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1. Introduction 

In the majority of manufacturing companies large amounts of data are collected and stored, 

related to designs, products, equipment, materials, manufacturing processes etc. Utilization 

of that data for the improvement of product quality and lowering manufacturing costs 

requires extraction of knowledge from the data, in the form of conclusions, rules, 

relationships and procedures. Consequently, a rapidly growing interest in DM applications 

in manufacturing organizations, including the development of complex DM systems, can be 

observed in recent years (Chen et al. 2004; Chen et al. 2005; Dagli & Lee, 2001; Hur et al., 

2006; Malh & Krikler, 2007; Tsang et al., 2007). A comprehensive and insightful 

characterization of the problems in manufacturing enterprises, as well as the potential 

benefits from the application of data mining (DM) in this area was presented in (Shahbaz et 

al., 2006). Examples and general characteristics of problems related to the usage of data 

mining techniques and systems in a manufacturing environment can be found in several 

review papers (Harding et al., 2006; Kusiak, 2006; Wang, 2007).  

Application of DM techniques can bring valuable information, both for designing new 

processes and for control of currently running ones. Designing the processes and tooling can 

be assisted by varied computer tools, including simulation software, expert systems based 

on knowledge acquired from human experts, as well as the knowledge extracted semi 

automatically by DM methods. The proper choice of the manufacturing process version and 

its parameters allows to reduce the number of necessary corrections resulting from 

simulation and/or floor tests. The knowledge obtained by DM methods can significantly 

contribute to the right decision making and optimum settings of the process parameters. In 

the design phase two main forms of knowledge may be particularly useful: the decision 

logic rules in the form: ‘IF (conditions) THEN (decision class)’ and the regression–type 

relationships. Although the latter have been widely utilized before the emergence of DM 

methods (e.g. in the form of empirical formulas) and the rules created by the human experts 

were also in use, the computational intelligence (CI) methods (learning systems) have 

remarkably enhanced possibilities of the knowledge extraction and its quality.  

For the manufacturing process control many varied methods are used, ranging from paper 

Statistical Process Control (SPC) charts to automated closed loop systems. In spite of the 
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degree of automation of the control system it is always essential to identify the input process 

parameters that can be effectively used to control the process, to develop the appropriate 

relationships between process parameters as inputs and process results as outputs, as well 

as to understand and diagnose manufacturing process problems. Just like in the design 

stage, the input-output dependencies can be of various types, including classification and 

regression models. A more specific task is prediction of process parameters or product 

characteristics on the basis of current and past values recorded as a sequence type data, i.e. 

the time–series analysis.  

It should be noticed that for diagnosis and control of manufacturing processes a particular 

type of information is extremely important: relative significances of process variables, 

including possible interactions existing among them. In particular, determination of the 

most significant process parameters can help to detect root causes of deteriorating product 

quality. The idea is that the process variables which are found to be the most significant for 

a given quality parameter, e.g. percent of defective parts, should be regarded as potential 

causes of the quality decline. It is important to point out that statistical methods which have 

been used extensively in manufacturing industry for many years, such as the SPC tools, are 

not capable of providing that kind of knowledge. They are useful in detecting the 

appearance of abnormalities of the process in the form of excessive variations of process 

parameters, but they are not capable of indicating their causes. Finding the most important 

process parameters can also be useful in prediction of break-downs of machines, equipment 

etc., as well as in prediction of results of manufacturing process changes, including 

indication of optimal or critical process parameters that can be used for the process control. 

Also, finding the least significant process variables can be valuable. Variations of such 

variables can be allowed without consequences in product quality, which can lead to 

remarkable savings due to reduction of time and costs of the inspections. 

DM includes various types of tools of which the CI methods are certainly best suited for the 

tasks described above. There is a variety of learning systems available, based on different 

principles, e.g. artificial neural networks (ANNs), support vector machines (SVMs), 

prediction or decision trees (DTs), including classification trees (CTs) and regression tress 

(RTs), as well as the systems dedicated to classification only, such as naïve Bayesian 

classifier (NBC) and those based on the rough sets theory (RST).  

Models used in DM can be parametric or non-parametric. Non-parametric models differ 

from parametric ones in that the model structure is not specified a priori but is instead 

determined from data, e.g. in decision trees. The non-parametric models are essentially 

more suitable for knowledge discovery as the nature of the relationships hidden in the data 

is usually not known.  

