Ste Ste cT
s t a t Ste

Ste Ste
 (33) 

Remark 5. 
Other refinements of the Goodman method are given in (Bell, 1978; Lunardini, 1981; 

Lunardini 1991). In (Reginato & Tarzia, 1993; Reginato et al, 1993; Reginato et al., 2000) the 

heat balance method was applied to root growth of crops and the modelling nutrient 

uptake. In (Tarzia, 1990a) the heat balance method was applied to obtain the exponentially 

fast asympotic behaviour of the solutions in heat conduction problems with absorption.  

2.4 The Stefan solution for the planar phase-change surface moving with constant 
speed 

When the phase-change interface is moving with constant speed we can consider the 

following inverse Stefan problem: find the temperature T T x t( , )=  and f t T t( ) (0, )=  such 

that: 

 xx t
kT T x s t t

c
, 0 ( ), 0 ( )α α ρ= < < > =  (34) 

 T s t t t( ( ), ) 0, 0= >  (35) 

 xkT s t t s t t( ( ), ) ( ), 0ρ= >$`  (36) 

 ( )s t m s s t mt( ) 0, (0) 0 ( )= > = =$  (37) 

Theorem 4. (Stefan, 1989b & 1991) 
The solution to (34)-(37) is given by   

 
m

T x t mt x
c

( , ) [1 exp( ( ))]α= − −`
  (38) 

and the temperature at the fixed face is variable in time given by the expression: 

 f

m t
f t T t T t

c

2

( ) (0, ) [exp( ) 1] 0 , 0α= = − − < = >`
. (39) 

Remark 6. 
More details with respect to the inverse Stefan problem can be found in (Quilghini, 1967). 
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2.5 The Solomon-Wilson-Alexiades model for the phase-change process with a 
mushy region and its similarity solution for the one-phase case 

We consider a semi-infinite material in the liquid phase at the melting temperature fT . We 

impose a temperature fT T0 <  at the fixed face x 0= , and the solidification process begins, 

and three regions can be distinguished, as follows (Solomon et al., 1982): 

i. the liquid phase, at temperature fT T= , occupying the region x r t t( ), 0;> >  

ii. the solid phase, at temperature fT x t T( , ) < , occupying the region x s t t0 ( ), 0< < > ; 

iii. the mushy zone, at temperature fT , occupying the region s t x r t t( ) ( ), 0< < > . We 

make the following two assumptions on its structure: 

a. the material in the mushy zone contains a fixed fraction ε`  (with constant 0 1ε< < ) of  

the total  latent heat ` . 

b. the width of the mushy zone is inversely proportional (with constant 0γ > ) to the 

temperature gradient at  s t( ) . 

Therefore the problem consists of finding the free boundaries x s t( )=  and x r t( )= , and the 

temperature T T x t( , )=  such that the following conditions are satisfied: 

 ( )t xxcT kT x s t t0 , 0 , 0ρ − = < < >  (40)  

 ( ) fT t T T t00, , 0= < > ; s r(0) (0) 0= =  (41)  

 ( )( ) fT s t t T t, , 0= >   (42) 

 xkT s t t s t r t t( ( ), ) [ ( ) (1 ) ( )], 0ρ ε ε= + − >$ $`  (43) 

 xT s t t r t s t t( ( ), )( ( ) ( )) , 0γ− = > .  (44) 

Theorem 5. (Solomon et al., 1982): 
The explicit solution to problem (40)-(44) is given by: 

 
fT T x

T x t T erf s t a t r t a t
erf a t

0

0

( )
( , ) ( ), ( ) 2 , ( ) 2

( ) 2
ξ μξ

−= + = =  (45) 

where 

 
f

kerf exp a
cT T

2

0

( ) ( ),
2( )

γ πμ ξ ξ ξ ρ= + =−  (46) 

and 0ξ > is the unique solution to the equation 

 0( )
( ) , 0

−⎛ ⎞= > =⎜ ⎟⎝ ⎠`
fc T TSte

D x x Steπ  (47) 

with 

 
f

D x xerf x x x erf x
T T

2 2 2

0

(1 )
( ) ( )exp( ) [exp( ) ( )]

2( )

γ ε π−= + − . (48) 
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Remark 7. 

The classical Lamé-Clapeyron solution can be obtained for the particular case 1, 0ε γ= = . 

If the Stefan number is small, then an approximated solution for ξ  and μ is given by: 

 

1

2

0

0

, [1 /( )]
2[1 (1 ) /( )]

⎡ ⎤= = + −⎢ ⎥+ − −⎢ ⎥⎣ ⎦ f

f

Ste
T T

T T
ξ μ ξ γγ ε . (49) 

2.6 The Cho-Sunderland solution for the one-phase problem with temperature-
dependent thermal conductivity 

We consider the following solidification problem for a semi-infinite material  
 

 cT x t k T T x t x s t tx xt( , ) ( ( ) ( , )) , 0 ( ), 0ρ = < < >  (50) 

 T t T T to f
(0, ) , 0= < >   (51) 

 T s t t T t
f

( ( ), ) , 0= >   (52) 

 k T T s t t s t txf
( ) ( ( ), ) ( ) , 0ρ= >$`   (53) 

where T(x,t) is the temperature of the solid phase, ρ >0 is the density of mass, 0>`  is the 

latent heat of fusion by unity of mass, c >0 is the specific heat, x=s(t) is the phase-change 
interface, Tf is the phase-change temperature, To is the temperature at the fixed face x=0. We 
suppose that the thermal conductivity has the following expression: 

 k k T k T T T To o of
( ) [1 ( ) /( )] ,β β= = + − − ∈{.  (54) 

Let ┙o=ko /ρc be the diffusion coefficient at the temperature To. We observe that if ┚ =0, the 
problem (50)-(53) becomes the classical one-phase Lamé-Clapeyron-Stefan problem.  
Theorem 6. (Cho & Sunderland, 1974) 
The solution to problem (50)-(54) is given by: 
 

 
T Tof x

T x t To
to

( )
( , ) ( ) , , 0

( ) 2
η η η λλ α

−= + Φ = < <Φ  (55) 

 os t t( ) 2λ α=   (56) 

 

where x x( ) ( )δΦ = Φ = Φ  is the modified error function, for δ > -1, the unique solution to the 

following boundary value problem in variable x, i.e: 

 
i x x x x x

ii

) [(1 ( )) ( )] 2 ( ) 0 , 0,

) (0 ) 0 , ( ) 1

δ ′ ′ ′ ′+ Φ Φ + Φ = >⎧⎪⎨ +Φ = Φ +∞ =⎪⎩     (57) 
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and the unknown thermal coefficients λ  and δ  must satisfy the following system of 

equations: 

 ( ) 0β δ λ− Φ =   (58) 

 
2( )

[1 ( )] 0
( ) ( )c T T

f o

λδ λ λ λ
′Φ+ Φ − =Φ −

`
. (59) 

Remark 8. 
Explicit solutions are given in (Briozzo et al., 2007 & 2010; Briozzo & Tarzia, 2002; Natale & 

Tarzia, 2006; Rogers & Broadbridge, 1988; Tirskii, 1959; Tritscher & Broadbridge, 1994) 

where nonlinear thermal coefficients are considered and in (Natale & Tarzia, 2000; Rogers, 

1986) for Storm’s materials. 

2.7 The Neumann solution for the two-phase problem for prescribed surface 
temperature at the fixed face 

We consider a semi-infinite material with null melting temperature fT 0= , with an initial 

temperature C 0− <  and having a temperature boundary condition B 0>  at the fixed 

face x 0= . The model for the two-phase Lamé-Clapeyron-Stefan problem is given by: find 

the free boundary x s t( )= , defined for t 0> , and the temperature T T x t( , )=  defined by  

 

2

1

( , ) 0 ( ), 0

( , ) ( ), 0

( , ) ( ) , 0

⎧ > < < >⎪⎪= = >⎨⎪ < < >⎪⎩

f

f

f

T x t T    if  x s t t

T x t T                 if x s t t

T x t T if s t x t

 (60) 

for 0x >  and 0t > , such that (i=1: solid phase; i=2: liquid phase): 
 

 
t xx

c T k T x s t t2 2 2 2 0, 0 ( ), 0ρ − = < < > , (61) 

 

 
t xx

c T k T x s t t1 1 1 1 0, ( ), 0ρ − = > > , (62) 

 

 T x C x1( ,0) 0, 0,= − < >  (63) 

 T t B t2(0, ) 0, 0,= > >  (64) 

 fT s t t T t1( ( ), ) 0, 0= = > , (65) 

 fT s t t T t2( ( ), ) 0, 0= = > , (66) 

 ( ) ( )
x x

k T s t t k T s t t s t t1 1 2 2( ), ( ), ( ), 0ρ− = >$` , (67) 

 s(0) 0= . (68) 
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Theorem 7. (Neumann solution (Webber, 1901)) 
The explicit solution to problem (61)-(68) is given by: 
 

 
B x

T x t B erf x s t t
erf a a t

2

2 2

( , ) ( ), 0 ( ), 0
( / ) 2σ= − ≤ ≤ >  (69) 

 
B x

T x t C erfc s t x t
erfc a a t

1

1 1

( , ) ( ), ( ) , 0
( / ) 2σ= − + ≤ >  (70) 

 
k k

s t t a a
c c

2 22 1
2 1

2 1

( ) 2 ( , )σ ρ ρ= = =  (71) 

 

where 0σ > is the unique solution to the following equation: 

 ( ) , 0= >F x x x  (72) 

where  

 
Bk x Ck x

F x F F
a aa a

2 1
2 1

2 12 1

( ) ( ) ( )ρ π ρ π= −
` `

 (73) 

 
exp x exp x

F x F x erfc x erf x
erfc x erf x

2 2

1 2

( ) ( )
( ) , ( ) , ( ) 1 ( )

( ) ( )

− −= = = − . (74) 

 

Remark 9. 
It is very interesting to answer the following question: When is the Neumann solution for a 

semi-infinite material applicable to a finite material x0(0, ) ? (Solomon, 1979). 

