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1. Introduction     

In this study, we investigate the possibility of capturing an inoperative spacecraft using an 
orbital servicing vehicle or a space robot in future space infrastructure. These missions 
involve problems related to the tracking control of a target spacecraft; therefore, a control 
system design that takes into account the interference with the nonlinear motion of the 
spacecraft is required because the equations of motion of such a spacecraft are nonlinear 
system in which the six-degree-of-freedom (six-dof) translational motion and the rotational 
motion are coupled. 
They have been many studies on the six-dof tracking control problem related to spacecrafts 
(Ahmed et al., 1998; Terui, 1998; Dalsmo & Egeland, 1999; Bošković et al., 2004; Ikeda et al., 
2008; Seo & Akella, 2008). The control methods proposed by these researches are state 
feedback control methods and involve measurements of the linear and angular velocities of 
the spacecraft. It is necessary to develop an output feedback control method, which does not 
require velocity measurements in cases where a velocity sensor cannot be mounted on the 
spacecraft because of the limitations on the cost and weight of the spacecraft, or as a backup 
controller to ensure spacecraft stability when the velocity sensor breaks down. 
For the output feedback tracking control problem, a control method that eliminate the 
velocity measurement via the filtering of the position and attitude information (Costic et al., 
2000; Costic et al., 2001; Pan et al., 2004) or the estimation of the velocity by the observer 
(McDuffie & Shtessel, 1997; Seo & Akella, 2007) has previously been proposed.  However, 
these methods cannot be used for tracking a spacecraft with an arbitrary trajectory since the 
attitude controller has a singular point at which the control input diverges; another instance 
where the method cannot be used is when the initial state of the control system is restricted.   
In this paper, we propose a new passivity-based control method that involves the use of 
output feedback for solving the tracking control problem. Although the proposed method 
has a filter as well as (Costic et al., 2000), (Costic et al., 2001), and (Pan et al., 2004), and is 
implemented by using the conventional methods, it can track a spacecraft with an arbitrary 
trajectory because the controller does not have a singular point. Thus, the proposed method 
has characteristics that are better than those of conventional methods. 
This paper is organized as follows: Section 2 describes the tracking control problem and the 
derivation of the relative equation of motion; the equation is then used for transforming the 
tracking control problem to a regulation problem. In section 3, we construct the dynamic 
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output feedback controller that is based on passivity. Concretely speaking, the relative 
equation of motion is transformed into a passive system by a coordinate and feedback 
transformation, and a controller based on the passive system is designed. In addition, the 
controller obtained can be considered to be an observer. In section 4, we provide the 
guidelines for obtaining the controller parameters and show that the controller can be made 
to be similar to a proportional-derivative (PD) controller by appropriately setting the 
parameters. The effectiveness of the control methods is verified by performing numerical 
simulations in section 5. Finally, the conclusion is given in section 6. 

2. Relative equation of motion of spacecraft 

In this paper, we consider the tracking control problem in which the chaser spacecraft tracks 
to the target spacecraft that has a broken down actuator and moves in space freely. The 
definition of the coordinate systems and the position vectors are shown in Fig. 1. { }i , { }c , 
and { }t  represent the inertial, chaser, and target frame, respectively. Here, the position of 
the chaser conforms to a constant vector 3

tp R∈  fixed at { }t . In addition, the attitude of the 
chaser and target represent the quaternion (Hughes, 1986).  
 

 

Fig. 1. Definition of the coordinate system and the position vector. 

