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1. Introduction 

The first organophosphorus (OP) compound tetraethyl pyrophosphate (TEPP) was 
synthesized by de Clermont in France. Later, von Hofmann synthesized methyl-phosphoryl 
dichloride (Fest & Schmidt, 1982). OP compounds are widely used in the agriculture 
industry around the world as pesticides and insecticides. Phosphorous compounds play a 
central role in the living organism; it is pertinent to mention photosynthesis, metabolism, 
and involvement in coenzyme systems etc. It can have a variety of oxidation states 3 and 5, 
generally OP compounds based on their derivatives of phosphorous. Organophosphate 
triesters, phosphonates, phosphonofluoridates and phosphonothioates comprise a broad 
class of chemical neurotoxins (Fig 1). The hydrolysis of OP compounds follows several 
patterns, depending upon the type of ester, the solvent, the pH range or upon catalytically 
active additives. 
 

 

(a) (b) (c) 

Fig. 1. Structures of (a) Phosphate, (b) Phosphonates and (c) Phosphinates 

However, the high toxicity of the OP compounds had not been recognized until the 1930s, 
when Lange and Krűger described effects, which they noticed during synthesis of some OP 
with the P-F bond (Holmstedt, 1963). German Chemists subsequently became interested in 
synthesizing insecticides. G. Schrader, in 1936, synthesized highly toxic OP insecticide ethyl- 
N,N-Dimethylphosphoramidocyanidate (tabun) and isopropyl methylphosphonofluoridate 
(sarin) in 1937 (Robinson & Leitenberg, 1971). Schrader synthesized the toxic OP compounds 
in search of better insecticides. Nerve agents are also OP compounds such as sarin (GB), 
tabun (GA), soman (GD) and VX are categorized as chemical warfare (CW) agents. During 
World War II, the Germans possessed large quantities of tabun and sarin although they 
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were not used in that conflict. Nerve agents are divided into two main groups: the G-agents 
and V-agents. The G-agents are nonpersistent (sarin, soman, & tabun) and cause casualties 
primarily by inhalation. Sarin is highly volatile compared to tabun and soman. The V-agents 
are persistent (VX) they can therefore cause casualties by both inhalation and absorption 
through the skin.  
In 1944, G.Schrader synthesized the parathion series of OP compounds. The first member of 
parathion series is O,O-diethyl O-4-nitrophenyl phosphate (paraoxon). These compounds 
have excellent insecticidal properties, but on the other hand they are highly toxic to 
mammals. Schrader therefore sought to synthesize esters with as low toxicity as possible to 
ensure maximum safety for all users. Therefore, he changed the ethyl group to methyl esters 
i.e. parathion methyl (O,O-dimethyl O-4-nitrophenyl phosphorothioate (Fig.2).  
 
 

 

(Sarin) (Soman) (Tabun) 

 

(Parathion) (Malathion) (Paraoxon) 

Fig. 2. Structures of OP compounds- Nerve agents and Pesticides 
 

OP pesticides and insecticides are extensively used by farmers all over the World (Gilliom et 

al., 1999). The general chemical structure of these types of deadly OP compounds consist of 

a tetrasubstituted phosphorous (V) center, an oxygen or sulfur atom double bonded to the 

phosphorous, a leaving group, and two substituents that vary widely depending on the 

subclass. Due to their widespread presence, great environmental concerns have recently 

arisen around this type of pollution (Fig 3). These effective broad-spectrum compounds 

used against insect and arthropod, pests, are highly toxic to humans by different routes of 

exposures, such as dermal absorption, ingestion or inhalation. These contaminants pose 

serious to fatal health hazards, such as asthma, birth defects and deaths. Therefore, 

environmental monitoring is required to protect the public and the environment from 

possible organic toxins released into the air, soil, and water. 
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Fig. 3. Possible routes of environmental exposure of OP Pesticides/nerve agents to humans 
and wildlife  

2. Mode of action of OP compounds on acetylcholineesterase enzyme 

The toxicity or mode of action of OP compounds can be attributed to the inhibition of the 

enzyme acetylcholinesterase (AChE). AChE is a globular protein and its three-dimensional 

structure is known. Its physiological substrate is acetylcholine. The active site of AChE 

consists of two subsites, anionic and esteratic sites. The anionic site is represented by a 

glutamate ion. The esteratic site has serine moiety and histidine as well as tyrosine residues 

(Schumacher et al., 1986). This enzyme is essential for the central nervous system, and being 

present in both humans and insects. The normal function of AChE is the hydrolysis of 

acetylcholine neurotransmitter in the synaptic membrane to prevent its accumulation, and 

as a result forming acetylated enzyme and releasing choline. The high percentage of 

released choline is transported back into the nerve ending for reconversion to acetylcholine 

and storage (Fig. 4). This degradation process results in a lowered level of acetylcholine, and 

ultimately the termination of nerve impulses. 