Taking into account that erf x   for  2 x( ) 1≅ ≤ , we have an affirmative answer for a short 

period of time because T x t C1 0( , ) ≅ −  is equivalent to   
 

 
x

erf
a t

0

1

( ) 1
2

≈  (75) 

that is 

 
x

t
a

2
0

2
116

≤ . (76) 

Remark 10. 
A generalization of Neumann solution is given in (Briozzo et al, 2004 & 2007b) for particular 

sources in the heat equations for both phases. A study of the behaviour of the Neumann 

solution when the latent heat goes to zero is given in (Tarzia & Villa, 1991). A generalization 

of Neumann solution in multi-phase media is given in (Sanziel & Tarzia, 1989; Weiner, 1955; 

Wilson, 1978 & 1982), and when we have shrinkage or expansion (Fi & Han, 2007; Natale et 

al., 2010; Wilson & Solomon, 1986). 
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2.8 The Neumann-type solution for the two-phase problem for a particular prescribed 
heat flux at the fixed face, and the necessary and sufficient condition to have an 
instantaneous phase-change process 

If we consider the problem (61)-(68) by changing the boundary condition (64) at x 0=  by a 

heat flux condition of the type 

 
x

q
k T t

t

0
2 2 (0, ) = −   (77) 

then we can obtain the following result: 
Theorem 8. (Tarzia, 1981) 

i.  If q0 verifies the inequality 

  
Ck

q
a

1
0

1 π>   (78)  

then we have an instantaneous change of phase and the corresponding explicit solution is 
given by: 

 
x

T x t A B erf x s t t
a t

2 2 2

2

( , ) ( ), 0 ( ), 0
2

= + ≤ ≤ >  (79) 

 
x

T x t A B erf s t x t
a t

1 1 1

1

( , ) ( ), ( ) , 0
2

= + ≤ >  (80) 

 
k k

s t w t a a
c c

2 22 1
2 1

2 1

( ) 2 ,ρ ρ
⎛ ⎞= = =⎜ ⎟⎝ ⎠  (81) 

where 

 
erf w a C

A w C B w
erfc w a erfc w a

1
1 1

1 1

( / )
( ) , ( )

( / ) ( / )

−= =  (82) 

 
a q a q

A w erf w a B w
k k

2 0 2 0
2 2 2

2 2

( ) ( / ), ( )
π π= = −  (83) 

and w 0>  is the unique solution to the equation 

 0( ) , 0= >F x x x , (84) 

where  

 
q Ck

F x x a F x a
a

2 20 1
0 2 1 1

1

( ) exp( / ) ( / )ρλ ρλ π= − − . (85) 

ii.  If  q Ck a0 1 1/ π≤  the corresponding problem represents only a heat conduction 

problem for  the initial solid phase, and the temperature is given by 
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q a x

T x t T x t C erfc x t
k a t

0 1
1

1 1

( , ) ( , ) ( ), 0, 0
2

απ
α= = − + > > . (86) 

Corollary 9 (Tarzia, 1981) 

The coefficient σ that characterizes the free boundary s t t( ) 2σ=  of Neumann solution 

(69)-(74) must satisfy the following inequality: 

 
B k c

erf
a C k c

2 2

2 1 1

( )
σ < . (87) 

2.9 The Neumann-type solution for the two-phase problem for a particular prescribed 
convective condition (Newton law) at the fixed face, and the necessary and sufficient 
condition to have an instantaneous phase-change process 

We consider the following free boundary problem: find the solid-liquid interface 

x s t( )= and the temperature T x t( , )  defined by 

 
s

f

l

T x t if  x s t t

T x t T if x s t t

T x t if x s t t

( , ) 0 ( ), 0,

( , ) ( ), 0,

( , ) ( ), 0,

⎧ < < >⎪= = >⎨⎪ > >⎩
 (88) 

which satisfy the following equations and boundary conditions 

 
t xxs s sT T x s t t, 0 ( ), 0α= < < >  (89) 

 
t xxl l lT T x s t t, ( ), 0α= > >  (90) 

 s l fT s t t T s t t T x s t t( ( ), ) ( ( ), ) , ( ), 0= = = >  (91) 

 l l iT x T t T x t( ,0) ( , ) , 0, 0= +∞ = > >  (92) 

 
xs s s

h
k T t T t T t

t
0(0, ) ( (0, ) ), 0∞= − >  (93) 

 
x xs s l lk T s t t k T s t t s t t( ( ), ) ( ( ), ) ( ), 0ρ− = >$`  (94) 

 s(0) 0=  (95) 

where the subscripts s and l  represent the solid and liquid phases respectively, ρ is the 

common density of mass and ` is the latent heat of fusion, and f iT T T∞ < < . We have the 

following results: 
Theorem 10. (Tarzia, 2004) 
If the coefficient h0  verifies the inequality 

 
i fl

il

T Tk
h

T T
0 πα ∞

−> −  (96) 
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there exists an instantaneous solidification process and then the free boundary problem (89)-
(95) has the explicit solution to a similarity type given by 

 ls t t( ) 2λ α=  (97) 

 

s
f

s s
s

s l

s s

h x
T T erf

k t
T x t T

h
erf

k

0

0

( )[1 ( )]
2

( , )

1 ( )

πα
α

πα αλ α

∞
∞

− +
= +

+
 (98) 

 l
l i i f

x
erfc

t
T x t T T T

erfc

( )
2

( , ) ( )
( )

α
λ= − −  (99) 

and the dimensionless parameter 0λ >  satisfies the following equation 

 F x x x( ) , 0= >   (100) 

where function F and the b’s  coefficients are given by 

 
bx x

F x b b
erfc xb erf x b

2 2

1 3

2

exp( ) exp( )
( )

( )1 ( )

− −= −+  (101) 

 
fl

s l

h T T
b b

0

1

( )
0; 0

α
α ρ α

∞−= > = >
`

 (102) 

 
l i f

s

s

c T Th
b b

h
0

2 3

( )
0; 0πα π

−= > = >
`

 (103) 

Proof. 

Function F  has the following properties: 

 
f l i f

l

h T T c T T
F b b

0

1 3

( ) ( )
(0 ) ρ α π

∞+ − −= − = −
` `

 (104) 

 ( )F F x x( ) , 0, 0′+∞ = −∞ < ∀ >  (105) 

Therefore, there exists a unique solution λ >0 of the Eq. (100) if and only if F(0 ) 0+ > , that is 

inequality (96) holds. 

2.10 The similarity solution for the two-phase Lamé-Clapeyron-Stefan problem with a 
mushy region 

We consider a semi-infinite material initially in the solid phase at the 

temperature fC T 0− < = . We impose a temperature fB T 0> =  at the fixed face x 0= , and the 

fusion process begins, and three regions can be distinguished, as follows: (Tarzia, 1990b): 
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i.   the liquid phase, at temperature T T x t2 2( , ) 0= > , occupying the region 

x s t t0 ( ), 0;< ≤ >  

ii. the solid phase, at temperature T T x t1 1( , ) 0= < , occupying the region x r t t( ), 0> > ; 

iii. the mushy zone, at temperature fT 0= , occupying the region s t x r t t( ) ( ), 0< < > . We 

make the following two assumptions on its structure: 

a. the material in the mushy zone contains a fixed fraction ε`  (with constant 0 1ε< < ) of  

the total  latent heat ` ; 

b. the width of the mushy zone is inversely proportional (with constant 0γ > ) to the 

temperature gradient at  s t( ) . 

