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1. Introduction 

Originaly, a filter is a physical device for removing unwanted components of mixtures (gas, 
liquid, solid). In the area of telecommunications, signals are mixtures of different 
frequencies, and the term of filter is used to describe the attenuation of the unwanted 
frequencies. Since 1940, the concept of a filter was extended to the separation of signals from 
noise. With Kalman filter, the meaning of filter is well beyond the notion of separation. It 
also includes the solution of an inversion problem, in which one knows how to represent the 
measurable variables as functions of variables of principle interest.  
Least squares method proposed by Carl Friedrich Gauss in 1795 was the first method for 
forming an optimal estimate from noisy data, and it provides an important connection 
between the experimental and theoretical sciences.  
Before Kalman, Norbert Wiener proposed his famous filter called Wiener filter which was 
restricted only to stationary scalar signals and noises, the solution obtained by this filter is 
not recursive and needs the storing of the entire pas observed data. 
Kalman filter is a generalization of Wiener filter. The significance of this filter is in its ability 
to accommodate vector signals and noises which may be non stationary. The solution is 
recursive in that each update estimate of the state is computed from the previous estimate 
and the new input data, so, contrary to Wiener filter, only the previous estimate requires 
storage, so Kalman filter eliminate the need for storing the entire pas observed data. 
In this chapter, we present two important applications of Kalman filter. In the first one we 
show how this filter can be used as an adaptive controller system (Chafaa et al., 2006). 
Studies proposed in this part illustrate a structure for the control of a positional system 
towards a mobile target in a three dimensional space (see Fig.1). In the presence of a random 
disturbances (white noise) or when few system parameters change, the use of an adaptive 
and optimal controller turns out necessary (Mudi & Nikhil, 1999; Zdzislaw, 2005). In this 
case we are choosing to use Kalman filter as a controller. This technique is based on the 
theory of Kalman's filtering (Kalman, 1960; Eubank, 2006), it transforms Kalman's filter into 
a Kalman controller.  
In the second application we give the use of such filter in estimating the membership 
functions of fuzzy sets in order to obtain a fuzzy model (Chafaa et al., 2007). Fuzzy 
modelling is an effective tool for the approximation of nonlinear systems. Takagi-Sugeno 
(TS) model is widely used fuzzy modeling technique (Takagi & Sugeno, 1986; Angelov & 
Filev, 2004). The TS model utilizes the idea of linearization in a fuzzily defined region of the 
state space. Due to the fuzzy regions, the nonlinear system is decomposed into a multi-
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model structure consisting of linear models that are not necessarily independent (Johansen 
& Babuska, 2003). A TS fuzzy model is usually constructed in two steps: Step 1: Determine 
the membership functions of the antecedents; Step 2: Estimate the parameters of the 
consequent functions.  
One of the most techniques used to release the first step is the fuzzy clustering in the 
Cartesian product-space of the inputs and outputs (Babuska & Verbruggen, 1995; Babuska & 
Verbruggen, 1997; Bezdek & Dunn, 1975). As the consequent functions are usually chosen to 
be linear in their parameters, the second step is done by standard linear least-squares 
methods (Babuska & Verbruggen, 1997; Babuska et al., 1998). 
Many clustering algorithms can be found in the literature, they are based on the 
optimization of fuzzy C-means functional (Nascimento et al., 2003). Some of them utilize an 
Euclidian distance norm (Bezdek et al., 1987; Hathaway & Bezdek, 1991) in which the 
detected clusters have an hyperspherical shapes, i.e., clusters whose surfaces of constant 
membership are hyperspheres. Others extend the Euclidian distance norm to an adaptive 
distance norm (Bezdek & Dunn, 1975; Gustafson & Kessel, 1997; Gath & Geva, 1998) in order 
to detect clusters of different geometrical shapes in one data set. 
 

 

M 1  : m o to r  re ce iv in g   a z im u th  co n tro l a c tio n .

M 2  : m o to r  re ce iv in g  r ise  co n tro l a c tio n . 

R 1  e t  R 2  : re d u ce rs . 

