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1. Introduction    

The acceptance of pervasive digital media has placed society in the Exabyte era (1015 Bytes). 
However the data centres and switching technologies at the heart of the Internet have led to 
an industry with CO2 emissions comparable to aviation (Congress 2007). Electronics now 
struggles with bandwidth and power. Electronic processor speeds had historically followed 
Gordon Moore's exponential law (Roadmap 2005), but have recently limited at a few 
thousand Megahertz. Chips now get too hot to operate efficiently at higher speed and thus 
performance gains are achieved by running increasing numbers of moderate speed circuits 
in parallel. A bottleneck is now emerging in the interconnection network. As interconnection 
is increasingly performed in the optical domain, it is increasingly attractive to introduce 
photonic switching technology. While there is still considerable debate with regard to the 
precise role for photonics (Huang et al., 2003; Grubb et al., 2006; Tucker, 2008; Miller 2010), 
new power-efficient, cost-effective and broadband approaches are actively pursued. 
Supercomputers and data centers already deploy photonics to simplify and manage 

interconnection and are set to benefit from progress in parallel optical interconnects 

(Adamiecki et al., 2005; Buckman et al., 2004; Lemoff et al., 2004; Patel et al., 2003; Lemoff et al., 

2005; Shares et al., 2006; Dangel et al., 2008). However, it is much more efficient to route the 

data over reconfigurable wiring, than to overprovision the optical wiring.  Wavelength 

domain routing has been seen by many as the means to add such reconfigurability. Fast 

tuneable lasers (Gripp et al., 2003) and tuneable wavelength converters (Nicholes et al., 2010) 

have made significant progress, although bandwidth and connectivity remain restrictive so 

far. All-optical techniques have been considered to make the required step-change in 

processing speeds. Nonlinearities accessible with high optical powers and high electrical 

currents in semiconductor optical amplifiers (SOAs) create mixing products which can copy 

broadband information photonically (Stubkjaer, 2000; Ellis et al., 1995; Spiekman et al., 2000). 

When used with a suitable filter, these effects can be exploited to create photonic switches and 

even logic. However, the required combination of high power lasers, high current SOAs and 

tight tolerance filters is a very difficult one to integrate and scale. Hybrid electronic and 

photonic switching approaches (Chiaroni et al., 2010) are increasingly studied to perform 

broadband signal processing functions in the simplist and most power-efficient manner while 

managing deep memory and high computation functions electronically. This can still reduce 

network delay and remove power-consuming optical-electronic-optical conversions (Masetti et 
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al., 2003; Chiaroni et al., 2004). The SOA gate has provided the underlying switch element for 

the many of these demonstrators, leading to a new class of bufferless photonic switch which 

assumes (Shacham et al., 2005; Lin et al., 2005; Glick et al., 2005) or implements (Hemenway et 

al., 2004) buffering at the edge of the photonic network. Such approaches become more 

acceptable in short-reach computer networking where each connection already offers 

considerable buffering (McAuley, 2003). Formidable challenges still remain in terms of 

bandwidth, cost, connectivity, and energy footprint, but photonic integration is now striving to 

deliver in many of these areas (Grubb et al, 2006; Maxwell, 2006; Nagarajan & Smit, 2007). 
This chapter addresses the engineering of SOA gates for high-connectivity integrated 
photonic switching circuits. Section 2 reviews the characteristics of the SOA gates 
themselves, considering signal integrity, bandwidth and energy efficiency. Section 3 gives a 
quantitative insight into the performance of SOA gates in meshed networks, addressing 
noise, distortion and crosstalk. Section 4 reviews the scalability of single stage integrated 
switches before considering recent progress in monolithic multi-stage interconnection 
networks in Section 5. Section 6 provides an outlook. 

2. SOA gates 

SOA gates exhibit a multi-Terahertz bandwidth which may be switched from a high-gain 
state to a high-loss state within a nanosecond using low-voltage electronics. The electronic 
structure is that of a diode, typically with a low sub-Volt turn on voltage and series 
resistance of a few Ohms. Photonic switching circuits using SOAs have therefore been 
relatively straight forward to implement in the laboratory. The required electrical power for 
the SOA gate is largely independent of the optical signal, thus breaking the link between 
rising energy consumption and rising line-rate which plagues electronics. SOA gates and the 
underlying III-V technologies also bring the ability to integrate broadband controllable gain 
elements with the broadest range of photonic components. A wide range of optical switch 
concepts based on SOAs have already been proposed to facilitate nanosecond timescale path 
reconfiguration (Renaud et al., 1996; Williams, 2007) performing favourably with the even 
broader range of high speed photonic techniques (Williams et al., 2005). Now we review the 
state of the art for the SOA gate technology itself, highlighting system level metrics in terms 
of signal integrity, bandwidth and power efficiency.   