Making a right choice of a CI model is important, particularly in the construction of DM 

systems. However, there are few comparative studies available in the literature, addressing 

the above discussed issues, which could show the advantages and weakness of individual 

tools. The purpose of the present paper is to make an appraisal of several DM methods from 

the standpoint of their performances in the extraction of knowledge appropriate for 

diagnosis and control of manufacturing processes, including some new developments made 

by the present authors. The research was focused on the two main tasks appearing in the 

application of DM in manufacturing: determination of relative significances of input process 

variables and logic rules extraction. 

www.intechopen.com



Applications of Data Mining to Diagnosis and Control of Manufacturing Processes   

 

149 

2. General methodology 

Selected methods discussed in the previous chapter were assessed with the use of simulated 
and industrial data sets. The synthetic data were obtained by assuming analytical formulas 
of the type Y=f(X1, X2, …), from which, for random values of continuous–type input 
variables X1, X2, …, the continuous–type dependent variable Y was calculated. Thus, the 
relationships hidden in the data are assumed and can be compared to those predicted by the 
models. A Gaussian–type noise was imposed on the input variables, with maximum 
deviation ±20%; that value was found to be characteristic of many real processes. For the 
classification models all the continuous values were converted to categorical ones, assuming 
the equal intervals method. Two numbers of categories were assumed: 5 and 10. In most 
cases, the sets comprising 1000 records were generated in this way. Three basic formulas 
were used, giving simulated data sets of the characteristics described below.  

Sim 1, obtained from the basic formula: Y=X1+2⋅X2+3⋅X3+4⋅X4+5⋅X5; linearly increasing 
significances of variables, in additive manner, without interactions. 

Sim 2, obtained from the basic formula: Y=X1⋅X2+X3+X4+X5; strong interactions between 
two variables of equal significances, the remaining variables have significances equal to the 
joint significance of the first two, without interactions among them. 

Sim 3, obtained from the basic formula: Y=tanh(0.1⋅X1+0.2⋅X2+0.4⋅X3+0.8⋅X4+1.6.X5); 
increasing significances of variables, an additive model with asymptotic output limit 
(saturation value) resulting in a specific form of interaction between all input variables. 
Situations similar to those represented in the above relationships often appear in practice. 
For example, Sim 3 may reflect simultaneous action of several chemical elements, which 
change the alloy microstructure and properties in the same manner. These cannot exceed 
certain physical limits and the actual effect of each variable depends on the structure and 
properties produced by the other elements. 
All the industrial data sets were related to metal casting processes. Ind 1, Ind 2 and Ind 3 
data sets were collected in a regular production of ductile cast iron in a cooperating foundry; 
the numbers of records were 861.  
Ind 1 correlates chemical composition of ductile cast iron, defined by 5 elements, often 
considered as most important for its microstructure and mechanical properties (Mn, Si, Cr, 
Ni and Cu), with the material tensile strength. 
Ind 2 correlates chemical composition of ductile cast iron, defined by all 9 elements 
controlled in the foundry (C, Mn, Si, P, S, Cr, Ni, Cu and Mg), with its tensile strength. 
Ind 3 correlates chemical composition of ductile cast iron, defined by 5 elements, as in Ind 1, 
with its grade, assumed as the output class variable with the following four values: ‘400/18’, 
‘500/07’, ‘special 500/07 with increased hardness’ and ‘not classified’.  
The remaining two data sets: Ind 4 and Ind 5 were obtained as readouts from a semi-
empirical nomograph,  which permits to calculate solidification shrinkage of grey cast iron 
as a function of four variables: carbon contents C (5 different values – categories), sum of 
silicon and phosphorus content Si+P (4 values), casting modulus M (4 values) and pouring 
temperature Tpor (4 values). The outputs were the decisions concerning necessity and size 
of application of feeders to avoid the shrinkage defects. In Ind 4 data set the output, named 
‘Feeder’, had 2 classes (‘No’ – when the volume change between pouring and the end of 
solidification was zero or positive and ‘Yes’ – when the overall volume change was 
negative). In the Ind 5 data set the output had 3 classes (‘No’, ‘Small’ and ‘Large’, dependent 
on the magnitude of the shrinkage). The numbers of records in these data sets was 190. The 
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discretisation of the continuous – by nature – input variables was not required, as the 
readouts were made for selected, fixed values of these variables.  
It is worth noticing that, unlike the previously described simulated and industrial data sets, 
Ind 4 and Ind 5 have an important feature: a very low level of noise, which could be only a 
result of inaccuracies in the readouts of the nomograph. Generally, the noise existing in 
typical production data, as well as the simulated data generated as described above, may 
result in their inconsistency, defined as the occurrence of different output variable values 
(decision classes) for an identical combination of input values. In Ind 4 and Ind 5 data sets 
such inconsistencies were absent. 
The appropriate computations were partly made with the use of Statistica DataMiner 

commercial software (StatSoft, 2008). For the ANNs and RST-related computations the 

software developed by the present authors’ was utilized.  

The other methodology issues assumed in the present research are strongly 
problem-dependent and will be described in the following sections. 