Therefore, the problem consists of finding the free boundaries x s t x r t( ), ( )= = , and the 

temperature: 

 

T x t    if x s t t

T x t if s t x r t t

T x t    if r t x t

2

1

( , ) 0 0 ( ), 0

( , ) 0 ( ) ( ), 0

( , ) 0 ( ) , 0

> < < >⎧⎪= ≤ ≤ >⎨⎪ < < >⎩
 (106) 

defined for x 0>  and t 0> , such that the following conditions are satisfied: 

 
xx t

T T x s t t2 2 2 , 0 ( ), 0α = < < >  (107) 

 
xx t

T T r t x t1 1 1 , ( ) , 0α = < >  (108) 

 s r(0) (0) 0,= =  (109) 

 T s t t T r t t t2 1( ( ), ) ( ( ), ) 0, 0= = >  (110) 

 
x x

k T r t t k T s t t s t r t1 1 2 2( ( ), ) ( ( ), ) [(1 ) ( ) ( )],ρ ε ε− = − +$ $`  (111) 

 
x

T s t t r t s t t2 ( ( ), ) ( ( ) ( )) , 0γ− − = >  (112) 

 T x T t C x t1 1( ,0) ( , ) , 0, 0= +∞ = − > >  (113) 

 T t B t2(0, ) 0, 0= > >  (114) 

Theorem 11. (Tarzia, 1990b) 
i. The explicit solution to the problem (107)-(114) is given by 

 
x x

T x t A B erf T x t A B erf
a t a t

1 1 1 2 2 2

1 2

( , ) ( ), ( , ) ( )
2 2

= + = +  (115) 

 
k k

s t t r t t a a
c c

2 22 1
2 1

2 1

( ) 2 , ( ) 2 ( , )σ ω ρ ρ= = = =  (116) 

where  
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Cerf
B Ca

A B B A B
erf erfc erfc

a a a

1
2 2 1 1

2 1 1

( )

, , ,
( ) ( ) ( )

ω
σ ω ω= = − = = −  (117) 

 
a

erf
B a a

2
2

2
2 2

( ) exp( ) ( )
2

γ π σ σω ω σ σ= = +  (118) 

where 0σ > is the unique solution to the equation                 

 1 2( ) ( ), 0= >K x K x x  (119) 

with  

 

k B x k B x x
K x F F F x

a a erfc xa a

a x x x
K x x erf F x

B a a erf x

2
2 1

1 2 1 1

2 12 1

2 2
2

2 22
2 2

( ) exp( )
( ) ( ) ( ), ( )

( )

exp( )
( ) [ exp( ) ( )], ( )

2 ( )

ω
π π

εγ πρ

−= − =
−= + =`

 (120) 

Proof.  

We have the following properties 

 K K K x1 1 1(0 ) , ( ) , 0, 0+ ′= +∞ +∞ = −∞ < ∀ > , (121) 

 K K K x2 2 2(0 ) 0, ( ) , 0, 0+ ′= +∞ = +∞ < ∀ > , (122) 

and the thesis holds. 

Remark 11 
If the boundary condition (114) is replaced by a heat flux condition of the type (77) then we 

will have an instantaneous change of phase if and only if the coefficient q0 that characterizes 

the heat flux (77) verifies an inequality (Tarzia, 1990b). 

2.11 The similarity solution for the phase-change problem by considering a density 
jump 

We will consider the two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material 

taking into account the density jump under the change of phase. We will find the interface 

s s t( ) 0= >  (free boundary), defined for t 0> , and the temperature  

 

x t if  x s t t

x t if x s t t

x t if x s t t

1

2

( , ) 0 0 ( ), 0,

( , ) 0 ( ), 0,

( , ) 0 ( ), 0,

θ
θ

θ
< < < >⎧⎪= = >⎨⎪ > > >⎩

 (123) 

defined for x 0>  and t 0> , such that they satisfy the following conditions: 

 
xx t

x s t t1 1 1 , 0 ( ), 0α θ θ= < < >  (124) 
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xx x t

s t x s t t1 2
2 2 2 2

2

( ) , ( ), 0
ρ ρα θ θ θρ

−+ = > >$  (125) 

 
s t t t

s t t t
1

2

( ( ), ) 0, 0

( ( ), ) 0, 0

θ
θ

= >
= >  (126) 

 
x x

k s t t k s t t s t t1 1 2 2 1( ( ), ) ( ( ), ) ( ), 0θ θ ρ− = >$`  (127) 

 x x2 0( ,0) 0, 0θ θ= > >  (128) 

 s(0) 0=  (129) 

 t d t1(0, ) 0, 0θ = − < > . (130) 

Theorem 12 (Carslaw & Jaeger, 1959; Rubinstein, 1971) 
The explicit solution to the free boundary problem (124)-(130) is given by 

 

x
x t A B erf

a t

x
x t A B erf

a t

s t t

1 1 1

1

2 2 2 1

2

( , ) ( )
2

( , ) ( )
2

( ) 2 , 0

θ
θ δ

γ γ

⎧ = +⎪⎪⎪ = + +⎨⎪⎪ = >⎪⎩

 (131) 

where 

 
d

A d B
erf a

1 1

1

( ) , ( )
( )

γ γ γ= − = , (132)  

 
erf a

A B
erfc a erfc a

0 0 0
2 2

0 0

( )
( ) , ( )

( ) ( )

θ γ θγ γγ γ
−= = , (133) 

 
a

a
a

1 2 2
1 0

2 2

, ,
1

ρ ρ γε δ ερ ε
−= = = + , (134) 

and γ is the unique solution to the following equation: 

 F x x x( ) , 0= > , (135) 

with 

 
k x k x

F x B x B x
a aa a

2 2
1 2

1 22 2
1 01 1 1 2

( ) ( )exp ( )expρ π ρ π
⎛ ⎞⎛ ⎞− −= − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠` `

. (136) 

Proof. 
We have the following properties: 
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 F F F x x(0 ) , ( ) , ( ) 0, 0+ ′= +∞ +∞ = −∞ < ∀ > . (137) 

Theorem 13 (Bancora & Tarzia, 1985) 
i.  If we replace the boundary condition (130) by the following one given by: 

 
x

q
k t t

t
0

1 1 (0, ) , 0θ = > , (138) 

then there exists an explicit solution corresponding to the free boundary problem (124)-(130) 

and (138) if and only if the coefficient q0 satisfies the inequality 

 
k c

q 2 2 2
0 0

ρθ π> . (139) 

In this case the explicit solution is given by: 

 

x
x t C D erf

a t

x
x t C D erf

a t

s t w t w

1 1 1

1

2 2 2 2

2

( , ) ( )
2

( , ) ( )
2

( ) 2 , 0

θ
θ δ

⎧ = +⎪⎪⎪ = + +⎨⎪⎪ = >⎪⎩

 (140) 

where 

 
a q a qw

C w erf D w
k a k

1 0 1 0
1 1

1 1 1

( ) ( ), ( )
π π= − = , (141)  

 
erf w a

C w D
erfc w a erfc w a

0 0 0
2 2

0 0

( )
( ) , ( )

( ) ( )

θ θγ−= = , (142) 

 
a

a
a

1 2 2
2 0

2 2

, ,
1

ρ ρ γε δ ερ ε
−= = = + , (143) 

and w is the unique solution to the following equation: 

 F x x x0( ) , 0= > , (144) 

with 

 
q x k x

F x B x
a aa

2 2
0 2

0 22 2
1 1 01 2

( ) exp ( )expρ ρ π
⎛ ⎞⎛ ⎞− −= − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠` `

. (145) 

Proof. 
We have the following properties: 

 
k

F q F F x x
a

2 0
0 0 0

1 2

1
(0 ) , ( ) , ( ) 0, 0

θ
ρ π+ ⎛ ⎞ ′= − +∞ = −∞ < ∀ >⎜ ⎟⎜ ⎟⎝ ⎠`

. (146) 
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Remark 12 . 

When the boundary condition at the fixed face x 0=  is given by (93) the explicit solution 

was given in (Tarzia, 2007). 

2.12 The determination of one or two unknown thermal coefficient through an over-
specified condition at the fixed face for one or two-phase cases 

We consider the one-phase Lamé-Clapeyron-Stefan problem with unknown thermal 

coefficients. If we give an overspecified boundary condition at the fixed face x 0=  we can 

determine one or two unknown coefficients following (Arderius et al., 1996; Cannon, 1963 & 

1964; Garguichevich et al., 1985; Jones, 1962 & 1963; Tarzia, 1982,1983 & 1984)). 

2.12.1 Determination of one unknown thermal coefficient through a one-phase case 

The problem consists of finding the free boundary x s t( )= , the temperature T T x t( , )= , and 

one unknown thermal coefficient chosen among { }k c, , ,ρ ` such that they must satisfy the 

following conditions (we have a free boundary problem): 

 t xx
kT T x s t t a

c
2, 0 ( ), 0 ( )α α ρ= < < > = =  (147) 

 T s t t t( ( ), ) 0, 0= >  (148) 

 xkT s t t s t t( ( ), ) ( ), 0ρ= >$` ,  (149) 

 T t T0(0, ) 0= >  (150) 

 x

q
kT t t

t

0(0, ) , 0= − > ,  (151) 

 s(0) 0= ,  (152) 

where q0 is the coefficient that characterizes the heat flux at the fixed face x 0=  and it must 

be obtained experimentally. 