M 1  

M 2  

R 1  

R 2  

M

 

Fig. 1. Positioning system  

Fuzzy clustering in the Cartesian product-space of the inputs and the outputs has been 

extensively used to obtain the antecedent membership functions (Babuska & Verbruggen, 

1997; Babuska, 1998; Sugeno & Yasukawa, 1993). Attractive features of this approach are the 

simultaneous identification of the antecedent membership functions along with the 

consequent local linear models and the implicit regularization (Johansen& Babuska, 2003). 

By clustering in the product-space, multidimensional fuzzy sets are initially obtained, which 
are either used in the model directly or after projection onto the individual antecedent 
variables (regressors). As it is generally difficult to interpret multidimensional fuzzy sets, 
projected one-dimensional fuzzy sets are usually preferred.     
Babuska and Verbruggen (Babuska & Verbruggen, 1997) proposed a fuzzy modeling 
scheme based on Gustafson-Kessel clustering algorithm (GKCA) to estimate the premise 
membership functions and on least-squares method to estimate the parameters of the 
consequence functions. Abony et al (Abonyi et al., 2002) proposed to use the Gath-Geva 
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(GG) clustering algorithm instead of GKCA method, because with GG method, the 
parameters of the univariate membership functions can directly be derived from the 
parameters of the clusters. 
In this part, a fuzzy modeling algorithm combining GKCA and Kalman filter (KF) is 
proposed (Chafaa et al., 2007). We use GKCA in order to detect clusters of different 
geometrical shapes in the data set and to obtain the point-wise membership functions of the 
premise. After that a Kalman filter is introduced to estimate the parameters of the premise 
membership functions and those of the consequence functions. In the premise part, the 
membership functions are triangular functions, then Kalman filter will estimate the 
parameters of a straight line functions by using the data corresponding to the premise 
membership functions defined point-wise, but in the consequence part, Kalman filter will be 
used as a linear regression to estimate the parameters of the TS fuzzy model using the input-
output data set. 

2. Kalman controller for target tracking system 

2.1 Target tracking system 
A target tracking system is a system for which inputs are the azimuth and rise, and outputs 
are the control actions for locating the motors. The target moves through azimuth-rise space. 
Two dc-motors adjust the platform position constantly towards the target (Chafaa et al., 
2006; Brookner, 1998). The platform can be any directional system which can turn up exactly 
towards the target; such system can be a Laser, a video camera or an antenna. We suppose 
that we have a potentiometric system which can discover the direction of the platform 
towards the target (Ogata, 1970). The Radar sends azimuth and rise coordinates to the target 
tracking system in the end of every time interval, we calculate the current error and its 
variation in the platform position. Then, a Kalman controller determines the control actions 
for dc-motors, one action for azimuth motor and the other one for rise motor. These actions 
are going to reposition the platform as shown in Fig. 2. We can control independently the 
azimuth and rise positions by applying the same algorithm twice, it facilitates us 
calculations. 
 

 

Fig. 2. Control system 
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2.2 Kalman controller 
The Kalman filter is used for estimating or predicting the next stage of a system based on a 
moving average of measurements driven by white noise, which is completely unpredictable. 
It needs a model of the relationship between inputs and outputs to provide feedback signals 
but it can follow changes in noise statistics quite well.  The Kalman filter is an optimum 
estimator that estimates the state of a linear system developing dynamically through time. 
An optimum estimator can be defined as an algorithm that processes all the available data to 
yield an estimate of the “state” of a system whilst at the same time estimating some 
predefined optimality criterion.  
In this section we will conceive another type of controllers called "Kalman Controller" or 
"Kalman Filter controller". This technique consists to achieve a one-dimensional Kalman 
Filter acting as an alternative controller, i.e., it can provides the control actions to the dc-
motor in addition to its filtering function (Kosko, 1992).   
In the discrete state space formulation, the state and measurement equations for the 
controllers are given by:  

 
1k k k k

k k k

x Gx Hc w

z Cx v

+ = + +
= +   (1) 

Our proposed control structure contains two Kalman controllers, one for azimuth (Azimuth 
controller) and another for rise (rise controller). Since the two controllers act independently, 
so we can assume them to have one-dimensional models such that : 