OP compounds covalently block the active site of serine residue of AChE by undergoing 
nucleophilic attack to produce a serine-phosphoester adduct. This irrevrsible inactivation leads 
to an excess accumulation of acetylcholines in the peripheral and central nervous system 
causing cholinergic manifestations. At high doses, there is depression of the respiratory centre 
in the brain, followed by peripheral neuromuscular blocked causing respiratory paralysis and 

www.intechopen.com



 Pesticides - Strategies for Pesticides Analysis 

 

318 

death (Baigar, 2004; Somani, 1992; Vijayaraghavan et al., 2010). The pharmacologic effects and 
toxicity of these OP compounds are dependent on their stability, rate of absorption by various 
routes, distribution ability to cross the blood-brain barrier, rate of reaction with AChE.  
 

 

Fig. 4. Action of OP compounds on acetylcholinestrase 

3. Toxicity of OP compounds and treatment 

The nerve agents (also known as nerve gases) are organophosphorus compounds (OP). All OP 

compounds do not qualify as war gases due to their differential toxicity. Some of the OP 

compounds are less toxic to humans and are used as insecticides. Agents that fall in the nerve 

agent category are tabun, sarin, soman and VX. The absorption of these agents into the system 

is through inhalation, and if the skin is also exposed, they can be absorbed appreciably.  

The effects of nerve agents are the result of the action on the muscurinic and nicotinic 

receptors within the central nervous system. They include constriction of the pupil 

(meiosis), increased production of saliva, running nose, increased perspiration, urination, 

defecation, bronchosecretion, bronchoconstriction, decreased heart rate and blood pressure, 

muscular twitches and cramps, cardiac arrhythmias, tremors and convulsions. The most 

critical effects are paralysis of the respiratory muscles and inhibition of the respiratory 

center. Ultimately death is due to respiratory paralysis. If the concentration of the nerve 

agent is high, death is immediate (Baigar, 2004; Munro et al., 1994; Somani, 1992; 

Vijayaraghavan et al., 2010)). 

LD50 is the dose that may kill 50% of the population exposed. LCt50 is the product of 

concentration of a vapour or an aerosol and the time for which one is exposed, that may kill 

50 % of the population. Toxicological parameters of nerve agents and OP pesticides are 

shown in Table 1. 

4. Treatment of OP compounds poisoning 

The treatment of nerve agent poisoning requires to be done under the supervision of 
medical personnel (Marrs et al. 2006; Thiermann et al.2007) The treatment schedule can be 
classified as: 
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i. Termination of further intoxication 
ii. Artificial respiration or oxygen therapy, and 
iii. Antidote therapy 

5. Termination of further Intoxication 

 Like any other poison, the first and the foremost step is removal of the subject from the 
contaminated environment and removal of the toxicant from the skin. 
 

NerveAgents/ 
Insecticides/ 

LD50 

(bare skin) mg 
LD50 

(oral) mg 
LCT50(inhalation) 

mg.min.m-3 

Tabun 200-1000 25-50 100-200 

Sarin 100-500 5-20 50-100 

soman 50-300 5-20 25-50 

VX 5-15 3-10 5-15 

Dichlorvas >7000 300-6000 500-1000 

Malathion >25000 400-40000 - 

Parathion 1470 70 - 

Methidathion > 100000 1400 - 

Fenthion >23000 >15000 - 

Mevinpos >300 >250 - 

Table 1. Toxicity data of nerve agents and insecticides for a 70 Kg man (Median lethal dose). 

6. Artificial respiration or oxygen therapy 

Artificial respiration is very important since it assists the patient in breathing, and should be 
initiated as early as possible either manually or by mechanical respirators. Artificial 
respiration must continue until natural breathing of the patient is restored. 

7. Antidote therapy 

The principle of antidote therapy is based on the effects of the nerve agents as shown in the 
Table 2. 
 

Effects Treatment Drugs 

Excess of acetylcholine Antagonists of acetylcholine Cholinolytics 

Cholinesterase Inhibition Reactivation of cholinesterase Oximes 

Convulsions Anticonvulsants Diazepam 

Table 2. Treatment of OP compounds exposure. 