2.1 Signal integrity 
The broadband optical signal into an amplifying SOA gate potentially accrues noise and 
distortion in amplitude and phase. Noise degrades signal integrity for very low optical 
input powers, while distortion can limit very high input power operation. The useful 
intermediate operating range, commonly described as the input power dynamic range 
(Wolfson, 1999), is therefore maximised through the reduction of the noise figure and 
increase in the distortion threshold. The signal degradation is generally characterised in 
terms of the additional signal power penalty required to maintain received signal integrity.  
Figure 1 quantifies power penalty degradation in terms of noise at low optical input powers 
and distortion at high optical input powers for the case of a two input two output 2x2 SOA 
switch fabric (Williams, 2006).    
Noise originates primarily from the amplified spontaneous emission inherent in the on-state 
SOA gate. The treatment for optical systems has been most comprehensively treated for 
fiber amplifier circuits (Desurvire, 1994). The interactions of signals, shot noise, amplified  
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Fig. 1. Simulated input power dynamic range for a 2x2 SOA switch fabric (Williams, 2006) 

spontaneous emission noise and the respective beat terms can require careful filtering and 
bandwidth management to ensure optimum performance. The alignment of optical signals 
with respect to the gain spectrum also impacts performance through the degree of 
population inversion. Noise may be managed through the minimisation of loss and the 
reduced requirement for high current amplifiers (Lord & Stallard, 1989). State of the art 
noise figures for fiber-coupled SOAs are of the order 6-8dB (Borghesani et al., 2003), 
depending on whether the structure is optimised for low-power input signals (pre-
amplifiers) or power booster amplifiers (post-amplifiers). These values are higher than for 
fiber amplifiers, due to the losses in fiber to chip coupling and imperfect population 
inversion. The design focus has therefore been on reducing losses (Morito et al., 2005). 
Distortion in the saturation regime results from the charge carrier depletion from the incoming 
data signal. When optical data signals are amplitude-modulated (on-off keyed), the signal can 
deplete charge carriers and therefore reduce gain on the timescale of the spontaneous lifetime. 
This leads to the time dependent patterning and therefore nonlinear distortions on the optical 
output signal waveform. This can be alleviated by changing the data format: Proposals range 
from wavelength keying (Ho et al., 1996; Kim & Chandrasekhar, 2000), wavelength domain 
power averaging (Mikkelsen et al., 2000; Shao et al., 1994), and wavelength coding (Roberts et 
al., 2005) for on-off keyed modulation.  Increasingly popular constant power envelope formats 
(Wei et al., 2004; Cho et al., 2004; Ciaramella et al., 2008, Winzer, 2009) are also more resilient. 
Distortion is less evident for very low data rates where bit periods exceed the nanosecond 
time-scale spontaneous lifetime, and also for very high data rates where the longest sequence 
of bits are shorter than the spontaneous lifetime. Indeed, the optical transfer function can be 
considered as a notch filter and this mode of operation has already been exploited for noise 
suppression (Sato & Toba, 2001).   
Pseudo random bit sequences are routinely used to assess data transmission. The longer 231 

patterns have been particularly important for point to point telecommunications links to 
stress-test all elements for the broadest bandwidth. The longest sequence of ones in a 231 
pattern remains at the same level for over 3ns for a 10Gbit/s sequence, and is thus sensitive 
to patterning (Burmeister & Bowers, 2006). However line rates of 100Gbit/s and above 
would lead to maximum length sequences shorter than the spontaneous lifetime. For higher 
line rates still, sophisticated optical multiplexing schemes are devised, and the concept of 
the pattern length becomes less meaningful: Wavelength multiplexing measurements 
commonly decorrelate replicas of the same signals (Lin et al., 2007), while optically 
multiplexed signals use calibrated interleavers available only for the shortest 27 pattern 
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sequences (Albores et al., 2009). Packet switched test-beds impose more fundamental 
constraints: a 231 sequence contains over two billion bits, far exceeding any likely data 
packet length. Codes for receiver power balancing and packet checking also limit the 
effective pattern lengths, and therefore shorter sequences are commonly used.  
Techniques to increase the distortion threshold are readily understood through a 
manipulation of the steady state charge carrier rate equation. Equation 1 approximates the 
rate of change of charge carriers (left) in terms of the injected current, stimulated 
amplification, and spontaneous emission (right). The steady state condition is defined when 
the derivative tends to zero (dN/dt → 0). 

 dN/dt = I/eV – Γdg/dn(N-N0)P – N/τs → 0 (1) 

The terms in Equation 1 correspond to the injected current I into active volume V. N represents 

the charge carrier density, Γ is the optical overlap integral describing the proportion of 
amplified light which overlaps with the active layer. dg/dn is the differential gain and N0 is the 

transparency carrier density. τs is the charge carrier lifetime. By defining a gain term G = dg/dn 
(N-N0) it is possible to substitute out the unknown carrier density variable N in Equation 1 and 
derive an expression for gain saturation by rearranging equation (1):   

 G ( 1 + Γτs dg/dn P) = g ( τsI/eV –  N0 ) (2) 

In the linear limit, the photon density P tends to zero, and the right hand side variables may 

be approximated by one linear gain term Glinear = g ( τsI/eV –  N0 ). A general expression for 
gain G may thus be defined in terms of a linear gain Glinear, photon density P and a photon 
density saturation term such that G = Glinear/(1+P/Psaturation). Saturation is now simply defined 

in terms of optical overlap integral Γ, carrier lifetime τs and differential gain dg/dn (Equation 
3) and it turns out that each of these parameters can be exploited to reduce distortion. 