3. Relative significances of process input variables 

Several approaches to the extraction of useful information from CI models have been 

proposed. Most of them utilize input – output type models, however, the association rules 

can also be used (e.g. Chen et al., 2005; Shahbaz et al., 2006). In the first case two basic 

approaches can be applied: ‘decompositional’, which is based on an analysis of the model’s 

parameters, and ‘pedagogical’, which treats the model as a black-box, i.e. uses a specially 

designed interrogation procedure to obtain the desired information. In finding the relative 

importances of input variables based on interrogation of the model, the variable significance 

is usually defined as the degree in which its removal from the input variables, or setting its 

value at a constant level, increases the model’s prediction error.  

It is important that a significance definition used for the problems characterised in Section 1 

should reflect the overall influence of an input variable on the output rather then the 

sensitivity of the output to that input. The sensitivity analysis returns the output changes 

due to small variations of input at particular levels of the input. In the opinion of the authors 

the approach assumed in the present work better meets the expectations of industrial 

practitioners, who would be interested in finding potentially the greatest overall effect of a 

process variable (or group of variables) on the process results.  

Two basic types of the output variables can appear: numerical continuous, represented by 

real numbers (regression problem) and categorical, with values represented by classes 

expressed verbally or by integral numbers (classification problem). In the manufacturing 

environment the first type seems to occur more commonly and will be treated here in a 

more complex way, including the approach proposed by the present authors.  

Output class variables can be of two types: nominal and ordinal. In many industrial 

applications the ordinal type variables are of particular interest as they can be used for 

expressing some uncertainties and approximations of the quantities involved. It is worth 

noticing that the widespread approach, especially in process control applications, is based 

on fuzzy logic, utilizing linguistic variables. However, utilization of the fuzzy calculus 

requires that the input – output relationships are assumed, based on human’s knowledge or 

intuition, whereas the CI methods are capable of semi-automated finding such 

dependencies, using data collected in the normal production (Czogala et al., 1995).  

www.intechopen.com



Applications of Data Mining to Diagnosis and Control of Manufacturing Processes   

 

151 

3.1 Advanced significance analysis of input variables for regression-type tasks 

Algorithms for finding relative significances of input variables and possible interactions 
among them, based on a direct understanding of variable importance, have been developed 
by the present authors. The significance factor for a single input or for a group of inputs is 
defined as the maximum difference of the output, which can be obtained by changing the 
value of the analysed input (or inputs). The two extremes of the output are found by the 
conjugate gradient method, with the starting points found by a specially developed 
procedure, permitting to avoid local minima in most cases. All the significances thus 
obtained are normalised by dividing them by the value obtained for the most significant 
variable (or group of variables).  
The definition of interaction coefficient between variables in a selected group is expressed as 

the ratio of the significance factor of the group to the arithmetic mean of significances of all 

the single variables from the group. However, the latter are taken as their minimum values 

with respect to the rest of the variables in the group, thus eliminating the ‘assistance’ of the 

other variables in the group. The synergy coefficient is defined as the ratio of the 

significance factor of the group to the sum of the above defined significances of all the single 

variables from the group, minus 1. It expresses (in percents) the degree in which 

simultaneous action of several inputs are larger than the sum of actions of the individual 

inputs working independently. Similarly like in the algorithms used for the relative 

significance factors, the significances of the single input signals within the group used for 

interaction and synergy computations are determined from the two extremes of the output 

found by the conjugate gradient method. The minima of these significances with respect to 

the rest of the variables in the group are found, in external computation loops, by the 

simulated annealing method.  

The significance factors of a single input variable or a selected group of variables, as well as 

the interaction factors between variables within the group, are calculated repeatedly a 

number of times for the other variables set at random levels. The final values of significance 

or interaction factors are calculated as their arithmetic averages. The magnitude of the 

scatter of the significance factor of a given input resulting from the other inputs’ levels can 

be a measure of the possible interactions with the other input variables.  

The above algorithms were implemented using MLP-type ANNs, with one hidden layer 

with the number of neurons equal to the number of the network’s inputs in most cases. That 

type of ANN architecture was found to be effective and accurate in a number of preliminary 

tests. The significance factors of single variables were also calculated using SVM and RT 

models. Some results were also compared to those obtained from one--way ANOVA, in 

which the significance factor was defined as the normalised F statistics values calculated for 

dependency between a considered independent variable and the dependent variable. The 

definition of interaction coefficient between two variables tested in the present work is 

based on the test statistics F for the interaction of the two variables in the two--way 

ANOVA. Further details concerning the above presented definitions and methodology can 

be found in (Perzyk et al., 2008). 