8. Cholinolytics 

These drugs are very important to block the excess action of acetylcholine. They are 
competitive inhibitors of muscarinic receptors. As atropine has been studied extensively in 
this group, it is invariably used. Atropine should be administered immediately and 
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repeatedly starting with an initial dose of 2 mg intravenously, till it is adequate 
(atropinisation), as indicated by dryness of mucosa of nose and mouth, and an increase in 
heart rate. The administration of atropine has to be continued for several days or weeks, 
depending on the severity of intoxication (2-4 mg per week for moderate exposure). The 
dosage of atropine should not hinder the performance of a non-intoxicated individual. Side 
effects of 2 mg atropine in a normal individual are increased heart rate, drying of secretions, 
mydriasis (dilatation of pupil) and paralysis. Most of the effects are reversible. Inhibition of 
sweating in a non-nerve agent poisoned individual is hazardous and is temperature 
dependent. 

9. Oximes 

Oximes are used as cholinesterase reactivators, thereby restoring the inhibited AChE. The 
oximes in common use are pralidoximechloride (2-PAM) and obidoxime (toxogonin). But, 
these oximes are not effective for soman poisoning. For this H-series oximes are preferred 
e.g. HI-6.  
The oximes should be administered in combination with atropine. The dose of 
pralidoxime chloride is 15 - 25 mg.kg-1 by slow intravenous injection. Autoinjectors like 
Combopen type contain 600 mg of pralidoxime chloride in 2 ml solution. Commercially 
available vials containing 1 g of pralidoxime can be dissolved in 3 ml of sterile water or 
saline and 2 ml administered intramuscularly. The usual dose of obidoxime is 300 mg. 
Since these oximes are quickly excreted, a second or third dose may be needed at regular 
intervals. 

10. Diazepam 

Nerve agent poisoning leading to serve convulsions and may cause brain damage in 

severely exposed patients. Diazepam is used as an adjunct to reduce the convulsions. The 

usual dose of diazepam is 5 - 10 mg. 

11. Self treatment 

It is important that the antidotes should be administered very quickly in the field itself in 

the form of first aid. This is done by the use of autoinjectors. These autoinjectors contain a 

cholinolytic (atropine) and an oxime (2-PAM or obidoxime). The autoinjectors are simple to 

use and are for intramuscular injection only. Reusable autoinjectors are also available 

(Autoject Injectors) for atropine sulphate and pralidoxime chloride in which the drug 

cartridges can be replaced. This is ideal for mass causality management. 

12. Prophylaxis against nerve agent poisoning 

There are no accepted prophylactic antidotes for nerve agent poisoning, i.e., drugs 

administered before exposure to the agent. Physostigmine or pyridostigmine, a reversible 

cholinesterase inhibitor, has been tried with some success in the prophylaxis of nerve agent 

poisoning. Pyridostigmine bromide has been introduced as a pretreatment drug. The dose is 

30 mg, three times a day. Though it may give some protection against nerve agent poisoning 

it has side effects. 
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13. Detection of OP compounds 

In recent years the determination of OP compounds and nerve agents have became 
important because of the widespread use of OPs as pesticides and clear threat to people 
from the potential use of nerve agents by terrorists. Several organizations regulate the 
maximum levels of permissible pesticide residues in drinking water and in food for human 
and animal consumption. Among them, notable are Food and Agricultural Organization 
(FAO) of the United Nations, the World Health Organization (WHO), the European Union 
(EU), the US Environmental Protection Agency (EPA) and the US National Institute for 
Occupational Safety and Health (NIOSH). The Organization for the Prohibition of Chemical 
Weapons (OPCW) regulates the use of CW agents, through the implementation of the 
provisions of Chemical Warfare Convention (CWC).  
Therefore, there is need to develop fast, sensitive, and field-deployable screening technology 
for quick response. The most common ways for detecting OP pesticides are 
chromatographic methods coupled with different detectors and spectrometry (Gundel & 
Angerer, 2000; Hernandez et al., 2005). This method is sensitive and reliable but can not 
carried out in field, it is expensive and time consuming too. In addition to this, variety of 
approaches have been investigated for sensors, including enzymatic assays (Russell et al., 
2003), molecular imprinting coupled with luminescence (Jenkins et al., 1997; Rudzinski et al., 
2002), colorimetric methods (Wallace et al., 2005), surface acoustic waves (Nieuwenhuizen & 
Harteveld, 1997), fluorescent organic molecules (Yamaguchi et al., 2005; Zhang & Swager, 
2003), interferometry (Sohn et al., 2000) and enzyme biosensors based on inhibition of 
cholinesterase activity (Evtugyn et al., 1996; Trojanowicz, 2002). 