 Psaturation = (Γτs dg/dn) -1 (3) 

The optical overlap integral is defined by the waveguide design which has been chosen to 
confine the carriers and the optical mode. While bulk active regions offer the highest 
confinement, quantum wells (in reducing numbers) allow for an increase in distortion 
threshold with output saturation powers of order +15dBm and higher being reported 
(Borghesani et al., 2003; Morito et al., 2003). Quantum dot epitaxies allow even further 
reductions in optical overlap for the highest reported saturation powers (Akiyama et al., 2005). 
Tapered waveguide techniques additionally offer improved optical power handling (Donnelly 
et al., 1996; Dorgeuille et al., 1996). Optimising optical overlap does however have implications 
for current consumption, electro-optic efficiency and signal extinction in the off-state. 
The carrier lifetime can be speeded up using an additional optical pump (Yoshino & Inoue, 
1996; Pleumeekers et al., 2002; Yu & Jeppesen, 2001; Dupertuis et al., 2000). A natural evolution 
of this, gain clamping (Tiemeijer & Groeneveld, 1995; Bachman et al., 1996; Soulage et al., 
1994), has also been extensively studied as a means to increase the distortion threshold. Here 
the amplification occurs within a lasing cavity and so an out-of-band oscillation defines the 
carrier density N at the threshold gain condition through fast stimulated emission. Gain 
clamping can increase the distortion threshold by several decibels (Wolfson, 1999; Williams et 
al., 2002) and can even be extended to allow variable gain (Davies et al., 2002).   
The differential gain term in equation 2 describes how the change in complex dielectric 
constant amplifies the optical signal. This parameter may be engineered through epitaxial 
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design. The associated differential refractive index modulation, commonly approximated by a 
line-width broadening coefficient, can also be exploited to suppress distortion. Fast chirped 
components may be precision filtered from slower chirped components in the output signal to 
enhance the effective bandwidth (Inoue, 1997; Manning et al., 2007). While the approach does 
remove energy from the optical signal, it also enables some of the most impressive line rates in 
all-optical switching (Liu et al., 2007). 

2.2 Bandwidth 
SOA gates may be characterised by a number of time-constants and bandwidths. The 
Gigahertz speed at which the circuit may be electronically reconfigured is determined 
primarily by the spontaneous recombination lifetime and any speed-up technique employed 
(section 2.1). While this time constant has an impact on the durations of packets and guard-
bands in a packet-type network, this does not directly impact the signalling speed, where 
the multi-Terahertz optical gain bandwidth of the SOA becomes important. These limits are 
now discussed in the context of state of the art.   

1ns

1547.5nm

1544.2nm

1544.2nm

1547.5nm

Gate array Cyclic router

a)

b)

c)

 

Fig. 2. Dynamic routing with nanosecond switching windows for a SOA cyclic router (Rohit 
et al., 2010):  
a) The microscope photograph for the SOA gate array and arrayed waveguide cyclic router 
b) The waveguide arrangement fot the single input, multiple output circuit 
c) Time traces showing the selecting and routing of wavelength channels  