In Fig. 1 comparisons of the relative significance factors of single variables, obtained from 
various regression models and ANOVA for simulated data sets, are presented. These results 
generally agree with the expectations, i.e. the assumed, hidden relationships in the data. The 
most accurate values were obtained form ANNs and SVMs. The predictions of RTs and 
ANOVA are much less accurate and tend to remarkably underestimate significances of the 
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less important variables. Dispersions of relative significance factors, expressed by their 
average deviations resulting from randomly set values of other variables, can be observed 
for all models. However, negligible scatters for variables with no interactions (all variables 
in Sim 1 and X3, X4 and X5 in Sim 2) are observed for ANNs and SVMs only, while RTs 
evidently revealed non-existent interactions between input variables. It is worth noticing 
that the observed differences between the relative significances of the equally strong 
variables (such as X1 and X2 or X3, X4 and X5 in Sim 2) are mainly a result of variations 
which appear in the training data set due to the artificial noise imposed on the data. It was 
found that different training sessions of ANNs or different settings for RTS induction (for a 
given generation) lead to much smaller discrepancies of the significance factors. 
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Fig. 1. Relative significance factors obtained from CI regression models and ANOVA for the 
simulated data sets; the scatter bars are calculated as average deviations resulting from 
randomly set values of the other variables 

For the real, industrial data the expected values of relative significances, hidden in the data, 
are often not known or can be evaluated only in a qualitative manner. The data sets related 
to ductile cast iron production (Ind 1, Ind 2 and Ind 3) were collected in a particular plant, 
where some of the chemical elements could be kept at the levels which do not allow them to 
exhibit their full effect on the mechanical properties of the alloy. The only important 
information obtained from that foundry was that copper was the main element used for 
control of the microstructure and, consequently, the tensile strength of the alloy, and that it 
can be expected to have the largest significance. For Ind 2 all the models shown in Fig. 2 
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pointed at copper as the most significant alloying element. Different predictions from 
different models were obtained for the other elements, however, in the case of the probably 
least significant variables, such as C, P, S and Mg, all models were also fairly conformable. 
The control of these elements could be possibly limited or even eliminated in that particular 
plant.  
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1,2

C Mn Si P S Cr Ni Cu Mg

ANN

SVM

RT

ANOVA

 

Fig. 2. Relative significance factors for the Ind 1 data set (tensile strength of ductile cast iron 
vs its chemical composition defined by 9 elements) 

The above presented results, especially for the simulated data sets, indicated that 

performance of ANN and SVM models is remarkably better compared to RT and ANOVA. 

Further tests, concerning significances of groups of variables and interactions among them 

were made using the neural models only. It was found that the adjustment of appropriate 

settings for SVM models can be troublesome and sometimes may lead to wrong results. 

Despite the fact that neural models are in principle ambiguous models, in the sense that a 

change of the network architecture or each training session may lead to different results, 

they seem to be more predictable compared to SVM. 

The significance factors for groups of variables were calculated for all possible combinations 

of the variables appearing in the simulated data sets. The tendencies of the predictions agree 

well with expectations in all cases. Exemplary results are shown in Fig. 3. The positive 

deviations, appearing for most of the variable combinations, result from the fact that all the 

calculated values were normalised in relation to the most significant group, which is clearly 

the group including all the variables. It was found that the extreme responses of the neural 

model, which are used for the significance computations of that group, are attenuated, i.e. 

the maximum response is lesser and the minimum response is larger then expected. Thus, 

the incompatible values, such as observed in Fig. 3, result only from the inaccuracies of the 

maximum significances. This behaviour of the trained network is a result of the structure of 

the training data: it is very unlikely that the extreme values of all five inputs, necessary to 

obtain the extreme value of the output, will be represented in the data set. The graphs 

presented in Fig. 3 also illustrate typical scatter resulting from different training sessions of 

ANNs. 

The interaction and synergy coefficients obtained from ANNs for pairs of variables were 

correct in all cases (selected results are presented in Fig. 4). It should also be noticed that the 

proposed method offers an easy way for the estimation of interactions and synergies among 

larger number of variables.  
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Fig. 3. Comparison of relative significance factors for all possible groups (combinations) of 
input variables obtained from ANNs for Sim 2 synthetic data 
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Fig. 4. Assessment of the interaction and synergy coefficients obtained from a trained ANN 
by the developed methodology: (a) – interaction coefficients, (b) – corresponding synergy 
coefficients 

Results obtained from the two-factor ANOVA for Sim 2 data sets, also used for the 

ANNs-based computations, are presented in Table 1. It can be seen that the p-value does not 

indicate the existence of any interactions. Just like in the single variable analysis, this is 

probably a result of larger error variance appearing in the denominator of the expression for 

F, leading to the high p-value. This observation means that evident interactions between 

selected variables in the presence of other variables may not be detected by the 

ANOVA-based method even when the potential significance of the interacting variables is 

comparable to the other variables. 
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Input 
variables 