14. Enzyme inhibition based biosensors 

Enzyme-based biosensors have emerged during past few years and based on the principle 
of inhibition of AChE and electrochemical or optical based detection. Analytical devices 
based on the determination of inhibition of AChE have been widely used for the detection of 
OP compounds (Pavlov et al., 2005; Schulze et al. 2003; Tran-Minh et al. 1990). The screen-
printed biosensors were used for the determination of methamidophos pesticides. The 
inhibition of AChE is measured by direct or indirect measurement of its activity. In the case 
of the direct method, the assay is based on the spectrophotometric or electrochemical 
measurement of thiocholine produced from the following reaction: 
AChE  

 2acetylthiocholine H O AChE acetic acid thiocholine+ +iiiiiiif  (1) 

The rate of inhibition (%) is calculated before and after incubation with OP compounds as 
100 × (Io-Ii) /Io where Io is current before inhibition and Ii is current after inhibition (Amine 
et al. 2006). 
In the development of biosensors immobilization of enzymes is the critical step in 
maintaining enzyme activity, stability and shelf life of electrode. Various techniques are 
used such as physical entrapment, microencapsulation, covalent binding, adsorption and 
cross-linking. AChE was encapsulated in sol-gel film on a glass cap that could be fixed on an 
optical fiber (Doong & Tsai, 2001). Sol–gel technology provides an attractive way for the 
immobilization of biological entities including full cell, enzyme, protein and antibody or 
antigen due to the inert low temperature process (Pandey et al. 2000). Recently, the 
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nanoparticles and carbon nanotube (CNT) have received considerable attention to increase 
the sensitivity of the biosensor due to then high conductivity, catalytic and electrical 
properties (Pavlov et al., 2005). AChE was immobilized on silica sol -gel assembling gold 
(Au) nanoparticles for the inhibition study with OP compounds. Due to the large quantities 
of hydroxyl groups in the sol-gel composite provide a biocompatible environment for AChE 
enzyme. Immobilized AChE catalyze the hydrolysis of acetylthiocholine chloride and 
produce thiocholine which is again oxidized to produce signal (Fig.5). The Au nanoparticles 
catalyze the electro-oxidation of thiocholine. After incubation with OP compounds, peak 
current decreases and it shows the inhibition of immobilized enzyme and the inhibition is 
directly proportional to the concentration of OP compounds. In another approach reaction 
of thiocholine with 7-diethylamino-3-(4’-maleimidylphenyl)-4-methylcoumarin (CPM) 
generates fluorescent product which can also be monitored for detection purpose based on 
inhibition approach (Parvari et al. 1983).  
 

 

Fig. 5. Acetylcholine esterase biosensor principle for the detection of OP compounds based 
on AuNPs immobilized in silica sol-gel process 

The detection of OP compounds have also been developed on the basis of two-enzyme 
approach. Acetylcholinesterase (AChE) and choline oxidase (ChOx) are used to recognize 
acetylcholine and choline. In this reaction, choline is acted upon by ChOx and resulted 
hydrogen peroxide (H2O2) is determined. Finally, oxidation of H2O2  is monitored 
amperometrically. 

2Acetylcholine  H O  AChE  Choline  Acetic acid+ +iiiiiiif  

 2 2 2 2Choline  2O  H O ChOx Betaine  2H O+ + +iiiiiif  (2)  

Various sensor based on bienzymatic approach have been developed for the detection of OP 
compounds (Ciucu et al., 2003, Ferapontova et al., 2001,Lin et al., 2004, Ferapontova et al., 
2001, Kok et al., 2002, Upadhyay et al. 2009). The ferrophthalocyanine (FePC) modified 
carbon paste electrodes are used for the construction of bienzymatic amperometric 
biosensor which is operated at low potential (0.35 V) for the detection of OP pesticides 
(Ciucu et al. 2003). They reported detection limit up to 10-10 M of paraoxon and carbofuran. 
A disposable CNT based amperometric biosensor developed for the detection of these 
compounds (Lin et al., 2001). Here, also the biosensor is comprised of co-immobilization of 
CNT with AChE/ChOx enzymes on a screen printed electrode. In this method multiwall 
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CNT (MWCNT) showed a significant catalytic effect for the reduction and oxidation of 
H2O2, Leading to the development of an effective biosensor for the assay of chlorpyrifos, 
fenitrothion and methyl parathion with detection limit up to 0.05 μM. These improved 
characteristics are attributed to the catalytic effect to H2O2 and the large surface area of 
MWCNT material. The application of bimetallic nanoparticles (Bi-MNPs) is also reported 
(Fig. 6) for the sensitive detection of OP pesticides and nerve agents (Upadhyay et al., 2009). 
A novel sensitive amperometric biosensor based on electrodeposition of gold-platinum 
bimetallic nanoparticles onto 3-aminopropyltriethoxy silane modified glassy carbon 
electrode for the detection of paraoxon ethyl, aldicarb, and sarin has been developed. The 
AChE and ChOx are coimmobilized on the Au-PtNPs modified electrode by cross-linking 
through glutaraldehyde. The key idea for using Au-PtNPs modified glassy carbon electrode 
is to improve the electrocatalytic activity of H2O2 on the modified electrode. Inhibition of 
enzyme depends upon the preincubation time of enzyme with inhibitors. It is observed that 
the inhibition level of enzyme increases or remaining enzyme activity decreases with 
increasing incubation time. The detection limit and linear working range of biosensors were 
reported at 30-40% inhibition level 150-200 nM, 40-50 nM and 40-60 μM for paraoxon ethyl, 
sarin and aldicarb respectively. It can be reached below this range but to avoid the 
interference, 30-40% enzyme inhibition level was considered as optimum. This result 
showed that the biosensor has good analytical characteristics for these inhibitors due to 
electrochemical catalytic efficacy of Au-Pt NPs. 
Biosensor based on flow injection amperometric detection of OP compounds/nerve agents 