The electronic switching time from high gain to high loss is limited primarily by the 
spontaneous recombination lifetime with reports routinely in the nanosecond range 
(Dorgeuille et al., 1998; Kikichi et al., 2003; Albores-Mejia et al., 2010; Rohit et al., 2010; 
Burmeister & Bowers, 2006), enabling comparable nanosecond duration dark guard bands 
between data packets. Figure 2 shows how such fast switching speeds can be exploited in 
the routing of data in a SOA-gated router. Schemes for label based routing have been 
reported using comparable approaches (Lee et al., 2005; Shacham et al., 2005). 
Real time current control has been considered as a means to ensure optimum operating 
characteristics of the individual SOA gates. Techniques range from the monitoring of the 
narrow-band tone (Ellis et al., 1988) and broad-band data (Wonfor et al., 2001) on the SOA 
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electrodes themselves through to customised monitor diodes (Tiemeijer et al., 1997) and 
integrated power monitoring (Newkirk et al., 1992; Lee et al., 2005). Hierarchical approaches 
have also been proposed to enable the management of photonic parameters independently 
of the digital switch state (White et al., 2007). The possibility to react to thermal transients 
within the circuit, and even enable self calibration is increasingly important as circuit 
complexity evolves. This abstraction of the physical layer becomes increasingly important as 
network level functions such as self-configuration are considered (Lin et al., 2005).  
Signalling line-rates of up to 40Gbit/s have been demonstrated using SOAs in a 
transmission environment (Brisson et al., 2002), and also for integrated switch elements 
(Burmeister & Bowers, 2006). To extend beyond 40Gb/s requires optical multiplexing. Here 
SOAs have been demonstrated for in-line amplification for multiwavelength transmission 
(Reid et al., 1998; Jennen et al., 1998; Sun et al., 1999). The early experiments operated the 
SOAs within the saturation regime, but later demonstrations in the linear regime with 
reduced crosstalk enable hundreds of Gbit/s WDM transmission (Spiekman et al., 2000). 
Optically transparent networking becomes feasible once the circuit elements become 
polarisation insensitive. Polarisation properties are engineered through the design of the 
waveguide dimensions and the radiative transitions in the active media. The latter are tailored 
using epitaxially defined strain. A broad range of reports have demonstrated polarisation 
independent operation for both bulk (Emery et al., 1997; Dreyer et al., 2002; Morito et al., 2000; 
Kakitsuka et al., 2000; Morito et al., 2003; Morito et al., 2005) and quantum wells SOAs 
(Godefroy et al., 1995; Kelly et al., 1997; Ougazzadeu, 1995; Tiemeijer et al., 1996).    

2.3 Energy 
The energy efficiency for an interconnection network is commonly quantified in terms of 
energy requirement per bit and includes the full end-to-end digital power usage. This concise 
metric allows for a cross-comparison with electronic switching fabrics, and assists with the 
road-mapping for CMOS technology. Figure 3 shows schematic arrangement for two example 
photonic interconnection networks with electronic and photonic switching. Photonic links 
remove transmission losses from the comparison, allowing a focus on the switch technologies 
themselves. At the time of writing, state of the art vertical cavity laser array transceivers with 
multimode fibers enabled energy efficiencies of a few picoJoules per bits, and distributed 
feedback lasers on silicon are being developed for reduced power consumption single mode 
fiber transceivers. Transceiver technologies dominate the interconnect power budget and a 
prime motivator for optical switch research has now become the replacement of large numbers 
of power consuming transceivers with a smaller, data agnostic switch circuit, to remove power 
draining OEO conversions and excess packaging.  
Photonic integration reduces optical losses by minimising the number of on-off-chip 
connections. This additionally improves noise performance and reduce operating gain for 
the SOA gates. This is important as it is the current used for amplification, non-radiative and 
spontaneous recombination which ultimately determines energy consumption. If the non-
radiative currents become too high, and Joule heating in the resistive p-layers of the SOA 
gates becomes significant, this can lead to a spiralling reduction in available gain, and the 
need for significant heat extraction. Spot-size conversion (Morito et al., 2003) is increasingly 
implemented to remove the losses between the SOA chip and the off-chip network elements, 
such as the fiber patch-cords. 
Cooler-free operation is now mandatory for data communications transceivers, but remains 
unthinkable in many high performance telecommunications links. Integrated circuits  
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Fig. 3. Schematic diagrams highlighting the motivation for hybrid photonic switch matrices 
with electronic switch (left) and photonic switch (right) 

exploiting semiconductor optical amplifiers are however well suited to uncooled operation 
due to the broad spectral bandwidth. Initial reports have been promising. Uncooled 
operation for a quantum dot SOA has been demonstrated for a wide temperature range up 
to 70 °C (Aw et al., 2008), providing 19dB of optical gain at high temperatures with 
negligible 0.1dB system penalty at 10Gb/s. Aluminium containing quaternaries, used for the 
highest performance uncooled 10Gb/s data communications lasers, have also been used for 
SOAs. These epitaxial designs allow for enhanced electronic confinement and therefore 
excellent electronic injection efficiency at high temperature. SOAs have also been operated 
at 45°C such that the packaged SOA module may operate with sub-Watt operating power 
over the temperature range 0-75°C (Tanaka et al., 2010).   

3. Networks 

High-connectivity, multi-port electronic switches exploit multi-stage interconnection 
networks (Dally & Townes, 2004; Kabacinski, 2005) and photonic networks are also set to 
benefit from such approaches.  Figure 4 shows an example of a switch network proposed to 
allow the scaling of a SOA broadcast select architecture with four outputs per stage using 
the hybrid Clos/broadcast-and-select architecture (White et al., 2009).  
 

 

Fig. 4. An example multi-stage switch architecture showing parallel scaling and serial 
interconnection of SOA gates 
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A 4x4 broadcast and select switch using SOA gates is placed within each of the twelve 
switch cells. These are interconnected to each other in three stages to create the larger 16x16 
network. Both serial and parallel interconnection of SOA gates is required for the multistage 
interconnection networks.  The interactions between SOA elements in such an architecture is 
now considered, firstly in terms of signal evolution through the cascaded network, and 
secondly in terms of crosstalk from incompletely extinguished signals from interferer paths. 