Theorem 14 (Tarzia, 1982) 

Let T0 and q0  be determinated experimentally. The solution for the determination of one 

thermal coefficient is given by: 

 
T x

T x t T erf x s t t
a terf

a

0
0( , ) ( ), 0 ( ), 0

2( )
σ= − < < > ,  (153) 

 s t t t( ) 2 , 0σ= > ,  (154) 

where σ and the unknown thermal coefficient are computed in the summarized  way in the 

following Table 1: 
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Case # 
Formulae for 

unknown 
coefficients 

Parameter ξ  is the 

unique solution to the 
equation 

Restrictions on 
data 

1 

k

c

q c

k

2
0 exp( )

σ ξ ρ
ρ ξ

ρ ξ

=
−=`

 

T k c
erf x

q

x

0

0

( )

0

ρ
π=

>
 

T k c

q
0

0

1
ρ
π <  

2 

kT

erfq

q
erf

kcT

0

0

2
20

2
0

( )

( )

ξσ ξπ
πρ ξ

=

=
 

cT
E x

x

0( )

0

π=
>

`  ------- 

3 

q

q
k erf

cT

20

2
20

2
0

exp( )

( )

σ ξρ
π ξρ

= −
=

`
 As in Case 2 ------- 

4 

q

q
c erf

kT

20

2
20

2
0

exp( )

( )

σ ξρ
π ξρ

= −
=

`
 

erf x k T
x

x q

x

20

2
0

( )
exp( )

0

ρ
π=

>
`

k T

q
0

2
0

1
2

ρ <`
 

Table 1. Summary of the determination of one thermal coefficient through a one-phase 
Lamé-Clapeyron-Stefan problem (4 cases) 

Remark 13. 
The determination of one unknown thermal coefficient for phase-change problems with 
temperature-dependent thermal conductivity of the type (54) was given in (Tarzia, 1998).  

2.12.2 Determination of two unknown thermal coefficients for the one-phase case 

If the interface solid-liquid is given by the law: 

  s t t t( ) 2 , 0σ= >  (155) 

where the coefficient 0σ >  was determined experimentally then the problem consists of 

finding the temperature T T x t( , )=  and two unknown thermal coefficients chosen among 

{ }k c, , ,ρ ` such that they satisfy the conditions (147)-(152) (we have a moving boundary 

problem). 

Theorem 15 (Tarzia, 1983) 

Let T0 ,σ and q0 be determined experimentally. The solution for the determination of two 

thermal coefficients is given by  

 
T x

T x t T erf x s t t
a terf

a

0
0( , ) ( ), 0 ( ), 0

2( )
σ= − < < > , (156) 
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and the two coefficients are computed in the summarized way in the following Table 2. 
 

Case # 
Formulae for 

unknown 
coefficients 

Parameter ξ is the 

unique solution to 
the equation 

Restrictions on data 

1 

q
c erf

T

q erf
k

T

0

0

0

0

( )

( )

π ξ ξρσ
σ π ξ

ξ

=

=
 

q0log( )ξ ρ σ=
`

 
q0 1ρ σ >
`

 

2 

q

c
k

20

2

2

exp( )ξρσ
ρ σ
ξ

= −
=

`
 

c T
xerf x

q

x

0

0

( )

0

ρ σ
π=

>
 --------- 

3 

q

q c
k

20

2
0

2

exp( )

exp( )

ρ ξσ
σ ξ

ξ

= −
−=

`

`

 
cT

E x

x

0( )

0

π=
>

`  --------- 

4 

k
c

q

2

2

20 exp( )

ξρσ
ξρσ

=
= −`

 

erf x kT

x q

x

0

0

( )

0

σ π=
>

 
kT

q
0

0

1
2σ <  

5 

k

c

c q

k

2

2

2
0

2

exp( )

ρ ξσ
σ ξ

ξ

=
−=`

 As in case 4 As in case 4 

6 

q

k
c

q

20

2 2

0

exp( )

exp( )

ρ ξσ
ξ ξσ

= −
=

`
`  As in case 4 As in case 4 

Table 2. Summary of the simultaneous determination of two thermal coefficients through a 
one-phase Lamé-Clapeyron-Stefan problem (6 cases) 

Remark 14. 
The determination of thermal coefficients for the Solomon-Wilson-Alexiades mushy region 
was obtained in (Tarzia, 1987). The simultaneous determination of two unknown thermal 
coefficients for phase-change problems with temperature-dependent thermal conductivity 
of the type (54) was given in (Salva & Tarzia, 2010) with a sensitivity analysis.  

2.12.3 Determination of one or two unknown thermal coefficients through a two-phase 
Lamé-Clapeyron-Stefan problem 

The determination of one or two unknown thermal coefficients for a two-phase 
solidification or fusion problem was obtained in (Stampella & Tarzia, 1989). The 
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determination of one or two unknown thermal coefficients for a mushy region was obtained 
in (González & Tarzia, 1996). Another variant for the simultaneous determination of the 
thermal coefficients is given in (Tarzia, 1991a). 
Remark 15. 
Explicit solutions for the determination of unknown coefficients are given in (Briozzo et al., 
1999) for Storm’s type materials. 

2.13 A similarity solution for the thawing in a saturated porous medium by 
considering a density jump and the influence of the pressure on the melting 
temperature 

We consider the problem of thawing of a partialIy frozen porous medium, saturated with an 
incompressible liquid. For a detailed exposition of the physical background we refer to 
(Charach & Rubinstein, 1992; Fasano et al. 1993; Fasano & Primicerio, 1984; Nakano, 1990; 
O’Neill & Miller, 1985; Talamucci, 1997 & 1998). More specifically, we deal with the 
following situations: 
i. a sharp interface between the frozen part and the unfrozen part of the domain exists 

(sharp, in the macroscopic sense); 
ii. the frozen phase is at rest with respect to the porous skeleton, which will be considered 

to be undeformable; 
iii. due to the density jump between the liquid and solid phases, thawing can induce either 

desaturation or water movement in the melting regíon. We will consider the latter 
situation, assuming that liquid is continuously supplied to keep the medium saturated. 

The unknowns of the problem are the function x=s(t), representing the free boundary, and 
the two functions u(x, t) and v(x, t)  representing the temperature of the unfrozen and of the 
frozen zone respectively which must satisfy the following conditions:  

 t xx xu a u b s t u x s t t1 ( ) , 0 ( ), 0ρ= − < < >$  (157) 

 t xxv a v x s t t2 , ( ), 0= > >  (158) 

 u s t t v s t t d s t s t t( ( ), ) ( ( ), ) ( ) ( ), 0ρ= = >$  (159) 

 F x U xk v s t t k u s t t s t s t s t t2( ( ), ) ( ( ), ) ( ) ( ) ( ( )) , 0α βρ− = + >$ $  (160) 

 u t B t(0, ) 0, 0= > > . (161) 

 v x v t A x t( ,0) ( , ) 0, 0, 0= +∞ = − < > >  (162) 

 s(0) 0=  (163) 

with 

 

U F W W

U U F F U U

W I I W I
I I W I

W

k k c
a a b d

c c c K

c c
d c c

K

2 2
1 1 2 2

2

, , ,

( )
, , ( )

ερ εγμα αρ ρ ρ
ρ ρ ε ρ γμρ α ερ β ε ρρ

= = = = = =
− −= = = = −`

 (164) 
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where ε : porosity, 

W I andρ ρ : density of water and ice, 

c: specific heat at constant density, 

U Fk   kand : conductivity of the unfrozen and frozen zones, 

u=v=0 : the melting point at atmospheric pressure,  

` : latent heat at u=0 , γ : coefficient in the CIausius-CIapeyron law, 

0μ > : viscosity of liquid, 

K>0: hydraulic permeability, 

B>0: boundary temperature at the fixed face x=0, 

-A<0: initial temperature. 
Theorem 16  (Fasano et al., 1999) 
The free boundary problem (157) – (163) has the similarity solution 

 s t t1( ) 2 ,ξα=  (165) 

 

x
t

m B
u x t B r pr dr

g p

1(22
2

0

( , ) exp( )
( , )

αξ ξξ
−= + − +∫  (166) 

 

x x
m erfc A erf erf

t t
v x t

erfc

2
0

2 2

0

( )
2 2

( , )
( )

ξ γ ξα α
γ ξ

⎛ ⎞⎛ ⎞ ⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠=  (167) 

if and only if the coefficient 0ξ >  satisfies the following equation: 

 K B my H p y K F m y y y y2 3
1 2( ) ( , ) ( , ) , 0δ υ− − = + > , (168) 

where 

 
y

p y
g p y r pyr dr H p y

g p y

2
2

0

exp(( 1) )
( , ) exp( ) , ( , )