F statistics 
value 

p-value 
Interaction 

detected 
Interaction 
expected 

X1, X2 1.221 0.1013 No Yes 

X4, X5 0.947 0.6038 No No 

Table 1. Interactions-related parameters obtained from two-factor ANOVA for Sim 2 data 
set 

The above presented results have proved that the proposed methodology of finding relative 
significances of input variables is not only accurate and reflects the preferred understanding 
of the variable importance, but also offers additional features related to interactions and 
synergies. It is worth adding that the decompositional approach, based on the weight values 
of ANNs, e.g. the Garson’s proposal, turned out to be decidedly unsatisfactory (Perzyk et 
al., 2008). The network learns in a different way during each training session and large 
differences in the network weights are the source of large differences in significance factors 
based solely on their values. Factors based on the present algorithm (specific interrogations 
of the network) give stable and accurate values, though the weights are naturally also used 
in the calculations of the network responses.  
In Fig. 5 comparisons between various definitions of variable significance are presented, 
using RT models.  
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Fig. 5. Relative significances obtained for their various definitions from RT models 

The RTs (and CTs, utilised in the next section) were created and evaluated with a use of the 
well known C&RT algorithm (Breiman et al., 1984), included in the commercial software 
Statistica; details of the computational procedures can also be found in the software manual 
(StatSoft, 2008). For the purpose of computing the relative significances of input variables, 
two different stopping criteria were tried out: the Statistica’s default, giving relatively 
‘small’ trees, and the user criterion of minimum records in leaves equal to 5, leading to 
relatively ‘large’ trees. It was found that for significances based on drop in node impurity in 
potential splits (details can be found in (StatSoft, 2008)), which is a widely used method for 
the estimation of the variable importances from decision trees, better results were obtained 
for ‘small’ trees. In contrast, for the significance based on classification error increase due to 
removal of a given variable, the ’large’ trees turned out to be generally better. For all the 
results presented further, the settings giving better accuracies were used. 
The results obtained from RTs show that the method based on the increase of the prediction 
error due to the removal of a given input variable may lead to very poor results. The best 
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accuracies of the variable significances were obtained from the approach based on split 
quality. However, these results are still worse, compared to the methodology proposed by 
the present authors and implemented with ANNs or SVMs. 
The successful application of advanced regression models to finding the most significant 
process variables requires some additional comments. First, the computation times are long 
for the proposed algorithm, resulting from necessity of finding extremes of multivariable 
functions. Second, in some situations, only small data sets, i.e. sets including a very limited 
number of training examples, are available. This situation is typical for many machine 
break-down problems where failures are rare but costly. ANNs are demanding from the 
point of view of the amount of training data as the number of the model parameters 
(network’s weights) are large and the number of training examples should be at least two 
times greater then the number of weights to obtain reliable results, without overfitting. The 
other types of models could be more suitable in such cases. 

3.2 Assessment of significances of process input variables for classification tasks 

For manufacturing-related problems, CTs are probably the most frequently used tools for 
knowledge extraction from data (e.g. (Chen et al., 2005; Huang & Wu, 2006; Hur et al., 2006; 
Koonce et al., 1997; Rokach & Maimon, 2006; Wang, 2007)), whereas the RST–based methods 
seem to be their newer alternative (e.g. (Kusiak & Kurasek, 2001; Sadoyan et al., 2006; Shen 
et al., 2000; Tseng et al., 2004)). Both algorithms are relative simple, especially compared to 
neural or fuzzy-neural systems, and easy to interpret by the users. Both of them treat the 
data in a natural way, however, they are based on completely different principles and 
algorithms.  
The practical aspects of application of these tools are also different. The computation times 
necessary for CTs are generally short and the interpretation of rules obtained from CT can 
be facilitated by the graphical representation of the trees. The RST theory may require long 
computational times and may lead to much larger number of rules constituting the model, 
compared to CTs. It should be noticed, that whereas CTs are widely spread both in 
handbooks and in commercially available software, the RST can be rather seldom found, 
except for scientific literature. 
A RST–based procedure, oriented at generation of full set of logic rules, was written by the 

present authors with a somewhat similar approach as used in the ‘Explore’ algorithm 

(Stefanowski & Vanderpooten, 2001). First, all the combinations of single input variables 

appearing in the data are placed in the rules (i.e. rules including only one condition are 

generated) and their confidences are calculated. Then the further conditions are added, 

providing the confidence of a rule thus obtained is increased, compared to the rule with 

shorter conditional part. The relative significances of input variables were calculated in a 

typical way, i.e. on the basis of the reduction of the so called positive region of data (i.e. 

giving rules of 100% confidence) resulting from removing a given variable. More details 

concerning RST computations can be found in (Polkowski, 2002). Details of methodology 

applied for CTs were presented in the previous section. 