 1G H C= = =   (2) 

Since the state is a control action, so we can take the input 
k
c  to be : 

 
k k k
c e e= + $   (3) 

Let 
1k

x +  denotes the control action necessary at the moment k to exactly lock onto the target 

at the moment k+1. Then, the controller output at the moment k will be considered equal the 

prediction 
1/

ˆ
k k k

u x +=      

Let us note that:   

 
/ 1

1

ˆ
k k k k

k k k

e x x

e e e

−
−

= −
= −$

  (4) 

By substitution of 2 and 3 in 1 we obtain the new state equation: 

 
1k k k k k

x x e e w+ = + + +$   (5) 

where 
k

w  represents a white noise that models target acceleration or other unmodeled 

effects. The new equation of measurements is 

 
/ 1

/ 1

ˆ

ˆ

k k k

k k k k

k k k

z x v

x e v

x v

−
−

= +
= + +

′= +
  (6) 
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Fig. 3. Control system 

Since we assume that 
k
e  and 

k
v  are uncorrelated, the variance of 

k
v′  is:   

 
( )

2

2

2 2

/ 1

k k

k k

k k

k k k

R E v

E e v

E e E v

P R−

′ ′⎡ ⎤= ⎣ ⎦
⎡ ⎤= +⎣ ⎦
⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

= +
  (7) 

The recursive equations of Kalman Filter take the following general form:   

 

[ ]

1/ /

/ 1 1/ 1 1

1

/ 1 / 1

/ / 1 / 1

/ / 1 / 1

ˆ ˆ

ˆ ˆ ˆ

k k k k k
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+
− − − −

−
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− −
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= +
= +

⎡ ⎤= +⎣ ⎦
= + −
= −

  (8) 

To obtain the one–dimensional Kalman controller, we substitute 2, 3, 6 and 7 in 8, and then 

we obtain it under the following form: 

 

[ ]

/

/ 1 1/ 1 1

/ 1

/ 1

/ / 1

ˆ

ˆ

1

k k k k k

k k k k k

k k

k

k

k k k k k

k k k k k

u x e e

P P Q

P
K

R

x u K v

P K P

− − − −
−

−
−

= + +
= +

= ′
′= +

= −

$

  (9) 

Figure 3 illustrates the detailed structure of Kalman controller. The simulation results of this 

controller are presented in figures 4 and 5, where we see in figure 4 that the load 

disturbance is rejected and in figure 5 the tracking is carried out. 
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Fig. 4. System response and Kalman control action to a strong load disturbance 

 
Fig. 5. System response and Kalman control action  to a step input and a strong load 
disturbance 

3. Fuzzy modeling and identification 

3.1 Takagi-Sugeno fuzzy models 

The TS fuzzy model can represent or model any unknown nonlinear system ( )y f= x , 

based on some available input-output data 1 2, ,...,
T

k k k nkx x x= ⎡ ⎤⎣ ⎦x  and ky . The index k  

denotes the individual data samples and n  the number of regressors. 
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In the TS fuzzy model, the rule consequents are crisp functions of the model inputs: 

 : ( ) 1, 2,...
T

i i i i iR IF is THEN y b i c= + =x A x a x  (10) 

Where x is 1n×  input variable, iy R∈   is the output variable. 1n×  vector 
i

a  and 
i
b R∈  

are the TS parameters. iR  denotes the ith rule and c  is the number of rules in the rule 

base. iA  is the premise multivariable membership function of the ith rule. 
T

i i ib= ⎡ ⎤⎣ ⎦θ a  is 

the parameter vector of the ith rule. 

The premise proposition “ ( )iisx A x ” can be expressed as a logical combination of 

propositions with univariate fuzzy sets defined for the individual components of x , 

usually in the following conjunctive form (Kukolj & Levi, 2004) : 

 1 1 1: ( ) ...... ( ) 1, 2,...
T

i i n in n i i iR IF x is A x AND AND x is A x THEN y b i c= + =a x  (11) 

the degree of fulfilment of the rule is calculated as the product of the individual 
membership degrees : 

 

1

( ) ( )
ij

n

i A

j

β μ
=

=∏x x   (12) 

where ( )
ijA

μ x  is the membership function of the fuzzy set ijA . 