2 ( , )π
−= − + =∫  (169) 

 
y

F m y A my
erfc y

2 2
2 0

0

exp( )
( , ) ( )

( )

γ
γ
−= +  (170) 

and the constants K K p m and 1 2 0, , , , ,γ δ υ  are defined as follows: 

 U Fk k
K K 1

1 2 0 1

21 2

0, 0, 0, 0
αγ δ αααα π α π= > = > = > = >  (171) 

 p b m d 2 3
1 12 , 2 0, 2ρ ρα υ βρα= = > =  (172) 

Moreover, the existence and uniqueness of the unknown coefficient 0ξ >  depends on the 

sign of the three parameters p m  , and υ  of the problem. 
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If we replace the boundary condition (161) by the following one: 

 U x

q
k u t t

t
0(0, ) , 0= − > , (173) 

then we can consider the free boundary problem (157) – (160), (173), (162)-(163) and we can 
obtain the following result. 
Theorem 17  (Lombardi & Tarzia, 2001) 
The free boundary problem (157) – (160), (173), (162)-(163) has the following similarity 
solution: 

 s t t1( ) 2 ,ξ α∗=  (174) 

 

x
t

U U

q q
u x t m g p r pr dr

K K

1(2

2 20 1 0 1

0

2 2
( , ) ( ) ( , ) exp( )

αα αξ ξ ξ∗ ∗ ∗= + − − +∫  (175) 

 
m Aerf m x

v x t erf
erfc erfc t

2 2
0

0 0 1

( ) ( ) ( )
( , )

( ) ( ) 2

ξ γ ξ ξ
γ ξ γ ξ α

∗ ∗ ∗
∗ ∗

⎛ ⎞+= − ⎜ ⎟⎜ ⎟⎝ ⎠  (176) 

if and only if the coefficient 0ξ ∗ >  satisfies the following equation: 

 q p y K F m y y y y2 3
0 2exp(( 1) ) ( , ) , 0δ υ− − = + > , (177) 

or its equivalent 

 Q y q y0 0( ) , 0= > , (178) 

where  

 
K F m y y y

Q y y
p y

3
2

0 2

( , )
( ) , 0

exp(( 1) )

δ υ+ += >− . (179) 

Moreover, the existence and uniqueness of the unknown coefficient 0ξ ∗ >  depends on the 

sign of the three parameters p m and , υ  of the problem. 

3. Explicit solutions for free boundary problems for the diffusion equation 

Heat and mass transfer with phase change problems, taking place in a porous medium, such 

as evaporation, condensation, freezing, melting, sublimation and desublimation, have wide 

application in separation processes, food technology, heat and mixture migration in soils 

and grounds, etc. Due to the non-linearity of the problem, solutions usually involve 

mathematical difficulties and only a few exact solutions have been found. Mathematical 

formulation of the heat and mass transfer in capillary porous bodies has been established by 

(Luikov, 1964, 1966, 1975 & 1978). Some books or booklets on the subject for the diffusion 

equation are (Crank, 1975; Duvaut, 1976; Fasano, 2005; Fasano & Primicerio, 1986; Froment 

& Bischoff, 1979; Levenspiel, 1962; Primicerio & Gianni, 1989; Szekely et al., 1976). 
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3.1 The oxygen diffusion-consumption problem and its relationship with the phase-
change problem 

The diffusion-consumption of oxygen in absorbing tissue consists in finding the free 

boundary x=s(t) and the concentration C(x,t) such that they satisfy the following conditions 

(Crank & Gupta, 1972; Crank, 1984; Liapis et al., 1982): 

 t xxC C x s t t T01, 0 ( ), 0− = − < < < <  (180) 

 ( ) ( )C x H x x,0 , 0 1= ≤ ≤ , (181) 

 ( )xC t G t C t F t t T0(0, ) ( ) ( 0, ( )), 0= − = < < , (182) 

 ( )C s t t t T0( ), 0, 0= < < , (183) 

 xC s t t t T0( ( ), ) 0, 0= < < , (184) 

 s t T0(0) 1, 0= < < . (185) 

Remark 16. 

We remark that s t( )$  does not appear in both conditions (183) and (184) on the free 

boundary x=s(t) and for this reason the free boundary problem is of an implicit type; the 

Lamé-Clapeyron-Stefan problem is one of an explicit type. 
Theorem 18. (Fasano, 1974; Schatz, 1966) 
The free boundary problem of the diffusion-consumption of oxygen in absorbing tissue is 
equivalent to the following Lamé-Clapeyron-Stefan problem:  

 t xxz z x s t t T00, 0 ( ), 0− = < < < <  (186) 

 z x h x x( ,0) ( ), 0 1= ≤ ≤  (187) 

 xz t g t z t f t t T0(0, ) ( ) ( (0, ) ( )), 0= − = < <  (188) 

 z s t t t T0( ( ), ) 0, 0= < <  (189) 

 xz s t t s t t T0( ( ), ) ( ), 0= − < <$  (190) 

 s t T0(0) 1, 0= < < . (191) 

i. If s z T0( , , ) is a solution to the problem (186) – (191) then s C T0( , , )  is solution to the 

problem (180) – (185) where we define: 

 
s t s t

x

C x t d z y t dy
( ) ( )

( , ) [1 ( , )] ,
ξ

ξ= +∫ ∫  (192) 

 
t

x

H x d h y dy F t H f d
1 1

0

( ) [1 ( )] , ( ) (0) ( )
ξ

ξ τ τ= + = +∫ ∫ ∫  (193) 
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t

G t h x dx g d
1

0 0

( ) 1 ( ) ( ) ,τ τ= + +∫ ∫  (194) 

ii.  If s C T0( , , ) is a solution to the problem (180) – (185) then s z T0( , , )  is solution to the 

problem (186) – (191) where we define: 

 tz x t C x t( , ) ( , )=  (195) 

 h x H x g t G t f t F t( ) ( ) 1, ( ) ( ), ( ) ( )′′ ′ ′= − = =  (196) 

Remark 17. 
The oxygen diffusion-consumption free boundary problem was applied to the anaerobiosis 

in saturated soil aggregates in (González et al., 2008). 

3.2 The Rubinstein solution for the binary alloy solidification problem 

We consider a semi-infinite slab of a binary alloy consisting of two components A, B. Let C 

be the concentration of “A”. We suppose that solidification of the alloy is governed by an 

equilibrium phase diagram consisting of liquidus curve LT f C( )= , and a solidus curve 

ST f C C( ), 0 1= < <  and we assume L Sf f,  to be monotonically increasing, L Sf C f C( ) ( )>  

and A B
L S cr L S crf f T f f T(0) (0) , (1) (1)= = = = . Material is in its solid state if ST f C( )≤  and liquid 

if Lf C T( ) ≤ . If S Lf C T f C( ) ( )< <  then the material state is not well defined (it is known as 

mushy region). 

We consider that the semi-infinite alloy is initially liquid at constant temperature inT and 

concentration inC , for which L in inf C T( ) ≤ . Beginning at time t 0= , a cold temperature 
A

B crT T<  is imposed at x 0= . Freezing occurs with, in principle, a sharp phase change front 

s s t( )=  separating solid alloy x s t( ( ))<  from liquid alloy x s t( ( ))> . The mathematical 

formulation  of the solidification process is given in (Rubinstein, 1971) as follows: 

Find temperature T x t( , ) , concentration C x t( , )  and phase-change front x s t( )= , such that 

the following conditions must be satisfied: 

 
t xxS S SC D C x s t t, 0 ( ), 0= < < >  (197) 

 
t xx

C D C x s t t, ( ), 0= > >` ` `  (198) 

 
t xxs s sT T x s t t, 0 ( ), 0α= < < >  (199) 

 
t xx

T T x s t t, ( ), 0α= > >` ` `  (200) 

 cr S S ST T s t t f C s t t t( ( ), ) [ ( ( ), )], 0= = >  (201) 

 cr LT T s t t f C s t t t( ( ), ) [ ( ( ), )], 0= = >` `   (202) 

 
x xS S SD C s t t D C s t t C s t t C s t t s t t( ( ), ) ( ( ), ) [ ( ( ), ) ( ( ), )] ( ), 0− = − >` ` ` $  (203) 
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x xS Sk T s t t k T s t t s t t( ( ), ) ( ( ), ) ( ), 0ρ− = >` ` $`  (204) 

 A
S B crT t T T t(0, ) , 0= < >  (205) 

 in L inT x T f C t( ,0) ( ), 0= > >`  (206) 

 inC x C x( ,0) , 0= >`  (207) 

 
xSC t t(0, ) 0, 0= >  (208) 

 s(0) 0=  (209) 

where k D, , , ,ρ α `  represent the mass density, the thermal conductivity, the thermal 

diffusivity, the mass diffusion and  the latent heat of fusion, being S  and `  the subscripts 

that denote the solid and liquid phase respectively. 
Theorem 19 (Rubinstein, 1971; Solomon et al., 1983) 