The relative significances of input variables were also calculated using the statistical method 
appropriate for discrete type variables, based on contingency tables. The Cramer’s V 
statistics was used as a measure of significance. 
In Fig. 6 comparisons of the calculated relative significances with the expected ones are 

shown and in Fig. 7 the average errors, defined as absolute differences between calculated 
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and expected values, are presented for several cases. It can be seen that for all the simulated 

data sets with 1000 records the CT predictions are very poor, compared to RST and the 

statistic method: not only the errors are much higher but it is also important that CTs often 

do not reflect the expected tendencies of the variable significances. However, the good 

performance of RST and statistical method is not confirmed for small data sets. 
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Fig. 6. Relative significances of input variables, obtained by various methods and expected, 
for simulated data sets with the assumed number of categories equal 5 

As mentioned earlier, for the industrial data the expected values of relative significances are 

generally not known. The expected largest significance of copper was confirmed by more 

precise regression modelling presented in Fig. 2, which allowed to avoid conversion of the 

real numbers to categories. In Fig. 8 the results obtained for categorical type variables are 

presented (assuming 5 input variables) and in Fig. 9 the results for 9 chemical elements are 

shown, together with the above mentioned results obtained from the neural regression 

model – for comparison purposes. 

It can be seen that for the case of 5 elements assumed as inputs and tensile strength as 

output (Fig. 8 left) the three methods brought generally divergent results and only the 

statistical approach pointed at copper contents as the most significant variable. When the 

ductile iron grade was assumed as the output (Fig. 8 right) the results obtained by the three 

methods are fairly similar and indicate copper as a significant element. 
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Fig. 7. Average errors of relative significances obtained by various methods and different 
numbers of records and categories 
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Fig. 8. Relative significances of input variables, obtained by various methods for two 
industrial data sets related to ductile iron production: Ind 1 – tensile strength assumed as 
the output (5 categories), Ind 3 – alloy grade assumed as the output (4 classes)  
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Fig. 9. Relative significances of input variables, obtained by various methods for Ind 2 data 
set – ductile iron tensile strength assumed as the output (5 categories, solid lines) and 
obtained from regression neural model for all continuous variables (dotted line) 

For the case of 9 elements assumed as inputs and tensile strength as output (Fig. 9) the three 
methods studied in the present work give differentiated predictions for most of the input 
variables (except sulphur as the least significant element and manganese as a very important 
one). None of the present methods pointed at copper as the most significant element, as 
indicated by the regression analysis (Fig. 2). It is important to notice, that the latter have also 
shown divergent results for some variables, e.g. Mn and Si.  
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Fig. 10. Relative significances of input variables, obtained by various methods for two 
industrial data sets related to the feeding of grey cast iron castings: Ind 4 – requirement of 
feeder application assumed as the output (2 categories), Ind 5 – requirement and size of 
feeder assumed as the output (3 classes) 

In Fig. 10 the results for two data sets related to feeding of grey cast iron castings (Ind 4 and 
Ind 5) are shown. The industrial experience indicates that the alloy chemical composition, 
commonly expressed by its carbon content and the sum of silicon and phosphorus contents, 
has a minor effect on shrinkage and, consequently, feeding requirements. The main 
influencing factors should be the pouring temperature, which directly determines the 
magnitude of volume change from pouring to the solidification onset, and the casting 
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modulus which expresses the casting cooling rate, affecting kinetics of the volume changes 
during solidification. The results obtained by all the three methods fully confirmed these 
expectations for the case of two output classes (Fig. 5a). However, for the more complex 
output (Fig. 5b), the CTs predictions based on drop in node impurity in potential splits 
appeared to be very far from the expectations. 
The results presented in this section indicate that for the simulated, categorical-type data, 
identification of significances of process parameters by the RST–based systems generally 
appeared to be much more precise and reliable, compared to CTs. The widely used 
statistical method, based on contingency tables, also demonstrated a good performance and 
turned out to be the best in most cases. This substantial advantage of RST–based and 
statistical methods was partly confirmed by the real data, related to foundry production. 
However, this general observation does not concern small data sets, for which the errors of 
those two methods increased 2 to 3 times, compared to the corresponding large sets. These 
errors were comparable to those obtained from CTs and may be regarded as non–acceptable 
for many applications.  