3.1 Cascaded networks 
The concatenation of multiple SOAs in amplified transmission and switching networks can 
lead to aggregated noise and distortion. The build-up of noise between stages can be 
minimised through reduction in gain and loss (Lord & Stallard, 1989). Reflections at the 
inputs and outputs of the SOA gates were particularly problematic in the early literature 
(Mukai et al., 1982; Grosskopf et al., 1988; Lord & Stallard, 1989), but can now be minimised 
through integration (Barbarin et al., 2005) and facet treatments (Buus et al., 1991). The 
residual distortion of signals (Section 2.1) can additionally build up with increasing 
numbers of SOA gates, leading to a reduction in the input power dynamic range, and 
ultimately the power penalty itself.  
The largest cascaded networks of SOAs have been studied using recirculating loops, where 
a signal is switched into and out of a loop with an amplifier and a loss element. The signal 
circulates for predetermined numbers of iterations – often this is varied as part of the study 
– and is then assessed for signal degradation. Up to forty cascades have been feasible while 
maintaining an eye pattern opening – good discrimination between logical levels – for 
10Gb/s data sequences (Onishchukov et al., 1998). Studies have also considered 
transmission over individual fiber spools and field installed fiber spans. Figure 5 
summarises many of the leading reports into signal degradation with increasing number of 
SOAs. Data points are included for a pioneering research teams including those at Philips 
(Kuindersma et al., 1996; Smets et al., 1997; Jennen et al., 1998) and Bell Labs (Olsson, 1989; 
Ryu et al., 1989). The evidence suggests that power penalty can be modest for reasonably 
low levels of cascaded amplifiers, with a steady degradation in penalty as cascade numbers 
approach ten or more SOAs even when circuits are operated with high levels of gain. It is  
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Fig. 5. Power penalty in transmission experiments for cascaded semiconductor optical 
amplifiers    

www.intechopen.com



Photonic Integrated Semiconductor Optical Amplifier Switch Circuits   

 

213 

worth noting that much of this data predates the innovative low distortion amplifier designs 
developed over the last decade.  Operating parameters can nonetheless become increasingly 
stringent with important implications for control systems (Section 2.2). 

3.2 Crosstalk 
The aggregation of stray signals from disparate locations in a switch network leads to 
crosstalk. Contributions may be separated into coherent leakage, incoherent leakage, and 
cross gain modulation within co-propagating wavelength multiplexes. 
Coherent crosstalk was identified as a particularly troublesome source of signal degradation 

for large-mesh, optically-transparent, telecommunications networks. Channels 

unintentionally combined with either remnants of themselves or other identical 

wavelengths lead to interferometric beating (Legg et al., 1994). Coherent crosstalk with long 

timescale fluctuations compromises threshold setting in receivers.  The resulting beat noise 

incurs large power penalties and bit error floors (Gillner et al., 1999). If the path length 

differences are minimised to less than one bit period and the wavelengths are stable, as 

might be anticipated in a monolithic multistage network, phase difference becomes 

invariant and less problematic (Dods et al., 1997). Coherent crosstalk can incur an overhead 

of order 10dB on the crosstalk requirement (Goldstein et al., 1994; Goldstein & Eskildsen, 

1995; Eskildsen & Hansen, 1997) and this has led some to suggest a –40dB extinction ratio 

requirement for telecommunication networks using an optical switch technology (Larsen 

and Gustavsson, 1997).  Figure 6 summarises representative quantifying the role of crosstalk 

on signal degradation. Coherent crosstalk is identified with open symbols, while the closed 

symbols represent incoherent crosstalk measurements and calculations. The calculations 

performed by Buckman are also included for the cases of Gaussian and numerically 

determined distributions for incoherent crosstalk characteristics. It is evident from figure 6 

that the level of crosstalk which may be accomodated is significantly higher for incoherent 

forms of crosstalk (Goldstein et al., 1994; Buckman et al., 1997; Yang & Yao, 1996; Jeong & 

Goodman, 1996; Albores-Mejia et al., 2009). 
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Fig. 6. Crosstalk incurred penalty in SOA networks  
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Switch extinction ratio is related to crosstalk at the circuit level.  A worst case approximation 
for crosstalk build up in a given path is simply the sum of signal leakage contributions in 
each switch in the path (Saxtoft & Chidgey, 1993). Cumulated crosstalk ratio may be 
described as the product of the number of stages between an input and output Nstages, the 
number of interferer inputs at each stage with radix Nradix, and the extinction ratio of the 
switch element Xextinction: 

 ΣXcrosstalk =  Nstages . (Nradix – 1) . Xextinction (4) 