There exists a unique solution to the coupled free boundary problem (197)-(209), moreover, 

the solidus C s t t1( ( ), )  and liquidus C s t t2( ( ), ) concentrations as well as the phase-change 

temperature CrT T s t t T s t t1 2( ( ), ) ( ( ), )= =  are constants in time. The explicit solution is given by 

the following expressions: 

 s t t1( ) 2λ α=  (210) 

 S S cr S S L LC x t C T f C f C( , ) , ( ) ( ),= = =  (211) 

 in L in

S

erfc x D t
C x t C C C

erfc D

( 2 )
( , ) ( )

( )λ α= + − `
`

`

 (212)  

 S
S B cr B

erf x t
T x t T T T

erf

( 2 )
( , ) ( )

( )

α
λ= + −  (213) 

 in cr in

S

erf x t
T x t T T T

erf

( 2 )
( , ) ( )

( )

α
λ α α= + − `

`
`

 (214) 

where λ and crT (or equivalently SC  and C` ) must satisfy the following conditions: 

 in L
s cr

S L

C C
Q D T W

C C
1( ), ( )λ α λ− = =− `  (215) 

where  

 Q x x x erfc x A k2( ) exp( ) ( ), /π ρ α= = ` ``  (216) 

www.intechopen.com



Explicit and Approximated Solutions for Heat and Mass Transfer  
Problems with a Moving Interface  

 

465 

 B in B S

x
W x T T T AQ x

x
1

( )
( ) [( ) ( / )]

1 ( )
α α Ψ= + − + + Ψ`  (217) 

 

 S

S S

k E x
x

k Q x

( )
( )

( / )

α π
α α αΨ = `

` `

 (218) 

Proof. 
The system of equations (215) has a unique solution because of the following properties 

 Q Q Q(0 ) 0, ( ) 1, 0+ ′= +∞ = >  (219) 

 

 B inW T W T W
c

1 1 1(0 ) , ( ) , 0+ ′= +∞ = + >
`

`
. (220) 

Remark 18. 
Some other references on the binary alloy solidification problems are (Alexandrov & 
Malygin, 2006; Gupta et al., 1997; Tien & Geigen, 1967; Tien & Koump, 1970; Tsubaki & 
Boley, 1977; Voller, 2006, 2008 a&b; White, 1985; Wilson et al., 1982). In (Cirelli & Tarzia, 
2010) the binary alloy solidification problem (197)-(209) is solved by changing the boundary 
condition (205) at the fixed face by a heat flux boundary condition of the type (77) or a 
convective boundary condition of the type (93). 

3.3 The Zel’dovich-Kompaneets-Barenblatt solution for the gas flow through a porous 
medium 

The porous medium equation for a unidimensional material is given by  

 m
t xxu u m( ) , 1= >  (221) 

which appears in a natural way, mainly to describe processes involving fluid flow, heat 
transfer or diffusion, the flow of a gas through a porous medium and groundwater 
infiltration (Vázquez, 2007). The diffusion coefficient of the equation (221) is  

 mD u mu 1( ) −=  (222) 

assuming u0 ≤ . Equation (221) is parabolic only at those points where u 0≠  and it is in 

general a degenerate parabolic equation because degenerates wherever u 0= . 

Its main qualitative property with respect to the classical heat or diffusion equation is the 
finite propagation which implies the appearance of a free boundary that separates the 
regions where the solution u 0> (where there is gas, according to the standard 

interpretation of u as a gas density), from the empty region where u 0= . 

There exists an explicit solution to the Eq. (221) with a free boundary given by: 
Theorem 20 (Zel’dovich & Kompaneets, 1950; Barenblatt, 1952; Pattle, 1959) 
The function 
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m
x

for   x s t t
u x t s t s t

for   x s t t

1
2 1

1
1 ( ), 0

( , ) ( ) ( )

0 ( ), 0

−⎧ ⎡ ⎤⎪ ⎛ ⎞⎢ ⎥⎪ − ≤ ≤⎜ ⎟= ⎨ ⎢ ⎥⎝ ⎠⎣ ⎦⎪⎪ > ≤⎩
 (223) 

with  

 
mm m

s t t
m

1

12 ( 1)
( ) ( 1)

1

++⎡ ⎤= +⎢ ⎥−⎣ ⎦   (224) 

is a solution to the Cauchy problem for the equation (221) with initial data 

u x u x x0( ,0) ( ),= ∈{ given by  

 

m
x

for   x s
u x s s

for   x s

1
2 1

0

1
1 (0)

( ) (0) (0)

0 (0)

−⎧ ⎡ ⎤⎪ ⎛ ⎞⎢ ⎥⎪ − ≤⎜ ⎟= ⎨ ⎢ ⎥⎝ ⎠⎣ ⎦⎪⎪ >⎩
. (225) 

3.4 The Luikov solution for the coupled heat and mass transfer for a phase-change 
process 
3.4.1 Drying with coupled phase-change in a porous medium  

A semi-infinite porous medium is dried by maintaining a heat flux condition at x 0= of the 

type
q

t
0− , with q0 0> . Initially, the whole body is at uniform temperature t0 and uniform 

moisture potential u0 . The moisture is assumed to evaporate completely at a constant 

temperature, evaporation point vt . It is also assumed that the moisture potential in the first 

region x s0 ( )τ< < , is constant at vu , where x s( )τ=  locates the evaporation front at time 

0τ > . It is further assumed that the moisture in vapour form does not take away any 

appreciable amount of heat from the system. Neglecting mass diffusion due to temperature 
variation, the problem can be expressed as (Cho, 1975; Gupta, 1974; Luikov, 1978; Santillan 
Marcus & Tarzia, 2003): 
 

 
t t

x x x s
x

2
1 1

1 2
( , ) ( , ), 0 ( ), 0τ α τ τ ττ

∂ ∂= < < >∂ ∂  (226) 

 vu u x s1 , 0 ( ), 0τ τ= < < >  (227) 

 mt t Lc u
x x s

x c

2
2 2 2

2 2
2

( , ) , ( ), 0
ετ α τ ττ τ

∂ ∂ ∂= + > >∂ ∂ ∂  (228) 

 m

u u
x x x s

x

2
2 2

2
( , ) ( , ), ( ), 0τ α τ τ ττ

∂ ∂= > >∂ ∂  (229) 
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qt

k    x
x

01
1 , at 0, 0ττ
∂ = − = >∂  (230) 

 t t      x2 0 in  0, 0τ= > =  (231) 

 u u         x2 0 in 0, 0τ= > =  (232) 

 vt s t s t t        x s1 2 0( ( ), ) ( ( ), ) on ( )τ τ τ τ τ= = > =  (233) 

 vu s u s u u        x s1 2 0( ( ), ) ( ( ), ) on ( )τ τ τ τ τ= = < =  (234) 

 m

t t ds
k s k s L          x s

x x dt
1 2

1 2( ( ), ) ( ( ), ) (1 ) on ( )τ τ τ τ ε ρ τ∂ ∂− + = − =∂ ∂  (235) 

where t1 : temperature of the dried porous medium; t2 : temperature of the humid porous 

medium; u2 :mass-transfer potential of the humid porous medium; i i( 1,2)α = : thermal 

diffusivity of the phase i;  12α : ratio of thermal diffusivities from phase 1 to phase 2; mα : 

moisture diffusivity; mc : specific mass capacity; c2 : specific heat capacity; ik i( 1,2)= : 

thermal  conductivity of the phase i; 
k

k
k

2
21

1

= ; v
m

v

u u
K Lc

c t t
0

0
2 0

( )
( )

−= − : Kossovitch 

number; L : latent heat evaporation of liquid per unit mass-transfer potential; ε : coefficient 

of internal evaporation; mρ : density of moisture; u mL 1α α= : Luikov number, and 

m vL k t t1 1 0(1 ) ( ) 0.ν ε ρ α= − − >  

Theorem 21 (Santillan Marcus & Tarzia, 2003) 

i.  If the Luikov number is equal to one, and the coefficient q0 verifies the condition 

 vk t t
q K2 0

0 0

1

( )
( 2)

2
επα

−> + ,  (236) 

then there exists one and only one solution 0λ >  to the following equation: 
 

 
v

qk K
F x xF x K x K x x x

k t t
1 02 221 0

1 1 0 0

1 0

22
( )[ ( ) 2 2] exp( ) 2 , 0

( )

αε ε ε νπ π− + − − + − = >−  (237) 

 

Furthermore, the solution to the problem (226)-(235) is given by: 

 v

x
u x u x s1

1

( , ) , 0 ( ), 0,
2

τ τ τ η α τ= < < > =  (238) 

 
v

q
t x erf erf x s

k t t
0 1

1

1 0

( , ) 1 ( ( ) ( )), 0 ( ), 0
( )