The equation of motion of the target and the chaser can be described as follows (Terui, 1998): 
Target: 

 ,t t t tr v rω ×= −$  (1) 

 31
( ) , 1,

2

t t
t t t t tT

t

I
q E q q

ε η ω ωε
×⎡ ⎤+= = =⎢ ⎥−⎢ ⎥⎣ ⎦

$  (2) 

 ,t t t t tm v m vω ×= −$  (3) 

 .t t t t tJ Jω ω ω×= −$  (4) 

Chaser: 
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,c c c cr v rω ×= −$ (5) 

31
( ) , 1,

2

c c
c c c c cT

c

I
q E q q

ε η ω ωε
×⎡ ⎤+= = =⎢ ⎥−⎢ ⎥⎣ ⎦

$ (6) 

,c c c c c cm v m v fω ×= − +$ (7)

,c c c c c c c cJ J fω ω ω τ ρ× ×= − + +$ (8)

where 3 ( , )ir R i t c∈ =  is the position from the origin of the inertial frame { }i  to the center of 

mass of each frame, 3
iv R∈  is the linear velocity of the body-fixed frame with respect to { }i , 

3
i Rω ∈  is the angular velocity of the body-fixed frame with respect to { }i , 

3TT
i i iq Sε η⎡ ⎤= ∈⎣ ⎦  is the quaternion, 3

cf R∈  is the control force, 3
c Rτ ∈  is the control 

torque, im R∈  is the mass, 3 3
iJ R ×∈  is the inertia matrix, 3

c Rρ ∈  is the vector of the point 

of application of control force, nI  is an n n×  identity matrix, and a×  is the skew symmetric 

matrix, 

 
3 2

3 1

2 1

0

0

0

a a

a a a

a a

×
−⎡ ⎤⎢ ⎥= −⎢ ⎥⎢ ⎥−⎣ ⎦

 (9) 

which is induced from vector [ ]1 2 3
T

a a a a= . In addition, 3S  is the hypersphere of 

dimension three and is defined as follows: 

{ }3 4| 1 ( , ).i iS q R q i t c= ∈ = =  

Our tracking control problem is to find a controller such that 

, , , ,c tp c t c t c tp c tr r v vε ε η η ω ω= = = = =  

when t →∞ . The position and the velocity of the tip of vector tp  fixed at { }t  are given by 

 , .tp t t tp t t tr r p v v pω ×= + = +  (10) 

To this end, an error system in { }c  is described as follows: Let the direction cosine matrix 
from { }t  to { }c  be 

 ( )2
3 2 2T T

e e e e e e eC Iη ε ε ε ε η ε ×= − + −  (11) 

using the quaternion of relative attitude 
TT

e e eq ε η⎡ ⎤= ⎣ ⎦ , where eε  and eη  are defined as 

 , .T
e t c c t c t e c t c tε η ε η ε ε ε η η η ε ε×= − + = +  (12) 
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The relative position, linear velocity, and angular velocity are given in the same { }c  frame 

as 

 , , .e c tp e c tp e c tr r Cr v v Cv Cω ω ω= − = − = −  (13) 

From (12) and (13), using the identity eC Cω ×= −$ , we obtain the relative equations of motion 

as 

( ) ,e e e t er v C rω ω ×= − +$ (14)

1
( ) , 1,

2

e e e
e e e e eT

e

I
q E q q

ε η ω ωε
×⎡ ⎤+= = =⎢ ⎥−⎢ ⎥⎣ ⎦

$ (15)

( ) ( ) ,c e c e t e tp t tp cm v m C v Cv C Cv fω ω ω× ×⎡ ⎤= − + + + +⎢ ⎥⎣ ⎦$ $ (16) 

( ) ( ) ( ) .c e e t c e t c t e t c c cJ C J C J C C fω ω ω ω ω ω ω ω τ ρ× × ×= − + + − − + +$ $ (17)

After the transform, the tracking control problem is reduced to a regulation problem to 
design a controller such that  

0, 0, 0, 0e e e er vε ω= = = =  

when t →∞  according to (14)-(17).  

Hereafter, in order to simplify the derivation of the controller, the control force and torque 
are as follows: 

 ˆ ˆ, .c c c c c cf f fτ τ ρ ×= = +  (18) 

The controller is derived using (18) in the sequel. Since the inverse transform from ˆ
cf , ĉτ  to 

cf , cτ  obviously exists, cf , cτ can be uniquely determined after ˆ
cf , ĉτ  is derived. 

Remark 1: eη  at 0eε =  exists as 1eη ±  because of the constraint of the quaternion 1eq = . In 
this paper, eη , which should be asymptotically stabilized, is set to 1eη = . 