4. Assessment of knowledge rule systems obtained from RST and CTs 

4.1 Requirements for knowledge rules applicable to manufacturing processes 

General requirements for knowledge rules which could be useful in manufacturing industry 
are rather obvious and similar to those for other areas of applications. First, the rules should 
be reliable, which means that there is a real chance that an application of the rule will bring 
the predicted result. This can be expressed by the rule quality parameters: confidence and 
support. Second, the rules should not be unnecessarily demanding, i.e. they should not 
comprise conditions which are not important, particularly redundant. Most algorithms used 
for knowledge extraction are first of all oriented at generation of a set of rules which best 
characterize the problem, i.e. the most reliable ones. However, in many industrial 
appliactions, particularly in manufacturing, some more specific requirements are relevant, 
related to design and development of new processes or control of currently running ones. 
Typical questions to be answered by using the rules can be formulated as follows:  

• What are the most effective and reliable ways (i.e. process parameters – input values) to 
achieve an assumed result (class variable)?  

• What would happen if we were not able to apply certain input values, i.e. what would 
we get if we use different ones? Do we still have a chance (and how big) to get the 
required result? 

• What will be the predictions (and how reliable) in the case when some input variables 
cannot be specified, e.g. they may be out of control? 

• What are all alternative ways to achieve our goal and how reliable are they? 
Answering some of the above questions may result in the necessity of predictions for 
combination of parameters (input variables values) which have never appeared in the past 
(i.e. are not present in the data). It should be noticed that a user may be interested not only 
in obtaining a one-time prediction for such input values but also in having an appropriate 
rule or rules with estimated quality parameters. 
The requirements for rule system and the knowledge extraction tools, suitable for 
manufacturing industry applications, are not only a consequence of the issues described 
above, but also the specificity of the available data. Typically, the number of independent 
variables (i.e. problem dimensionality) is not large, it seldom exceeds 10. The number of 
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available records can vary within broad ranges, from only a few to many thousands, 
especially when the automatic data acquisition system is utilized. Typical industrial data are 
noisy, which results in their inconsistency, i.e. an occurrence of different output variable 
values for an identical combination of input values (conditions in a rule). 
The characteristics of industrial process problems presented above imply that the following 
requirements for rule systems are essential or at least important:  

• The rules should make use of all information in the data. This means, for example, that 
all output values (classes) must be represented. Even single cases can be valuable and 
therefore they should be reflected in the rule system. 

• The rules should not contain redundant conditions as they can be misleading for the 
user. 

• It should be possible to find a rule ‘tailored’ to the user specifications, including 
combinations of input variable values which are not represented in the data. 

• Reliability of all rules should be evaluated, using the confidence and support as the 
primary parameters. 

4.2 Characteristic behaviour of CTs and RST in rules extraction 

A structure of a CT model is uniquely defined by a set of the logic expressions, 

corresponding to the knowledge rules. The nature of CT models, based on recursive 

partitioning of the data records, results in a set of conditions, which may be different from 

the combinations of input variables in the training data records. Some of the combinations 

appearing in the data set may be absent in the tree and vice versa, also some sequences of 

conditions occurring in the data may be abbreviated in the tree. The lack of some 

combinations of input values in CTs which are present in the training data, may result in the 

rule system in which some important rules are missing. 

Another consequence is that CTs can give wrong predictions for training data. In the case of 

consistent data, this may be a result of improper tree structure, i.e. one in which the given 

combination of input values (attributes) is connected with a class of the output variable 

which is different from that which appears in the data. Partly incorrect predictions may be a 

consequence of the fact that CTs are able to give only one prediction for a given combination 

of input variables values. For noisy, inconsistent data it must always lead to a fraction of 

false predictions. Considering a CT as a knowledge rule system means that for that type of 

data CTs must omit some rules, potentially also important for a user. In particular, those 

omitted rules can be the only ones which give a certain output.  

Rules obtained from CTs may include redundant conditions as the splitting variable used in 
the core must appear in all rules (generally, the splitting variable in a node must appear in 
all rules resulting from subsequent splits). In contrast, RST provides ‘fitted’ rules, i.e. 
without unnecessary conditions. That type of behaviour of both algorithms was commented 
in detail in (Kusiak & Kurasek, 2001).  
It is essential that all of the above discussed drawbacks of the rule systems obtained from 
CTs are absent in the RST–based systems. Below, some results of numerical tests are 
presented, which demonstrate to what extent this fundamental difference may be 
significant. More details can be found in (Perzyk & Soroczynski, 2010).  
Most of the methodology issues concerning CTs and RST computations were described at 
the beginning of Section 3.2. Slightly different settings were assumed here for CTs: in order 
to obtain possibly the largest choice of logic rules from the data, comparable to that available 
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from RST, various splitting conditions, stopping criteria and pruning parameters were tried. 
The smallest trees which ensured the smallest fraction of false predictions for training sets 
were chosen. 
In Fig. 11 the fractions of wrong predictions obtained from CTs for all consistent data 
subsets (i.e. all the discernible input values combinations pointing at one output value only) 
are shown, for selected data sets. 
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Fig. 11. Average fractions of false predictions obtained from CTs for consistent data subsets 
(including single records) 