The inference is reduced to the fuzzy-mean defuzzification formula (Takagi & Sugeno, 
1986 ; Kukolj & Levi, 2004) : 

 

( )
1

1

( )

( )

c
T

i i i

i

c

i

i

b

y

β
β

=

=

+
=
∑

∑
x a x

x

 (13) 

From (11) and (13), it is noted that TS fuzzy model approximates a nonlinear system with a 
combination of several linear systems by decomposing fuzzily the whole input space into 
several partial spaces and representing each input-output space with each linear equation. 

3.2 New fuzzy modeling algorithm 
The structure of the proposed algorithm is presented in Fig. 6. The identification algorithm 

proceeds in three steps: 

1. from the input-output sequences { }
1

( ,
N

k k k
x y = , partition the data into a set of local 

linear submodels by using GKCA in the product space ×X Y  

2. Obtain the membership functions for the premise variables by using cluster projections 
and Kalman filtering. 

3. Estimate the consequent parameters by Kalman filter algorithm. 
The three procedures are repeated to find the appropriate number of clusters c as shown in 

Fig. 6 in which the performance index used is the mean squared error (MSE), so when 

MSE ε≤  the loop is stopped and the optimal c is obtained. 
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Fig. 6. Structure of the proposed fuzzy modeling 

A. Fuzzy clustering 
Clustering of numerical data forms the basis of many classification and system modeling 
algorithms (Bezdek & Dunn, 1975; Babuska et al., 1998). The purpose of clustering is to distil 
natural grouping of data from a large data set, producing a concise representation of a 
system’s behavior. In particular, The GKCA has been widely studied and applied by many 
researchers (Bezdek et al., 1987; Hathaway &  Bezdek, 1991). The GKCA is an iterative 
optimization algorithm that minimizes the cost function: 

 

1 1

( ) ( )

c N
m T
ik k i i k i

i k

J μ
= =

= − −∑∑ z v M z v   (14) 

where N  is the number of data points, c  is the number of clusters, kz  is the k ’th data 

point, iv  is the i ’th cluster center, ikμ  is the degree of membership of the k ’th data in 

the i ’th cluster, iM  is the norm-inducing matrix of the i ’th cluster and m  is a weighting 

exponent which determines the fuzziness of the resulting clusters (typically 2m = ). 
In this work, the GKCA is applied in order to obtain the fuzzy partition matrix 

ik c N
μ ×= ⎡ ⎤⎣ ⎦U , with [ ]0 1ikμ ∈  is a membership degree. 

B. Premise membership functions 

The premise membership functions can be obtained from the results of fuzzy clustering by 

projecting the fuzzy sets defined point-wise in the partition matrix onto the premise 

variables , 1jx j n≤ ≤ . The TS rules are then expressed in the conjunctive form as in (11). 
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In order to obtain membership functions for the premise fuzzy sets ,1 ,1ijA i c j n≤ ≤ ≤ ≤ , 

the multidimensional fuzzy set defined point-wise in the ith row of the partition matrix is 

projected onto the regressors xj. Note that the resulting membership functions are defined 

point-wise, for the identification data only and may be nonconvex, which is caused by the 

probabilistic constraint in most fuzzy clustering algorithms and by the noise in the data 

(Babuska et al., 1998). 
In order to obtain a prediction model or a model suitable for control purposes, the premise 

membership functions must be expressed in a form that allows computation of the 

membership degrees, also for input data not contained in the data set. To achieve this step, 

we propose to use Kalman filter to approximate the point-wise defined membership 

functions by some suitable straight line functions (triangular functions) as depicted in Fig. 7. 

The Kalman filtering process is a recursive minimum mean square estimation procedure 

(Kalman, 1960; Mohinder & Angus, 2001). Each update estimate of the parameter vector 

corresponding to a straight line equation is computed from the previous estimate and the 

new input data (here the input data are the point-wise values of the membership functions). 