While the approach can be a useful guide for low channel counts, this can lead to 
overestimated power penalty at high channel counts (Buckman et al., 1997) due to statistical 
averaging (see for example Section 2.1). Nonetheless extinction ratios achieved for SOA 
gates are commonly reported in the 40dB range (Larsen & Gustavsson, 1997; Varazza et al., 
2004, Tanaka et al., 2009; Albores-Mejia et al., 2010; Stabile et al., 2010).  
Inter-wavelength crosstalk has been studied across architectures. Many early switch 
architectures assumed one wavelength per switch element in multiwavelength fabrics, and 
this called for a multi-domain description of spatially- and spectrally-originating crosstalk 
(Gillner et al., 1999; Zhou et al., 1994; Zhou et al., 1996). Recent requirements for massive 
data capacities have led recent work to focus on multi-wavelength routing where inter-
wavelength crosstalk can occur through cross gain modulation (Oberg & Olsson, 1988; 
Inoue, 1989; Summerfield & Tucker, 1999).  

4. Multi-port switches 

Creating multi-port switches from SOA gates requires additional interconnecting passive 
circuit elements. As the techniques and technologies for creating integrated power splitters, 
low-loss wiring, low-radius bends, corner mirrors and waveguide crossings have evolved, 
the levels of integration have allowed connectivity to increase from two to four and eight 
output ports. 

4.1 Two port switch elements 
The broadest range of switching and routing concepts have been demonstrated for the 

simplest two input two output multiport switches. The SOA gate based switches can be 

classified as interoferometric or as broadcast and select. The former should allow near 

complete coupling of optical power into the desired path, enabling the removal of 

unnecessary and undesirable energy loss. The latter allows a broader range of network 

functionality, including broadcast and multicast. 

Interferometric schemes include the exploitation and frustration of multimode interference 

in matrices of concatenated 1x2 MMI switches (Fish et al., 1998), vertical directional couplers 

(Varazza et al., 2004) and gated arrayed waveguide grating based switches (Soganci et al., 

2010). The first two approaches lend themselves well to cross-grid architectures and have 

been demonstrated at 4x4 connectivity. The incorporation of SOA gates with an 

interferometer also offers enhanced extinction ratio. The switched arrayed waveguide 

grating approach is also scalable, although only as a 1xN architecture. 

Broadcast and select architectures have been more widely studied as they are intrinsically 
suited to conventional laser based processing methods and epitaxies. The SOA gates are able 
to overcome losses associated with the splitter network, allowing zero fiber-to-fiber 
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insertion loss at modest currents. Selective area epitaxy has allowed the separate 
optimisation of active and passive circuit components required for insertion-loss-free 
operation (Sasaki et al., 1998; Hamamoto & Komatsu, 1995). The splitting and combining 
functions have been implemented using Y-couplers (e.g. Lindgren et al., 1990), multimode 
interference couplers (e.g. Albores-Mejia et al., 2009) or arrangements of total internal 
reflecting mirrors (e.g. Himeno et al., 1988; Gini et al., 1992; Burton et al., 1993; Sherlock et 
al., 1994; Williams et al., 2005). Chip footprints of below 1mm2 have been acheived in this 
manner.  Figure 7 shows the example of the mirrors created in an all active switch design 
interconnecting eight SOA gates in a cross-grid array. The input and output guides include a 
linearly tapered mode expander, which terminates at one of four splitters. The splitters 
comprised 45º totally internal reflecting mirror which partially intersect the guided mode.  
Part of the light is routed into the perpendicular guide and the remaining part is routed to 
the through path.  
 

200µm 2µm

 

Fig. 7. Two port integrated switch circuit (left) within a footprint of under 1mm2 using 
(right) ultracompact total internal reflecting mirrors (Williams at al., 2005)  

Microbends offer a route to even further size reductions, while addressing a tolerance to 
fabrication variability (Stabile & Williams, 2010).  Whispering gallery mode operation is 
predicted to give order of magnitude relaxation in required tolerances with respect to single 
mode microbends. Polarization conversion can also be maintained below 1% with 
appropriately designed structures. 
 

 

Fig. 8. Schematic diagram for a fabrication tolerant whispering gallery mode bend for high 
density switch circuits (Stabile & Williams, 2010)  
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Quantum dot epitaxies have also been considered to exploit anticipated advantages for 
broadband amplification, low distortion and low noise (Akiyama et al., 2005). The first 
monolithic 2x2 switch demonstration has been performed for the 1300nm spectral window 
(Liu et al., 2007) showing negligible power penalty of <0.1dB for 10Gb/s data routing. The 
first demonstrations in the 1550nm window followed, showing excellent power penalties of 
order 0.2dB for 10Gbit/s data routing (Albores-Mejia et al., 2009). Multiple monolithically 
integrated 2x2 circuits have also been demonstrated with 0.4-0.6dB penalty showing only a 
weak signal degradation as quantum dot circuit elements are incorporated in larger switch 
fabrics (Albores-Mejia et al., 2008). 