has been developed. AChE is immobilized on the negatively charged CNT surface by 

alternatively assembling a cationic poly(diallyldimethylammonium chloride) (PDDA) layer 

and followed by self assembly of the negatively charged AChE layer. Under optimum 

conditions, the biosensor is used to measure as low as 0.4 pM paraoxon with a 6-min 

incubation time (Liu & Lin, 2006). In some other method AChE is immobilized on the pH 

sensitive redox polymer (polyaniline), which is coated on the vertically aligned thiol 

terminated ss-DNA-SWCNT on gold electrode for the detection of methyl parathion and 

chlorpyrifos. The key step of this biosensor is AChE-acetylcholine enzymatic reaction which 

causes small changes of local pH in the vicinity of an electrode surface. The pesticides are 

determined through inhibition of enzyme reaction (Viswanathan et al., 2009). 

 

 

Fig. 6. Preparation of the bienzyme biosensors on Au-Pt NP modified electrode. 

The reactivation of AChE enzyme after the inhibition by OP compounds has been 

investigated by using pyridine-2-aldoxime methyliodide (2-PAM) and 4-formylpyridinum 
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bromide dioxime (TMB-4) (Amine et al., 2006, & Upadhyay et al., 2009). It has been found 

that the enzyme activity retains nearly 60% of initial activity with TMB-4, where as in the 

case of 2-PAM, the enzyme activity retention dropped to less than 50% of initial activity. 

Thus, it is recommended that the pesticide inhibited enzyme should be reactivated within 10 

min to achieve the maximum reactivation of enzyme. In case of nerve agents owing to aging 

of inhibited AChE, a fraction of enzyme will irreversibly inhibited. In case of bienzymatic 

approach the relative proportion of AChE/ChOx will change. Therefore, it is not easy to get 

100% recovery of enzyme after inhibition.  

15. Fluorescence based detection of pesticides and Organo-phosphorous 
compounds 

Fluorescence-based sensors (biosensors/chemosensors) offer significant advantages over 

other conventional methods for detection of OP compounds. The principal advantages of 

fluorescence are its high single-molecule sensitivity and in most of the cases it shows almost 

instantaneous response. Fluorescence methods are capable of measuring concentrations of 

analytes 106 times smaller than absorbance techniques (Martinez et al. 2003). A variety of 

analytical techniques have been developed which exploit changes in fluorescence properties 

of a molecule in different environments, whether those changes are quenching (Chen et al. 

2000), and surface modified fluorescence (Kummerlen et al. 1993; Lichlyter et al. 2003). 

Molecular beacons provide an example of the use of surface modified fluorescence for the 

detection of DNA with sensitivity down to the mid nanomolar level (Bonnet and Libchaber 

1999). The requirements for a successful sensor are: (1) high specificity in binding between 

recognition molecule and target, and (2) ability to easily manipulate the distance between 

nanoparticle and fluorophore in response to the target molecule concentration.  

One of the most convenient and simple means of chemical detection is the generation of an 

optical signal, for example, changes in absorption or emission bands of the chemosensor in 

the presence of the target analyte. The principle behind sensor operation is based on 

nanoparticle- associated optical biosensors for the direct detection of organophosphate 

chemical warfare agents and pesticides is shown in Fig 7a and Fig 7b. As shown in Fig. 7a 

gold nanoparticle is covalently bound to an enzyme molecule. A fluorophore decoy, being a 

weak competitive inhibitor of organophosphorus hydrolase (OPH) with a similar chemical 

structure to the substrate (analyte of interest), is introduced to the solution and is bound to 

the OPH active site. If the gold particle attached via amino- or sulfhydryl groups to the OPH 

is at the certain distance from the decoy (size ranging from 10 to 40 nm), enhancement of 

fluorescence will be observed. If the nanoparticle is at a distance of greater than about 40 nm 

from the fluorophore, then fluorescence will be unaffected by the presence of the gold, 

leading to a reduction in fluorescence signal. Once the decoy is bound to the OPH active 

site, then it is possible test for the presence of the analyte of interest (which is a substrate of 