3. Dynamic output feedback control 

3.1 Passivation of relative equation of motion 

Since the relative equation of motion (14)-(17) is a complicated nonlinear time-varying 

system, it is difficult to design a controller based on (14)-(17). Therefore, in order to facilitate 

a controller, the relative equation of motion (14)-(17) is transformed into a passive system by 

a coordinate and feedback transformation, and a controller design based on the passive 

system is designed. Further, in this paper, we consider the output feedback control problem 

- the linear velocity cv  and the angular velocity cω  of the chaser, in other words, the relative 

linear velocity ev  and the angular velocity eω , cannot be measured. We suppose that the 

states tr , tq , tv , tω  of the target can be measured in some way, for example, the target 
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motion estimation method using image information (Lichter & Dubowsky, 2004; Tanaka et 

al., 2007). 
Let us consider the following coordinate and feedback transformation. 

( ) ,e e t ev v C rω ×= − (19)

ˆ ˆ, ,c c c r c c qf f m δ τ τ δ= + = + (20) 

where cf , 3
c Rτ ∈ are the new control inputs, and 

( ) ( ) ( ) ( ) ,r t e t t e tp t tpC r C C r Cv C Cvδ ω ω ω ω× × × ×= + + +$ $  

( ) ( ) .q t c t c tC J C J Cδ ω ω ω×= + $  

From (19) and (20), the relative equation of motion (14)-(17) is transformed into the 
following system: 

,e e e er v rω ×= −$ (21)

( ) ,e e eq E q ω=$ (22)

( )2 ,c e c e t e cm v m C v fω ω ×= − + +$ (23)

( ) ,c e e c e t e cJ J C Hω ω ω ω ω τ×= − + − +$ (24)

where ( ) ( )t c c tH C J J Cω ω× ×= +  and H  is a skew-symmetric matrix. If we can find a 

controller such that 

0, 0, 0, 0e e e er vε ω= = = =  

when t →∞  according to (21)-(24), then the tracking control is achieved since 0ev =  implies 

0ev =  from (19). Therefore, the tracking control problem is reduced to a regulation problem 

of ( ), , ,e e e er vε ω . 

At the end of this subsection, it is shown that the system (21)-(24) is passive. Let us consider 
the following storage function: 

 
1 1

.
2 2

T T
c e e e c eE m v v Jω ω= +  (25) 

 

By using the skew symmetric matrix properties 0Ta b a× = , 0Ta a× = , 3,a b R∀ ∈ , we can 

express the time derivative of (25) along with the trajectories as 
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( ) ( )2

, , .

T T
e c e t e c e e c e t e c

T T
e c e c

TT T T T T
e e c c

E v m C v f J C H

v f

y u y v u f

ω ω ω ω ω ω ω τ
ω τ

ω τ

× ×⎡ ⎤ ⎡ ⎤= − + + + − + − +⎢ ⎥ ⎣ ⎦⎣ ⎦
= +

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

$

 (26) 

Therefore, the system (21)-(24) is passive with respect to input u and output y . 

Remark 2: In feedback transformation (20), although the acceleration tpv$ and tω$ are needed, 

this information can be calculated algebraically from (3), (4), and (10) if tv and tω can be 

measured. In addition, we suppose that the inertia matrix tJ is kwon hereafter. 

3.2 Controller design 

In this subsection, the dynamic output feedback controller that asymptotically stabilizes the 
relative position and attitude is designed on the basis of the passivity of the system (21)-(24). 
With respect to the target states, the following assumption is made. 