4.2 Four port switch elements 
Single stage four port switches have been implemented for a number of broadcast and select 

configurations (Gustavsson et al., 1992; Bachmann et al., 1996; Larsen & Gustavsson, 1997; 

van Berlo et al., 1995; Sasaki et al., 1998). Electrode counts of between sixteen and twenty-

four result, depending on whether additional on-chip amplification is required to overcome 

circuit losses. This can add considerable complexity to circuit layout and is a potential limit 

to single stage scaling. The first transmission experiments were reported for 50 km distances 

at 2.488 Gbit/s, with less than 1 dB power penalty (Gustavsson et al., 1992) with an input 

power dynamic range of over 10dB. Wavelength division multiplexed transmission was also 

demonstrated with four 622 Mb/s wavelength channels spaced equally from 1548-1560nm 

(Almstrom et al., 1996).  Field trials at 2.5 Gbit/s were performed with three switch circuits 

in a 160 km fiber-optic link.  The majority of studies have been restricted to modest data 

capacities between one input port and one output port (Gustavsson et al., 1992; Gustavsson 

et al., 1993; Djordjevic et al., 2004). 

Multi-port dynamic routing has recently been demonstrated for a 4x4 switch using a round-

robin scheduler and nanosecond-speed control electronics (Stabile et al., 2010). Figure 8 

shows the monolithic photonic circuit on the left, and the output signals on the right. The 

SOA gates are sequentially biased to enable the routing of the inputs to the outputs. The 

right hand figures show the time traces recorded for each of the outputs, showing data 

packets from each available input.  Rotating priority (round-robin) path arbitration allows 

the simplest control algorithm with only one input clock signal, abstracting the photonic 

complexity from the logic control plane.  

 

   

Fig. 8. Four port integrated switch circuit within 4mm2 showing dynamic multi-path routing 
(Stabile et al., 2010)  

Multi-path routing has also been assessed for wavelength multiplexed inputs to three ports 
in a discretely populated switching fabric. Field programmable gate arrays enabled the 
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synchronisation of switching and diagnostics. A power penalty in the range of 0.3–0.6 dB 
was observed due to multi-path crosstalk and a further power penalty in the range of 0.4–1.2 
dB was incurred through dynamic routing (Lin et al., 2007).   
Connection scaling studies have allowed insight into the available power margins for SOA 
switch fabrics operating at high line wavelength division multiplexed line-rates. The 
potential for single-stage 8×8 switches at a data capacity of 10×10 Gbit/s is predicted with a 
1.6dB power margin, identifying a potential route to Tbit/s switch performance in a single-
stage low-complexity switch fabric (Lin et al., 2006).  

4.3 Eight port switch elements 
Scaling to even higher levels of connectivity have been constrained by existing waveguide 
crossing and waveguide bend techniques, and this is most clearly evidenced by the dearth 
of single stage 8x8 switches. Researchers realising high connectivity single stage switches 
have therefore focussed efforts on 1x8 monolithic connectivity. 
Array integration has been explored as the first step towards large scale monolithic 

integration (Dorgeuille et al., 1998; Suzuki et al., 2001; Sahri et al., 2001; Kikuchi et al., 2003; 

Tanaka et al., 2010). The packaged array of 32 gain clamped SOA gates (Sahri et al., 2001) 

has enabled the most extensive system level assessments in telecommunications test-beds 

(Dittmann et al., 2003). Implementation of arrays of eight gates have also led to the early 

demonstrations of 8×8 optical switching matrices based on SOA gate arrays with 1.28Tbit/s 

(8×16×10Gb/s) aggregate throughput (Dorgeuille et al., 2000). These approaches rely on 

fiber splitter networks.  

Quantum dot all-active epitaxial designs (Wang et al., 2009) have been implemented using 

multi-electrode amplifiers to create the separate SOA gates. The input channel is split to the 

eight output gates by means of three stages of on-chip 1x2 MMI couplers. The use of low 

splitting ratios is expected to allow more reproducible optical output power balancing. The 

excellent measured power penalties allow the cascading of two stages which should enable 

1x64 functionality.   

Active-passive regrown wafers (Tanaka et al., 2009) have also been used to create compact 

monolithic 1x8 switches. The thin tensile-strained MQW active layers used for the SOA 

gates allow for an optimisation of output saturation power, noise, and polarization 

insensitivity. A compact circuit footprint is facilitated by using a high density chip to fiber 

coupling and through the use of a field flattened splitter to create a uniform split ratio 1x8 in 

a highly compact 250 µm structure. This approach exhibits an on-state gain of 14.3 dB which 

is largely wavelength and temperature insensitive.  A path to path gain deviation of order 

3.0 dB is also achieved. Extinction ratios of order –70dB were reported with an extensive 

input power dynamic range of 20.5 dB for 10-Gbit/s signals. The high levels of gain 

overcome the additional off-chip splitter losses which are incurred when combining eight 

such circuits to construct an 8x8 switching fabric (Kinoshita, 2009).   