OPH). If the substrate is present, then the analyte will displace the decoy because of its 

much higher affinity for the OPH active site, and the fluorescence signal of the sample will 

change. As seen in Fig. 7b, for the case of an enhancement-based sensor, the analyte 

(indicated by S), will displace the decoy bound to the enzyme active site. As the decoy 

moves away from the gold nanoparticle, its fluorescence intensity will change. The change 

in fluorescence intensity is related to the concentration of analyte present in the solution.  
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Rogers et al. used a pH-sensitive fluorescent dye, consisting of AChE linked to the pH-
sensitive compound fluorescein isothiocyanate (FITC). This biosensor was found to be very 
sensitive (capable of detecting nanomolar (nM) concentrations of paraoxon when exposed to 
the solution containing the analyte for ten minutes), and it demonstrated some selectivity 
toward different OP compounds (Rogers et al. 1991). A number of biosensors have been 
developed based on fluorescence polarization immunoassays (FPIA) (Kolosova et al. 2003; 
Kolosova et al. 2004; Lee et al. 2005; Tang et al. 2008). A rapid, fiber-optic biosensor assay for 
the direct detection of organophosphates was developed to provide continual remote 
monitoring and spectral fluorescent notification. In this study, the bio-recognition element, 
organophosphate hydrolase (OPH), was conjugated with both biotin and a fluorescence 
marker i.e. carboxynaphthofluorescein (CNF). Avidin was attached to the polystyrene 
waveguide surface of a fluorescent detector, and the OPH–CNF–biotin biosensor conjugate 
was bound to the avidin. The recognition element (OPH) and reporter (CNF) molecules 

were designed to entertain OP samples with concentrations of neurotoxin as low as 0.05 μM. 

Quantitative detection could be determined from 1 to 800 μM for paraoxon and from 2 to 

400 μM for DFP (Viveros et al. 2006). 
 

Fig. 7. (a) Decoy-enzyme interaction for enhancement in the absence of substrate. Decoy 
binds to enzyme-nanogold conjugate (organophosphorus hydrolase-OPH), leading to a 
surface enhanced fluorescence of the decoy; (b) Analyte (S) displacement of decoy (D) from 
OPH-gold complex (OPH), leading to decrease fluorescence signal from the decoy. 

Gold nanoparticle based surface enhanced fluorescence (NSEF) spectroscopy for rapid and 
sensitive screening of organophosphorus agents (OPA) was reported. In this technique, the 
fluorescent from Eu3+ ions that are bound within the electromagnetic field of gold 
nanoparticles exhibit a strong enhancement. In the presence of OPA, Eu3+ ions are released 
from the gold nanoparticle surface and thus a very distinct fluorescence signal change was 
observed with the high sensitivity of 1 μM (Samuel et al. 2008). Dale et al presented a small 
molecule sensor that provides an optical response to the presence of an organophosphorus 
(OP)-containing nerve agent mimic. Exposure to an OP nerve agent mimic triggers 
phosphorylation of the primary alcohol followed rapidly by an intramolecular substitution 
reaction as the amine displaces the created phosphate. The quaternized ammonium salt 
produced by this cyclization reaction no longer possesses a lone pair of electrons, and 
fluorescence readout is observed as the nonradiative PET quenching pathway of the 
fluorophore is shut down (Dale et al., 2006). Anandakathir et al. reported the synthesis of 
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stilbene-based fluorophore, 3,4-dihydroxy-4'-aminostilbene (DHAS) for the detection of 
chemical warfare agents such as organophosphorus nerve gases. The interaction of DHAS 
with nerve agent simulant, diethyl chlorophosphate (DCP) was investigated in solution and 
vapor phase by fluorescence spectroscopy (Anandakathir et al. 2009). 