πατ λ η τ τ= + − < < >−  (239) 
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u

erfc
L

u x x s
erfc

2( , ) , ( ), 0
( )

η
τ τ τλ

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠= > >  (240) 

 
erfc erfcK

t x s
erfc erfcerfc

2 20
2

( ) ( )
( ) [ exp( ) exp( )] , ( ), 0

( ) ( )( )

η ηεη λ λ η η τ τλ λπ λ= − − − + > >  (241) 

 s 1( ) 2τ λ α τ= . (242) 

ii. If the Luikov number is different than one, (that is 1mα α≠ ) and the coefficient 

0q verifies the condition 

 u v

u

L K t t
q k

L

0 0
0 2

1

1
1

ε
πα

⎛ ⎞ −> +⎜ ⎟⎜ ⎟+⎝ ⎠  (243) 

then there exist one and only one solution 0λ >  to the equation: 

 x x x( ) ( ), 0φ ϕ= > , (244) 

where  

 
v

q
x x P x

t t
1 0 2

0

( ) exp( ) ( )
( )

παφ = − +−  (245) 

 x k F x k x2 1 1( ) ( )ϕ π ν= +  (246) 

 u

u u u

L K x
P x k F F x

L L L
0

2 1 1

1
( ) ( ) ( )

1

ε ⎛ ⎞= −⎜ ⎟⎜ ⎟− ⎝ ⎠ . (247) 

Furthermore, the solution to the problem (226)-(235) is given by (238)-(240) , (242) and 

x

12
η α τ
⎛ ⎞=⎜ ⎟⎜ ⎟⎝ ⎠  

 

 
uu

u

u

x
erfc

L erfc erfcK L
t x s

L erfc erfc
erfc

L

0
2

( ) ( )
( ) , ( ), 0.

1 ( ) ( )

η ηεη τ τλ λλ

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= − + + > >⎢ ⎥− ⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
 (248) 

iii. If the Luikov number uL verifies the condition 

 uL
K0

1

1ε> +  (249) 
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then the temperature distribution t2 reaches to a minimum value which is smaller than the 

initial temperature or its limit value at +∞ . The minimum value is attained when the 

dimensionless variable x
12

η α τ=  takes the value 

 
( ) uuu

u u

erfc
LK LL

L erfcK L

0

0

( 1) 1
log

1 ( )

λ
εη λε

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ + − ⎝ ⎠= ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠
. (250) 

3.4.2 Other free boundary problem in a porous medium 
There are some explicit solutions for the following free boundary problems for the diffusion 
equation corresponding to evaporation, freezing, sublimation or desublimation processes in 
(Lin, 1981, 1982a & 1982b; Mikhailov, 1975 & 1976; Santillan Marcus & Tarzia, 2000a & b). 
The simultaneous determination of one or two unknown thermal coefficients of a semi- 
infinite material through a desublimation process with coupled heat and moisture flows is 
given in (Santillan Marcus & Tarzia, 2007; Santillan Marcus, et al., 2008). 

3.5 A mixed saturated-unsaturated flow problem representing absorption of water by 
a soil with a constant pond depth at the surface and an explicit solution for a 
particular diffusivity 
In wet soils, zones of saturation develop naturally in the vicinity of impermeable strata, 
surface ponds and subterranean cavities. Hydrology must be concerned with transient flow 
through coexisting unsaturated and saturated zones. Models of advancing saturated zones 
necessarily involve a nonlinear free boundary problem (Broadbridge & White, 1990; Knigh 
& Philip, 1974; Philip, 1957 & 1958; Warrick & Broadbridge, 1992). 

We consider a homogeneous soil which initially has some uniform volumetric water 

content nθ . At times t 0> , water is supllied at the surface x 0=  under pressure head 0ψ . 

Then, a mixed saturated-unsaturated flow problem representing absorption of water by a 

soil with constant pond depth at the surface is presented. At any time t  the zone of 

saturation extends from x 0=  to x s t( )= . Assuming Darcy’s law and neglecting gravity, the 

water flux  is given by 

 ( )v K
x

ψψ ∂= − ∂  (251) 

where ψ  is the soil water matric potential and K  is the hydraulic conductivity. 

In the saturated zone we have 

 sx t x s t
s t
0

0( , ) , 0 ( )
( )

ψ ψψ ψ −= − < <  (252) 

and we obtain a free boundary problem for the unsaturated zone: 

 ss t t t( ( ) , ) , 0θ θ+ = >  (253) 
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 D x s t t
t x x

( ) , ( ), 0
θ θθ∂ ∂ ∂⎡ ⎤= > >⎢ ⎥∂ ∂ ∂⎣ ⎦  (254) 

 s
sD s t t K t

x s t
0( ) ( ( ) , ) , 0
( )

θ ψ ψθ +∂ −− = >∂  (255) 

 nx t x s t t( ,0) ( , ) , ( ), 0θ θ θ= +∞ = > >  (256) 

 s(0) 0=  (257) 

where 

x :   spatial coordinate, 

t :    time, 

θ :   volumetric water content, 

nθ :  initial volumetric water content, 

sθ :  volumetric water content at saturation, 

ψ :  soil water matric potential, 

0ψ : pond depth, 

sψ : soil water potential at x s t( )= , s 0ψ ψ ψ< <  

K : hydraulic conductivity, 

sK : hydraulic conductivity at saturation, 

D : soil water diffusivity (
d

D K
d

ψ
θ= ). 

We consider the free boundary (253)-(257) where the position s t( )  of the free boundary and 

the water content field x t( , )θ  must be determined; and we restrict our attention to the 

special functional form of the soil water diffusivity 

 
a

D
b 2

( )
( )

θ θ= −  (258) 

where a , and b  are positive constants. With this form of diffusivity the nonlinear diffusion 

equation (254) may be transformed to a linear diffusion equation. We consider the following 
parameter: 

 n

s n

b
C 1

θ
θ θ
−= >− . (259) 

Remark 19. 

In (Briozzo & Tarzia, 1998) a closed-form analytic solution can be obtained for a nonlinear 

diffusion model under conditions of ponding surface. The explicit solution depends on a 

parameter C (determined by the data of the problem ), according to two cases: C C11 < <  or 

C C1 ≤ , where C1  is a constant which is obtained as the unique solution to an equation.  

This results complements the study given in (Broadbridge, 1990) in order to established 

when the explicit solution is available. The behaviour of the bifurcaton parameter  C1  as a 

function of the driving potential is studied with the corresponding limits for small and large 
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values. We also prove that the sorptivity is continuously differentiable as a function of 

variable C . 

3.6 Estimation of the diffusion coefficient in a gas-solid system 

Looking for a competitive separation process like as the permeation, the development and 

optimal choice of membrane materials become necessary. On this subject, equations 

modelling the permeation process are required. The parameters contained in such a model 

must be obtained from simple experiments. The knowledge of solubility and diffusivity are 

very important to solve the separation problem.  

We consider a polymeric membrane swelling for a hydrocarbon solution. The following 

assumptions are considered: Once the gaseous component reaches a threshold concentration 

on the gas-polymer interface, it diffuses through the membrane in the x direction being 

immobilized by a quickly and irreversible transformation. Then a swelling front is generated 

whose position is given by the free boundary  x= s(t) , t >0  with the initial condition s(0)=0 . 

Moreover, the hydrocarbon diffusion coefficient D in the saturated o swollen region of the 

polymer is considered a constant for each experimental condition. A free boundary model 

(Castro et al., 1987; Crank, 1975; Villa, 1987) with an overspecified condition for the one-

dimensional diffusion equation under the preceding assumptions is given: 
 

 t xxc Dc x s t t, 0 ( ), 0= < < >  (260) 

 c s t t t( ( ), ) 0, 0= >  (261) 

 xDc s t t s t t( ( ), ) ( ), 0β= − >$ ,  (262) 

 c t C t0(0, ) 0, 0= > >  (263) 

 
t

xA Dc d t t
0

(0, ) , 0τ τ α= − >∫ ,  (264) 

 s(0) 0= ,  (265) 

where c=c(x,t) denotes the concentration profile of the hydrocarbon in the swollen area, s(t) 

gives the position at time t of the free interface and separates the two regions in the 

membrane, the saturated and unsaturated, D is the unknown diffusion coefficient in the 

system, and  0 ,  and C α β are positive parameters and A is a positive constant which must be 

obtained experimentally. 

Theorem 22. (Destefanis et al., 1993) 
The concentration profile and the free boundary position are given by: 

 
C x

c x t C erf x s t t
Dterf

D

0
0( , ) ( ), 0 ( ), 0

2( )
σ= − < < > ,  (266) 

 s t t t( ) 2 , 0σ= > ,  (267) 
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and the unknown coefficients and D σ are obtained by the following expressions: 

 

D rf
A C A

erf
AC A

2 2 2

2 2 2 2
0

2

0

exp( 2 )
e ( )

4 4

( ) exp( )
2 2

πα α ξξ β ξ
α π ασ ξ ξ ξβ

−= =
= = −

  (268) 

where ξ  is the unique solution to the equation: 

 
C

E x x0( ) , 0β π= > .  (269) 

Remark 20. 
The methodology used in this determination of the unknown diffusion coefficient is a 
variant of those developed in (Tarzia, 1982 & 1983) for the determination of thermal 
coefficients for a semi-infinite material through a phase-change process. 