Assumption 1: The target states tr , tq , tv , tω , tv$ , and tω  are uniformly continuous and 

bounded. 
Then, the following theorem can be obtained. 
Theorem 1: Consider the following dynamic output controller 

 
( )

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1

1 1 1

3 3
1 1 1 1

,

, , , 3,

e

e

c p e

n n n n

z A z B r

y C z C A z B r

f k r k y

A R B R C R n× × ×

⎧ = +⎪⎪ = = +⎨⎪ = − −⎪⎩
∈ ∈ ∈ ≥

$
$

 (27) 

 

( )
( ) ( )

( ) ( ) ( ) ( )
2 2 2 2

2 2 2 2

2 2 2 2 2 2 2

1 1 2 2

2 3 3 3

4 4
2 2 2 2

,

1 , ,

, , , 4,

e

e

T
c e e e e

T
e e p p e e e e

n n n n

z A z B q

y C z C A z B q

K q k r y k E q y

K q T q K k I T q I

A R B R C R n

τ ε
η η ε

×
×

× × ×

⎧ = +⎪⎪ = = +⎨⎪ = − + −⎪⎩
= − − = +

∈ ∈ ∈ ≥

$
$

 (28) 

where  1pk , 3pk , 1k , 2 0k >  are scalar feedback gains; 2 2 0T
p pK K= > , 3 3

2pK R ×∈  is the 

matrix feedback gain; iA , iB , and iC  are design parameters ( iA  is stable, and iB  is a full 

column rank matrix). Furthermore, iA , iB , and iC must be designed such that there exists a 

matrix 0T
i iP P= >  that satisfies the following matrix algebraic equations (a strictly positive 

real condition): 

 ,T T
i i i i i i i iA P P A Q PB C+ = − =  (29) 

for an arbitrary matrix 0T
i iQ Q= > . Then, the state variable of the closed-loop system of 

(21)-(24) with (27) and (28) becomes 
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( ) ( )

[ ]
1 2 2

1
2 2 2

, , , , , , 0, 0, 1, 0, 0, 0,

, 0 0 0 1

e e e e e

T
e e

r v z z z

z A B q q

ε η ω ∗
∗ − ∗ ∗

→
= − =  (30) 

 

when t →∞  for an arbitrary initial state. 

Proof: Consider the following candidate of a Lyapunov function:  

 

( ) ( ) ( ) ( )
( ) ( )

21 1
2 3 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2

1 2

1
2 2

,
2

.

Tp T T
e e e p e p e e e

T
e e

T T T T T T
e e e e e

k k
V x E r r K k A z B r P A z B r

k
A z B q P A z B r

x r v z z

ε ε η

ε η ω

= + + + − + + +
+ + +

⎡ ⎤= ⎣ ⎦
 (31) 

 

In (31), V equals to zero only when x  is (30), 0V > with the exception of (30). By using the 

skew symmetric matrix properties 0Ta b a× = , 0Ta a× = , ( )Ta a× ×= − , 3,a b R∀ ∈  and (29), we 

can express the time derivative of (31) along with the trajectories as 

( ) ( ) ( )
( ) ( ) ( )

2

1 2 3
1

1 1 1 1 2 2 2 2

2

1 1 1 1 1 1 2 2 2
1

2

1

1
2

2

2

TT T T T T T Ti
e c e c p e e e e p e p e e e i i i i i i

i

T T T T
e e

TT T Ti
i i i e c p e e c e e e e

i

Ti
i i

i

k
V v f k v r T q K k z A P P A z

k r B P z k q B P z

k
z Q z v f k r C z K q k r C z k E q C z

k
z Q

ω τ ω ε η ω ε

ω τ ε

=

×
=

=

= + + + − − + +
+ +

⎡ ⎤= − + + + + + − +⎢ ⎥⎣ ⎦
= −

∑

∑
∑

$ $ $

$ $ $ $

$ $ $ $ $

$ $ 0.iz ≤
  (32) 

 

Therefore, x  is bounded since 

 ( ) ( )( ) (0) , 0V x t V x t≤ ∀ ≥  (33) 

and V  is radially unbounded in the state space 1 2(9 ) 3: n nR S+ +Ω = × . Then, x$  is also bounded 

because the control inputs cf , cτ  are bounded by Assumption 1. It follows that 

2

1=
= −∑$$ $ $$T

i i i i
i

V k z Q z  

is bounded, and V$  is uniformly continuous with respect to t . Therefore, it is shown that 