16. Immunological determination of pesticides and Organo-phosphorous 
compounds 

Bioanalytical assays based on enzymatic or immunochemical principles have been proposed 
as promising alternatives, as they are highly sensitive, selective, specific, rapid and reliable. 
A selective enzyme-linked immunosorbent assay (ELISA) for the insecticide chlorpyrifos 
was developed using the sera of highest specificity. This shows an I50 of 160 ppb with a 
detection limit of 10 ppb (Cho et al., 2002). Sensitive, simple and rapid enzyme linked 
immunosorbent assay (ELISA) methods have been reported for the determination of four 
organophosphorus pesticides diazinon, fenthion, malathion and chlorpyrifos in extra virgin 
olive oil. The limits of detection for the pesticides in olive oil are from 46 ng ml−1 for 
diazinon to 10 ng ml−1 for fenthion (Garcia et al., 2006). Teller et et al developed a combined 
piezoelectric/amperometric sensor based on the modular assembly of different recognition 
elements. Acetylcholinesterase was chemically modified by benzoylecgonine-1,8-diamino-
3,4-dioxaoctane (BZE-DADOO), thus providing an additional recognition element for anti-
cocaine antibodies or butyrylcholinesterase, respectively. It was possible to determine 
cocaine in dynamic range of 10-7 to 10-9 mol/L using polyclonal antibody. At the same time the 
in-situ inhibition of the adsorbed BZE-AChE by the organophosphate chlorpyrifos-oxon could 
be monitored by amperometric activity measurement (Teller et al., 2008). Liang et al developed 
immunoassay method for the O,O-dimethyl organophosphorus pesticides, including 
malathion, dimethoate, phenthoate, phosmet, methidathion, fenitrothion, methyl parathion 
and fenthion. Three haptens with different spacer-arms were synthesized. The haptens were 
conjugated to bovine serum albumin (BSA) for immunogens and to ovalbumin (OVA) for 
coating antigens. The IC50 values, under optimum conditions, were estimated to be 30.1 μg/L 
for malathion, 28.9 μg/L for dimethoate, 88.3 μg/L for phenthoate, 159.7 μg/L for phosmet, 
191.7 μg/L for methidathion, 324.0 μg/L for fenitrothion, 483.9 μg/L for methyl parathion, 
and 788.9 μg/L for fenthion (Liang et al., 2008). A nanoparticle-based electrochemical 
immunosensor has been reported for the detection of phosphorylated acetylcholinesterase 
(AChE), which is a potential biomarker of exposure to organophosphate (OP) pesticides and 
chemical warfare nerve agents. Zirconia nanoparticles (ZrO(2) NPs) were used as selective 
sorbents to capture the phosphorylated AChE adduct, and quantum dots (ZnS@CdS, QDs) 
were used as tags to label monoclonal anti-AChE antibody to quantify the immunorecognition 
events. The voltammetric response of the immunosensor is highly linear over the range of 10 
pM to 4 nM phosphorylated AChE, and the limit of detection is estimated to be 8.0 pM. The 
immunosensor also successfully detected phosphorylated AChE in human plasma (Liu et al., 
2008). 

17. Microfluidics based detection 

Rapid detection of OP compounds/agents is required to take a quick decision or efficient 
decontamination for a particular site. Miniaturization of analytical devices is attracting 
considerable interest due to the potential for greatly enhancing the speed of analytical 

www.intechopen.com



Organophosphorous Compounds- Toxicity and Detection Approach  

 

327 

separations or characterizations. Over the last decade, micrototal analysis system (µTAS) or 
Lab-on-a-chip for various purposes have been developed that aim for the rapid high 
throughput analysis of molecules, such as DNA and proteins, point-of-care testing and 
microchip for the fast screening of OP compounds (Figeys & Pinto, 2000; Vilkner at al., 2004; 
Wang et al., 2002). Microfluidic system is a potential platform for biochemical/chemical 
analysis with numerous advantages including low sample/reagent consumption, high 
sample throughput and total analysis on the same platform (Vilkner et al., 2004). 
An integrated microfabricated device that performs automated enzymatic assays was 

developed. Active and precise microfluidic control of reagent transport throughout the 

interconnected channel network was achieved using electrokinetic-induced motion. They 

controlled the reagent dilution and mixing by regulating the applied potential at the 

terminus of each channel, using voltages derived from an equivalent circuit model of the 

microchip. Assay of enzyme (β-galactoside) was monitored by using β-D-

galactopyrranoside resorfuin a substrate that is hydrolyzed to resorfuin, which is a 

fluorescence product (Hadd et al., 1997). The separation and sensitive electrochemical 

detection of OP compounds have been developed by using on-chip micellar electrokinetic 

chromatographic (MEKC) techniques (Wang et al., 2001). In this study they microfabricated 

capillary electrophoresis glass chips with planar thick film amperometric detectors for the 

separation and detection of toxic OP compound. The integrated microsystem offers rapid (~ 

2.5 min.) simultaneous measurements of micromolar levels of OP compounds. The detection 

of regenerated sarin in human blood samples has been developed in a lab-on-a-chip device. 