The general level of false predictions for the real data is much lower, compared to simulated 
data. An interpretation of this observation would require a deeper analysis of the data sets 
structures, e.g. representativeness of the classes of input and output variables. 
In Fig. 12 some statistical information obtained for inconsistent data subsets is shown. It is 
interesting to note that in several cases CTs have pointed at the decision classes which are 
not predominant for the given combination of input values. 
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Fig. 12. Statistics of false predictions obtained from CTs for inconsistent data subsets 

In Fig. 13 the fractions of rules included in CTs, which are not supported by the data, are 
shown, exhibiting quite large values in several cases. In principle, this can be a positive 
feature of CTs as such rules may be desired by a user. However, the usefulness of such rules 
may be questionable. First, because they do not necessarily meet the user’s specific needs 
and second, because their reliability, defined by confidence and support, is not determined. 
In Fig. 14 the numbers of rules absent in CTs, but extracted by RST, are presented, together 
with the total numbers of rules in CTs and from RST. The missing rules may be valuable for 
a user, as it was found that their confidences are relatively high and comparable with those 
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Fig. 13. Fractions of rules in CTs not supported by data 
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Fig. 14. Numbers of CTs rules and obtained from RST – total and missing in CTs systems 
obtained for the rules which are included in CTs. It is worth noticing that for some of the 
simulated data sets, some of the missing rules had 100% confidences. 

In Fig. 15 fractions of CT rules with redundant conditions are shown. Obviously, the RST 
rules, taken as reference, had the same confidence values. It was also found that the average 
number of redundant conditions was similar to the number of important conditions. The 
conclusion is that the presence of redundant conditions in rules obtained from CTs, being a 
result of the nature of that type of models, may be their significant disadvantage. 
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Fig. 15. Fractions of CTs rules with redundant conditions 
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An important feature of a rule system is its predictive capability for new data, i.e. 
combinations of the input variable values which have not appeared in the past. Some 
preliminary simple tests confirmed that for some cases CTs are unable to give predictions 
for the desired new input value combinations, as discussed earlier. Also, relatively large 
fractions of false predictions by RST–based rule systems were found; this requires treating 
this problem in more detail in a separate study. 
In spite of that last finding, RST–based rule systems seem to be fundamentally better in 
almost every respect, compared to those obtained from CTs, including completeness, 
reliability and lack of redundant conditions of the rules.  

5. Conclusion 

This chapter reviews characteristic problems related to manufacturing and points out 
potential benefits from applications of DM in this area. Research results in two aspects of 
those applications are presented.  
The first topic is determination of relative significances of process input variables and 
possible interactions among them, particularly helpful in finding root causes of product 
defects and optimum control of the manufacturing processes. A few different approaches 
and methods are discussed and evaluated, including various computational intelligence and 
statistical methods. Two types of data were used for testing: simulated, with assumed 
hidden relationships, and real, collected in manufacturing industry. For the regression-type 
tasks, the methodology proposed by the present authors, based on an interrogation 
algorithm of advanced models, in particular artificial neural networks, appeared to be fully 
successful. Some limitations of that approach are also discussed. For the classification-type 
tasks, the rough sets theory approach was found to be superior, however a simple statistical 
method, based on contingency tables, also demonstrated a good performance. Remarkable 
inaccuracies of relative significances obtained from decision trees, both in regression and 
classification tasks, have been shown. 
The second topic of the research was knowledge rules extraction from recorded data, 
meeting the requirements related to control and diagnosis of manufacturing processes. The 
issues emphasized in the study covered completeness of the information included in the 
rule systems, avoidance of redundant conditions appearing in the rules and possibility of 
creation reliable  rules for combinations of conditions absent in the training data. Two types 
of classification systems frequently used for knowledge extraction are compared: based on 
classification trees and rough sets theory. Decision trees have revealed several 
disadvantages as knowledge extraction tools for the applications where not only a 
characterization of a problem is required, but also detailed and precise rules are needed, 
according to actual, specific problems to be solved. For such applications the rules 
obtainable from RST turned out to be fundamentally better. 
The study presented in this chapter pointed out at needs for further research in several 
areas. The methods of finding the relative significances of input variables for small data sets, 
both in regression and classification type tasks, require further analyses and improvements. 
Research aimed at development of the control systems for production processes, involving 
combinations of approaches utilizing rough sets theory and fuzzy sets, as suggested in 
(Czogala et al., 1995) would also be desirable.  
Although the present paper is focused on industrial manufacturing processes, it can be 
expected that the obtained results, particularly those related to the significance analysis of 
input variables, can be useful also in other application areas.  
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