0 0iV z→ ⇒ →$ $  

when t →∞  from the Lyapunov-like lemma (Slotine & Li, 1991), and then 

0, . . 0, 0i i e e e ez z const r q const r q= = ⇒ = = ⇒ = =$ $ $  

when t →∞ from (27) and (28) since iB  is a full column rank matrix, and 
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0, 0e ev ω= =  

from (21) and (22). Furthermore, the closed-loop system becomes 
 

 ( )1 3 1 1 1 2 2 20, 0, , 0.p e e e e ek I r K q A z B r A z B qε= = + + =  (34) 

 

From (34), 0er = , 0eε =  since 1 0pk >  and ( )det 0,e eK q q≠ ∀ , and 1eη =  from 0V = . In 

addition, since iA  is stable and iB  is a full column rank matrix, it follows that 
 

1
1 2 2 20, 0.ez z A B q− ∗= = − =  

 

It is known that a controller, as (27) and (28), based on the strictly positive real condition (29) is 
a type of observer. The controllers (27) and (28) are the observers, and the estimate errors are 
 

 1 1
1 1 1 1 2 2 2 2, .e ez z A B r z z A B q− −= + = +  (35) 

 

Then, the following corollary can be obtained. 
Corollary 1: Dynamic compensators of dynamic output feedback controllers (27) and (28) are 
the observers; the estimate errors are (35), and  
 

1 1
1 1 1 2 2 2,e ez A B r z A B q− −→ − → −  

 

when t →∞ . 

Proof: By using the estimate error (35), we can represent the dynamic output feedback 
controllers (27) and (28) as 
 

1
1 1 1 1 1

1 1 1 1

1 1 1

,
e

c p e

z A z A B r

y C A z

f k r k y

−⎧ = +⎪⎪ =⎨⎪ = − −⎪⎩

$ $

(36)

( ) ( )
1

2 2 2 2 2

2 2 2 2

1 1 2 2

.
e

T
c e e e e

z A z A B q

y C A z

K q k r y k E q yτ ε

−

×

⎧ = +⎪⎪ =⎨⎪ = − + −⎪⎩

$ $

(37)

 

Consider the following candidate of a Lyapunov function: 
 

 ( ) ( ) 2
21 1

2 3
1

1 .
2 2

p T T T T
e e e p e p e i i i i i

i

k k
V x E r r K k z A P A zε ε η

=
= + + + − +∑  (38) 
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From the calculations (32), we obtain the time derivative of (38) along with the trajectories as 

 

( ) ( )
( ) ( ) ( )

( )
( ) ( )

1 2 3

2

1 1 1 1 1 2 2 2 2 2
1

2

1 1 1 1 1
1

1 1 1 1 2 2 1 2

1

2

2

TT T T T T
e c e c p e e e e p e p e e e

T T T T T T Ti
i i i i i i i i e e e e e

i

T T Ti
i i i i i e c p e

i

TT
e c e e e e

V v f k v r T q K k

k
z A A P P A A z k z A P B v r k z A P B E q

k
z A Q A z v f k r k C A z

K q k r C A z k E q C A z

ω τ ω ε η ω ε
ω ω

ω τ ε

×
=

=
×

= + + + − −
+ + + − +

= − + + +
⎡+ + − +⎢⎣

∑
∑

$

2

1

.
2

T Ti
i i i i i

i

k
z A Q A z

=

⎤⎥⎦
= −∑

 (39) 

 

Since 0T
i i iA P A > , 0T

i i iA Q A >  from iP  and iQ  are positive definite matrices and iA  is a 

stable matrix, 0V > and 0V ≤$ hold. Hereafter, in the same way as in the case of Theorem 1, 

the state variable of the closed-loop system of (21)-(24) with (36) and (37) becomes 

 ( ) ( )1 2, , , , , , 0, 0, 1, 0, 0, 0, 0e e e e er v z zε η ω →  (40) 

 

when t →∞  for an arbitrary initial state in the state space Ω . 