This device should allow early detection of sarin exposure in human being. The device is 

based on continuous-flow microfluidics with sequential stages for lysis of whole blood, 

regeneration of free nerve agent from its complexes with blood cholinesterase, protein 

precipitation, filtration, enzyme-assisted reaction and optical detection (Tan et al., 2008). The 

reactor for nerve gas regeneration is designed as a micromixer based on chaotic advection 

with herring-bone structures. The reaction chamber is located on the other side of the main 

device layer, with herring-bone patterns to improve the transport of reagents to the glass 

surface with immobilized enzyme. Detection of sarin in whole blood spiked with a low level 

sarin concentration, 200nM is achieved. They also reported the kinetics of inhibition reaction 

to estimate the required flow rate and inhibition time. In the present system the pumping 

and valving processes were carried out outside the lab-on-a-chip. The device is suitable for 

other applications in occupational hygiene in agriculture. Microfluidics system for OP 

compound detection holds great promise for a timely warning and alarm in the emergency 

case and its also can be carried any where for on site detection. Microfluidics provide better 

platform with combination of nanoparticles to enhance the sensitivity and selectivity on the 

chip. 

18. Protective measures against OP compounds/nerve agents 

The threat of OP compounds or commonly used pesticides and chemical manufacturing by 
products act as anticholinesterases, posing an occupational low-dose exposure hazard to 
workers in a variety of professions as well as public (Aas, 2003). Protective equipment which 
is used by an individual to achieve physical protection is termed as individual protection 
equipment (IPE). These include gas masks and protective clothing such as trousers, jacket, 
over boots and gloves. These physical protections create an artificial barrier between the OP 
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compounds and the subject (human being), and they have provision for breathable air. The 
barrier has to provide protection against liquids, aerosols or gases and should possess the 
essential characteristics of air tightness and non-permeability to gases. The basic materials 
are used in these barrier include spherical carbon coated fabric, activated charcoal, 
polyurethane foam and for aerosol High efficiency Particulate Aerosol (HEPA) filter media 
is composed of glass fibers of diameter 1.0 to 10 microns. The aerosol particles from the 
contaminated air captured over the surface of the filter medium by van-der wal’s force.This 
type of protection comes under physical protection. Medical countermeasures have been 
discussed earlier in the section of toxicity of OP compounds. Three drugs atropine, 
pralidoxime chloride and diazepam are used to treat nerve agent exposure. Atropine is very 
important to block the excess action of acetylcholine. It is a competitive inhibitor of 
muscarinic receptors. Atropine should be administered immediately and should be repeated 
starting with an initial dose of 2 mg intramuscularly or intravenously. 

19. Conclusions and future perspectives 

We have described a brief summary about OP compounds/nerve agents and mode of action 

toxicity of these compounds and various detection approach. Despite the considerable 

research activity towards the development of detection system for monitoring the OP 

compounds in the lab and on site it is not easy to discriminate various OP compounds in the 

same sample. Current research activity involves numerous efforts for improving the 

analytical performances of the biosensing systems in order to be able to monitor a wide 

range of pollutants in environmental and food samples. The use of nanoparticles/CNT leads 

to a greatly improved electrochemical detection due to its electrocatalytic activity. For more 

sensitive detection fluorescence method is also beneficial. However, with the increasing 

threat of terrorism, and large scale use of OP pesticides the roles of detectors are also 

increasing in civil emergency responses. In these instances, the detectors are used to monitor 

the presence of these compounds in the atmosphere, provide an indication of their levels in 

order to determine the necessary level of protection. Due to the structural similarity of OP 

compounds, it is also of paramount importance that the designed sensors must be fabricated 

such that they are highly selective towards specific OP compounds. The Microfluidics and 

nanotechnology offer a promising technology for the miniaturized detectors which can be 

used for onsite and easy to operate. By using this sensitivity, real time detection, response 

time, and selectivity can be improved. It requires very low sample volume and other 

reagents and the interference can also be minimized. The engineered variants of enzymes 

could be another approach in biosensor design for the discrimination and detection of 

various enzyme-inhibiting compounds when used in combination with chemometric data 

analysis using artificial neural network. New opportunities are considered with the 

application of novel enzymes or enzyme sources as well as biocomponents with necessary 

enzyme activity. Combined with traditional biosensors and test kits this biosensing can be 

applied as alarm monitors of environmental pollution. In this combination nanoparticles 

will play a very important and effective role to increase the sensitivity and selectivity. When 

we introduce nanoparticle in the combined system all the physical parameters will change 

and it creates a new phenomenon. The development of antidote is also necessary for 

medical countermeasures. For this new drug development research is promising to counter 

the effect of OP compounds once it is exposed to any person.  
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