5. Multi-stage interconnection networks 

A broad range of multi-stage networks have been studied for photonic networks (Beneš, 
1962; Wu & Feng, 1980; Spanke & Beneš, 1987; Hluchyj & Karol, 1991;  Shacham & Bergman, 
2007). The constraints imposed in SOA gate based networks lead to a preference for smaller 
numbers of stages (Williams et al., 2008; White et al., 2009). Simulations are presented to 
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provide insight into the scalability of multi-stage photonic networks. Then examples of 
multistage networks are given for 2x2 and 4x4 building blocks, highlighting the state of the 
art for connectivity, the numbers of integrated stages and line-rate. 
Numerical simulations for the physical layer have been performed using travelling wave 
amplifier modelling which inherently accounts for noise and distortion and allows for 
wavelength multiplexed system simulation (Williams et al., 2008). Connectivity limits for 
Tbit/s photonic switch fabrics are studied by scaling the number of splitters in a three stage 
switch fabric: An intermediate loss between each SOA gate accounts for the radix of the 
switch element. A 3.5dB loss describes each 1x2 splitter or coupler element in the circuit. 
Figure 9 summarises the dimensioning simulations by presenting input power dynamic 
range as a function of the number of splitters per stage. Power penalty contours are given 
for 1dB and 2dB power penalties to show tolerated inter-stage losses and therefore 
connectivity.  
 

 

Fig. 9. Simulated power penalty in increasing connectivity SOA gate switching networks 

Optical data rate at 10λx10Gbit/s using on-off keyed data format (Williams et al., 2008)  

Input power dynamic range for 10λx10Gb/s wavelength multiplexed data is seen to reduce 
both with the number of switch stages and the optical loss between each switch stage. The 
dynamic range specified for a 1dB power penalty over three stages is observed to exceed 
10dB for the four splitter architectures, which is equivalent to a three stage 16×16 switch. For 
the case of six splitters, a 5dB dynamic range for 2dB power penalty is indicative of viable 
performance for a 64×64 interconnect based on 8×8 switch stages. Large test-beds exploiting 
multiple stages of discrete SOA gates have supported these findings. Wavelength 
multiplexed routing in a 12×12 switch exploiting three stages of concatenated 1×2 SOA-
switches enables Terabit class interconnection (Liboiron-Ladouceur et al., 2006). Two stages 
of SOA gates are implemented in a 64×64 wavelength routed architecture proposed for 
supercomputers (Luijten & Grzybowski, 2009).  
Connectivity for integrated photonic circuits has recently been increased to record levels 
through the use of the Clos-Broadcast/Select architecture highlighted in Figure 4. Three 
stages of four 4x4 switch building blocks were integrated within the same circuit (Wang et 
al., 2009) to demonstrate the first 16×16 port count optical switches using an all-active 
AlGaInAs quantum well epitaxy. Paths in the circuit have enabled 10Gbit/s routing with 
2dB circuit gain and a power penalty of 2.5dB. The electrical power consumption of the all-
active chip is estimated to be 12W for a fully operational circuit, which corresponds to a 
modest power density of 0.3W/mm2. The power consumption could be approximately 
halved by replacing the current active shuffle networks with their passive equivalents.  
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Capacity has also recently been increased to record 320Gb/s line-rates per path for a multi-
stage photonic interconnection network (Albores-Mejia et al., 2010). This represents both the 
leading edge in the number of monolithically integrated switching stages and the highest 
reported line rates through a switching fabric. Bit error rate studies show only modest levels 
of signal degradation. The circuit is presented in Figure 10. The N-stage planar architecture 
includes up to four serially interconnected crossbar switch elements in one path, and is 
representative of a broader class of 2x2 based multistage interconnection networks. The step 
change in line rate is believed to be attributable to the use of the active-passive epitaxial 
regrowth, which allows the separate optimisation of gates and routing circuits. 
 

      Time [ps] 
0                                     20 

 

Fig. 10. Photograph of a four port multistage interconnection network, and right, the eye 
diagrams after four stages of integrated crossbars for 320Gb/s (Albores-Mejia et al., 2010) 

6. Conclusion 

Integrated photonics is poised to become a key technology where the highest signalling 
speeds are required. The numbers of integrated optoelectronic components which can be 
integrated on a chip can rise significantly, and with this, the sophistication of circuit 
functions can be expected to grow. The critical parameters required for high capacity, high 
connectivity switching circuits have now been demonstrated, and the challenge is to devise 
architectures that are able to simultaneously match performance with energy efficiency and 
integration.  A symbiotic relationship between massive bandwidth photonic circuits and 
intelligent electronic control circuits could well evolve to create a generation of ultrahigh 
speed signal processors.  
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