Remark 3: In the conventional methods (Costic et al., 2000; Costic et al., 2001; Pan et al., 2004), 

the relative equation of motion with respect to the attitude is transformed into an Euler-

Lagrange form by ( )( ) ( )31 / 2 :e e eI S qε η× + =  of (15) as the coordinate transform matrix, and 

a controller based on the Euler-Lagrange form is designed. However, 0eη =  is a singular 

point because ( )det 0eS q =  when 0eη = . In contrast, the proposed method does not exsist a 

singular point since a controller based on the relative equation of motion is designed.  

4. Guidelines of controller parameter setting 

It is difficult for dynamic output feedback controllers (27) and (28) to find a clear meaning 

for the design parameters iA , iB , and iC  (or iQ ) as the state feedback control (e.g., PD 

control). Therefore, the control performance deteriorates according to the value of the design 

parameters as the convergence of the relative error is slow or the response of the relative 

error vibrates. In this section, we discuss a guideline for the design parameters. 

In order to simply the argument, the design parameters iA , iB , and ( 1,2)iQ i =  are set as 

follows: 

1 1 3 1 1 1 3 1 1 3

2 2 4 2 2 2 4 2 2 4

, , ,

, , ,

A a I B A a I Q q I

A a I B A a I Q q I

= − = − = =
= − = − = =  

 

where , 0i ia q > . In addition, iP  and iC  are  
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1 1
1 3 1 1 1 3

1

2 2
2 4 2 2 2 4

2

, ,
2 2

,
2 2

T

T

q q
P I C B P I

a

q q
P I C B P I

a

= = =
= = =

 

from (29). Then, the output ( 1,2)iy i =  of the dynamic compensator of (27) and (28) becomes 

1 11 1 1
1 3 1 3

1

(0) ( ) ,
2 2 (1 / ) 1

a t
e

a q q s
y e I z L I r s

a s
− − ⎡ ⎤⎧ ⎫⎪ ⎪= − ⋅ + ⋅⎢ ⎥⎨ ⎬+⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦ (41) 

2 12 2 2
2 4 2 4

2

(0) ( ) ,
2 2 (1 / ) 1

a t
e

a q q s
y e I z L I q s

a s
− − ⎡ ⎤⎧ ⎫⎪ ⎪= − ⋅ + ⋅⎢ ⎥⎨ ⎬+⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦ (42)

where (0)iz  is the initial value of the dynamic compensator, ( )er s  and ( )eq s  are the Laplace 

transformation of ( )er t  and ( )eq t , and [ ]1 ( )L− •  is the inverse Laplace transformation. 

Moreover, the first term of (41) and (42) reveals the effect of the initial value of the dynamic 

compensator, and the second term of (41) and (42) reveals the effect of the input ( ( ), ( )e er t q t ) 

to the dynamic compensator. 
From (41) and (42), we can conclude that the transfer function of the second term is an 

approximation differentiator. Therefore, when the value of ia  is large, the output iy can be 

approximated as 

11
1 3

1

( ) ,
2 (1 / ) 1

e

q s
y L I r s

a s
− ⎡ ⎤⎧ ⎫⎪ ⎪≈ ⋅⎢ ⎥⎨ ⎬+⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦ (42) 

12
2 4

2

( ) ,
2 (1 / ) 1

e

q s
y L I q s

a s
− ⎡ ⎤⎧ ⎫⎪ ⎪≈ ⋅⎢ ⎥⎨ ⎬+⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦ (43)

and the terms of 1 1k y−  and ( )2 2 2
T

k E q y−  of control law approximately become the velocity 

feedback with respect to er$  and eq$ (Note that e er v≠$ , e eq ω≠$  from (21) and (22)). Further, 

parameter iq  is considered to be the feedback gain. Therefore, by setting ia  to a large value, 

the dynamic output feedback controllers (27) and (28) approximately become the PD 

controllers and , ( 1,2)j jk q j =  become the derivative gain. However, the value of 1k  must be 

determined carefully because the control torque cτ  may become excessive at a certain value 

of 1k  since the control law of (28) includes the term 1 1ek r y× . Moreover, although the control 

inputs cf  and cτ  become large when ia  becomes large since cf  and cτ  are represented  as 