3.7 The coupled heat and mass transfer during the freezing of high-water content 
materials with two free boundaries: the freezing and sublimation fronts 

Ice sublimation takes place from the surface of high water-content systems like moist soils, 

aqueous solutions, vegetable or animal tissues and foods that freeze uncovered or without 

an impervious and tight packaging material. The rate of both phenomena (solidification and 

sublimation) is determined both by material characteristics (mainly composition, structure, 

shape and size) and cooling conditions (temperature, humidity and rate of the media that 

surrounds the phase change material). The sublimation process, in spite of its magnitude 

being much less than that of freezing process, determines fundamental features of the final 

quality for foods and influences on the structure and utility of frozen tissues. Modelling of 

these simultaneous processes is very difficult owed to the coupling of the heat and mass 

transfer balances, the existence of two moving phase change fronts that advance with very 

different rates and to the involved physical properties which are, in most cases, variable 

with temperature and water content.  

When high water-content materials like foods, tissues, gels, soils or water solutions of 

inorganic or organic substances, held in open, permeable or untightly-sealed containers are 

refrigerated to below their initial solidification temperature, two simultaneous physical 

phenomena take place: 

• Liquid water solidifies (freeze), and 

• Surface ice sublimates. 
For the description of the freezing process, the material can be divided into three zones: 

unfrozen, frozen and dehydrated. Freezing begins from the refrigerated surface/s, at a 

temperature (Tif) lower than that of pure water, due to the presence of dissolved materials, 

and continues along an equilibrium line. Simultaneously, ice sublimation begins at the 

frozen surface and a dehydration front penetrates the material, whose rate of advance is 

again determined by all the abovementioned characteristics of the material and 

environmental conditions. Normally this rate is much lower than that of the freezing front. 

A complete mathematical model has to solve both, the heat transfer (freezing) and the mass 

transfer (weight loss) simultaneously (Campañone et al., 2005a & b). 
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Phase change is accounted for in the following way: 

• Solidification (freezing) as a freezing front (x = sf(t)) located in the point where material 

temperature reaches the initial freezing temperature (Tif), determined by material 

composition. For temperatures lower than Tif (the zone nearer to the refrigerated 

surface) the amount of ice formed is determined by an equilibrium line (ice content vs 

temperature and water content) specific to the material. 

• On the dehydration front (x = sd(t)) we impose Stefan-like conditions for temperature 
distribution and vapor concentration. 

We consider a semi-infinite material with characteristics similar to a very dilute gel (whose 

properties can be supposed equal to those of pure water). The system has initial uniform 

temperature equal to Tif and uncovered flat surface which at time t=0 is exposed to the 

surrounding medium (with constant temperature Ts (lower than Tif) and heat and mass 

transfer coefficients h and Km). We assume that s ifT T t T t0( ) , 0< < >  where T t0( )  is the 

unknown sublimation temperature. 

To calculate the evolution of temperature and water content in time, we will consider the 

following free boundary problem: Find the temperatures ( )d dT T x t,=  and ( )f fT T x t,= , the 

concentrations ( )va vaC C x t,= , the free boundaries ( )d ds s t=  and ( )f fs s t=  and the 

temperature ( )T T t0 0=  at the sublimation front ( )dx s t=  which must satisfy the following: 

• Differential equations at the dehydrated region: 

 ( )
d

d d
d p d d

T T
C k x s t t

t x

2

2
, 0 , 0ρ ∂ ∂= < < >∂ ∂  (270) 

 ( )va va
ef d

C C
D x s t t

t x

2

2
, 0 , 0ε ∂ ∂= < < >∂ ∂  (271) 

• Differential equations at the frozen region: 

 ( ) ( )
f

f f

f p f d f

T T
C k s t x s t t

t x

2

2
, , 0ρ ∂ ∂= < < >∂ ∂  (272) 

Free boundary conditions at the sublimation front ( )dx s t= : 
 

 ( )( ) ( )( ) ( )d d f dT s t t T s t t T t t0, , , 0= = >  (273) 

 
( )( ) ( )( ) ( )f d d d

f d s s d

T s t t T s t t
k k L m s t t

x x

, ,
, 0

∂ ∂− = >∂ ∂ $  (274) 

 
( )( ) ( )va d

ef s d

C s t t
D m s t

x

,∂ =∂ $  (275) 

 ( )( ) sat
va d

g g

c
b

T tMP T
C s t t M a

R T t R T t
0

0 0

exp
( )( )

,
( ) ( )

⎛ ⎞−⎜ ⎟⎝ ⎠= =  (276) 
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where ( )( )va dC s t t,  is the equilibrium vapor concentration at ( )T t0  and the saturation 

pressure satP T( )  is evaluated according to (Fennema & Berny, 1974).  

Free boundary conditions at the freezing front ( )fx s t= : 

 ( )( )f f ifT s t t T t, , 0= >  (277) 

 
( )( ) ( )f f

f f f f

T s t t
k m L s t t

x

,
, 0

∂ = >∂ $  (278) 

• The convective boundary conditions at the fixed interphase x 0= : 
 

 
( ) ( )( )d

d d s

T t
k h T t T t

x

0,
0, , 0

∂ = − >∂  (279) 

 
( ) ( )( )va

ef m va a

C t
D K C t C t

x

0,
0, , 0

∂ = − >∂  (280) 

• The initial conditions at t 0= : 

 f ds s(0) (0) 0= =  (281) 

 ifT T=  for x 0≥ . (282) 

We will solve the system (270) - (282) by using the quasi-steady method. In general, it is a 

good approximation when the Stefan number tends to zero, i.e. when the latent heat of the 

material is high with respect to the heat capacity of the solid material. This approximation 

has often been used when modelling the freezing of high-water content materials.  

Theorem 23. (Olguin et al., 2008) 

The temperatures f dT T,  and the concentration vaC  are given by the following expressions: 
 

 ( ) ( ) ( ) ( )d dT x t A t B t x x s t t, , 0 , 0= + < < >  (283) 

 ( ) ( ) ( ) ( )
av dC x t D t E t x x s t t, , 0 , 0= + < < >  (284) 

 ( ) ( ) ( ) ( ) ( )f d fT x t F t G t x s t x s t t, , , 0= + < < >  (285) 

 

where ( )A t B t D t, ( ), ( ) and ( )E t as a function of ( )T t0  and ( )ds t , as well as ( )F t  and ( )G t  

as a function of ( )T t0 , ( )ds t  and ( )fs t , given by the following expressions:  

 ( ) ( ) ( )
( ) ( ) ( )

( )
s d

sd

d
d d

d d

h
T t T s t

T t Tk h
A t B t

h hks t s t
k k

0
0,

1 1

+ −= =+ +  (286) 
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 ( ) ( )
m

a d a

ef g gm

m mef
d d

ef ef
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b b

T t T tK
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D R T t R T tK
D t E t
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D D
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exp exp
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  (287) 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )f if d if

f d f d

T t s t T s t T T t
F t G t

s t s t s t s t

0 0
,

− −= =− −  (288) 

and we obtain the following system of two ordinary differential equations and one algebraic 

equation for ( )ds t , ( )fs t  and ( )T t0  given by: 
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1 1 1
1 1
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   (289) 
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f d f d

f if d f if if f d ff if

d

s s
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T th T T h
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01 1 1
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⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦= ⎛ ⎞+ −⎜ ⎟⎝ ⎠
$    (290) 

 

 ( )
( )

( ) ( )
o

f if if

f

f f f d

T t

k T T
s t

m L s t s t

1 −
= −$  (291) 

 ( ) ( )f ds s0 0 0= = .  (292) 

Remark 21. 
There exist some approximate or explicit solutions for some other free boundary problems 

for the heat-diffusion equation, e.g.: model for a single nutrient uptake by a growing root 

system by using a moving boundary approach; explicit estimate for the asymptotic 

behavior of the solution of the porous media equation with absorption (reaction-diffusion 

processes of a gas inside a chemical reactor); penetration of solvents in polymers; filtration 

of water through oil in a porous medium; the Wen model for an isothermal mono-

catalytic diffusion-reaction process of a gas with a solid. The solid is chemically attacked 

from its surface with a quick and irreversible reaction and, at the same time, a free 

boundary begins, etc. 
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4. Conclusion 

We have given a review on explicit and approximated solutions for heat and mass transfer 

problems in which a free or moving interface is involved. We have also showed some new 

recent problems for heat and mass transfer in which a free or moving interface is also 

involved.   
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