 1 1 1 1 1 1
1 1 ,

2 2
c p e

k a q k a q
f k r z

⎛ ⎞= − + +⎜ ⎟⎝ ⎠  (44) 
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 ( ) ( )2 2 2 1 1 1
2 1 ,

2 2

T
c e e e e

k a q k a q
K q E q z r zτ ε ×= − + −  (45) 

by setting the initial state (0)iz  as 

 1 2(0) (0), (0) (0),e ez r z q= =  (46) 

the amplitude of the control inputs at an early stage can be reduced without changing the 

feedback gains. This reason can be expounded as follows: Since the controllers (27) and (28) 

are the observers and the estimate errors are (35) from Corollary 1, by setting the initial state 

(0)iz  as (46), we find that ( )iz t  becomes 

 1 2( ) ( ), ( ) ( ), 0.e ez t r t z t q t t= = ∀ ≥  (47) 

Therefore, since control inputs cf  and cτ  become 

 ( )1 ,c p e c e ef k r K qτ ε= − = −  (48) 

by using the skew symmetric matrix property 30,a a a R× = ∀ ∈ , the amplitude of the control 

inputs at an early stage can be reduced. The aforementioned results lead to the numerical 

simulation in the next section. 

5. Numerical simulation 

The simulation conditions are given in Table 1. The results of the numerical simulation are 
shown in Figs. 2 and 3. Fig. 2 is the result of Case1, and Fig. 3 is the result of Case2; further 

eθ  is the relative attitude Euler angle that transforms the relative quaternion eq  into 3-2-1 

Euler angle.  
From the simulation results, we conclude that the chaser tracks the target and state variables 

1z  and 2z  correspond with er  and eq  as shown by Corollary 1, that is, the dynamic 

compensator of the controllers (27) and (28) are the observers and the estimate errors are 

(35). Although the response of Euler angle eθ  deteriorates by approximately 50 [s], this is 

assumed to be due to the effect of the position feedback term ( 1 1ek r y× ) of the attitude control 

law. In addition, the maximum values of the control input cf  and cτ  of Case1 and Case2 

are  

[ ] [ ]
[ ] [ ]

,max ,max

4
,max ,max

1 : 44.9 14.3 45.9 [ ], 70.9 65.1 66.7 [ ],

2 : 0.969 0.241 1.30 10 [ ], 53.7 51.2 53.1 [ ],

T T
c c

T T
c c

Case f N Nm

Case f N Nm

τ
τ

= − − − = −
= − − − × = −  

and the control force cf  of Case2 is relatively large at an early stage as compared to that of 

Case1 (Figs. 2(f) and 3(e)-(f) have an expanded vertical axis in order to show the change in 

input). Therefore, by setting the initial state (0)iz  as (46) as described in the previous 

section, the amplitude of the control inputs at an early stage can be reduced without 

changing the feedback gains. On the other hand, the amplitude of the control torque cτ  
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does not change. This could be attributed to the fact that the effect of the position feedback 

term (the third term) of (45) is cancelled out by the attitude feedback term (the first and the 

second terms). As a result, the performance of the attitude control deteriorates, and the 

undershoot of 1eθ  becomes large. Therefore, it can be concluded that the effect of the 

position feedback term in the attitude control is suppressed by setting the initial state (0)iz  

as (46). 

Then, we compare the proposed method to a conventional method (Costic et al., 2000; 

Costic et al., 2001); we consider the case where the relative attitude eη  falls into the 

singular point 0eη = . The output feedback controller of the conventional method is given 

as follows: 

 

2
2

2

( 1) , (0) (0)
(1 )

,

( )
(1 )

1
, ,

2

e
e eT

e e

T e
c e f d T

e e

f e d c t t c t

z k z k z k

S q ke W

e k z W J J

εε εε ε
ετ ε ε

ε ω ω ω×

⎧ = − + + + =⎪ −⎪⎨ ⎛ ⎞⎪ = − −⎜ ⎟⎜ ⎟⎪ −⎝ ⎠⎩
= − + = − −

$

$

 (49) 

 

where 0k >  is a design parameter. The simulation results of the proposed method are 

shown in Fig. 4, and those of the conventional method are shown in Fig. 5. In this 

simulation, the initial state (0)eη  sets the singular point (that is, (0) 0eη = ), and we 

consider the attitude control only because the conventional method addresses the attitude 

control problem. Further, from (49) and the norm constraint of the quaternion 1eq = , 

since division by zero accrues and the control input cannot be calculated in the 

conventional method when 0eη = , (0)eη  sets 38.73 10eη −= ×  in Fig. 5. From the 

simulation results, it is apparent that in the conventional method, the relative quaternion 

fluctuates in the neighborhood of the singular point (when (0) 0eη → , the relative 

quaternion fluctuates more) and the control torque is considerably large, while in the 

proposed method, the tracking control is achieved even if the relative quaternion fall into 

the singular point. These results show that the proposed method can track a spacecraft 

with an arbitrary trajectory. 

6. Conclusion 

In this paper, we propose a new passivity-based control method that involves the use of 

output feedback for solving the tracking control problem. The proposed method has an 

advantage that it can track a spacecraft with an arbitrary trajectory because the controller 

does not have a singular point as compared to a conventional method. Furthermore, we 

show that the controller can be made to be similar to a PD controller by appropriately 

setting the controller parameters. The effectiveness of the proposed methods is verified by 

performing numerical simulations. Future works, include an extension to the case in which 

the physical parameter error exists and the robustness against a disturbance can be 

achieved. 
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Physical parameters 

{ }
[ ] [ ]

2 2

75 28 28

300[ ], 50, 275, 275 [ ], 200[ ], 28 75 28 [ ]

28 28 75

0 5 0 [ ], 0 0 0 [ ]

t t c c

T T
t c

m kg J diag kgm m kg J kgm

p m mρ

− −⎡ ⎤⎢ ⎥= = = = − −⎢ ⎥⎢ ⎥− −⎣ ⎦
= =

 

Initial state of the target 

[ ] [ ]
[ ] [ ]

(0) 0 0 0 [ ], (0) 0.005 0.005 0.005 [ / ],

(0) 0 0 0 1 [ ], (0) 0.005 0.005 0.005 [ / ]

T T
t t

T T
t t

r m v m s

q rad sω
= =
= − =  

Initial state of the chaser 

[ ] [ ]
[ ] [ ]

(0) 8 9 10 [ ], (0) 0 0 0 [ / ],

(0) 0.19 0.51 0.19 0.82 [ ], (0) 0 0 0 [ / ]

T T
c c

T T
c c

r m v m s

q rad sω
= =
= − =  

Initial state of the dynamic compensator 

[ ] [ ]
1 2

1 2

1 : (0) (0), (0) (0),

2 : (0) 0.5 (0), (0) 0.5 (0),

(0) 6.44 1.60 8.66 [ ], (0) 0.19 0.51 0.19 0.82 [ ]

e e

e e

T T
e t

Case z r z q

Case z r z q

r m q

= =
= =

= = −
 

Feedback gains and design parameters 

1 1 2 3 3 2

1 3 1 1 3 1 3

2 3 2 2 3 2 3

3, 150, 30 , 12, 1400,

20 , 20 , ,

20 , 20 ,

p p pk k K I k k

A I B A I C I

A I B A I C I

= = = = =
= − = − = =
= − = − = =

 

Table 1. Simulation conditions. 
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                                       (a) er                                                                         (b) eθ  

 

                                       (c) 1z
                                                                        (d) 2z  

 

                                      (e) cf                                                                         (f) cτ  

 

Fig. 2. Simulation results (Case1). 
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                                       (a) er                                                                         (b) eθ  

 

                                       (c) 1z                                                                         (d) 2z  

 

                                       (e) cf                                                                         (f) cτ  

 

Fig. 3. Simulation results (Case2). 
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                                       (a) eq                                                                         (b) cτ  

 

Fig. 4. Simulation results at singular point (proposed method). 

 

 

 
 
 

                                       (a) eq                                                                         (b) cτ  

 

 

Fig. 5. Simulation results at singular point (Costic’s method). 
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