In this sense we propose to use Kalman filter as a linear regression as follows : Consider 

2cn  sets, each set represent the linear part of the point-wise set of a certain premise 

membership function. The linear part is obtained by taking the α -cut of the considered 

membership function. So we obtain 2cn  parameter vectors (one for each set). In each set we 

will have jN  data (samples), where j  denotes the jth set. 
Then each set can be modeled by the following measurement equation: 

 

1, 2,..., 2

1 1,2,...,

j jj

j j

jj j

j j j
k kk

j

k k j jj

j j
kk k

y a x b v j cn

a
x v k N

b

v

= + + =
⎡ ⎤⎡ ⎤= + =⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

= +C θ
  (15)       

where 
j

j

k
C  is the observation vector at the moment jk , 

j

T
j j j

k
a b⎡ ⎤= ⎣ ⎦θ  is the  

parameter vector, 
jk

v  is the measurement noise, 
j

N  is the number of data (samples) in the 

jth set and the superscript j denotes the jth straight line regression. For simplicity, we will 

denote jk  by k . From equation (15), 
j
kθ  will be considered as a state variable, so the state 

equation will be 

 
1 1

1, 2,..., 2
j j jj
k k k j cn− −= + =A wθ θ   (16) 

where j
A  is an 2 2×  state transition matrix, and 

j
kw  is the state noise and 

j
kθ  is the 

value of the state variable at the moment k . 
The state noise and the measurement noise are assumed to be statistically independent 
(Haykin, 2001) and can be modeled as zero mean, white noise processes whose covariances 
are given as 
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Fig. 7. Determination of premise membership functions :  
(a) Premiss MF defined point-wise for the regressors xj, j=1,2,...n  
(b) Division of each membership function into 2 sets (2c sets are obtained for each xj and  
2cnsets are    obtained for all regressors)  
(c) Approximation of each set by a straight line function by using Kalman filter 
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0

0

0 ,

T
i j

i j

i j

i j
E

i j

r i j
E v v

i j

E v i j

=⎧⎡ ⎤ = ⎨⎣ ⎦ ≠⎩
=⎧⎡ ⎤ = ⎨⎣ ⎦ ≠⎩

⎡ ⎤ = ∀⎣ ⎦

Q
w w

w

  (17) 

By recurrence proceeding, the update state equation and the predicted measure will be 
given by the following equations: 

 / 1 1/ 1
ˆ ˆj j
k k k k− − −= Aθ θ   (18) 

 / 1
ˆˆ j j j

k k k ky −= C θ  (19) 

Now that the model representation of the parameter vectors is complete, the training of the 

parameters via Kalman filter technique is in order. The update of the parameters is 

according to the following recursion: 

 ( )/ / 1 / 1
ˆ ˆ ˆj j j j j j
k k k k k k k k ky− −= + −K Cθ θ θ   (20) 

where kK  is the computed Kalman gain. The computed Kalman gain can be viewed as an 

adaptive learning rate (Tzeng et al., 1994) ant its computation is according to the following 

steps : 

 ( ) 1

/ 1 / 1

j j jT j j jT
k k k k k k k k r

−
− −= +K P C C P C   (21) 

 
/ 1 1/ 1

j jj jT
k k k k− − −= +P A P A Q   (22) 

 
/ / 1 / 1

j j j j j
k k k k k k k k− −= −P P K C P   (23) 

where  ( )( )/ 1 / 1 / 1
ˆ ˆ

T
j j j j j
k k k k k k k kE− − −⎡ ⎤= − −⎢ ⎥⎣ ⎦P θ θ θ θ  and ( )( )/ / /

ˆ ˆ
T

j j j j j
k k k k k k k kE

⎡ ⎤= − −⎢ ⎥⎣ ⎦P θ θ θ θ  

are the one step predicted and filter estimate error covariance matrices, respectively. 

To simplify the implementation of the Kalman filtering technique, we assume that 
j =A I  

where I  is a unit matrix ; Q  and r  are an assigned variances of the process noise and 

measurement noise, respectively. The initial parameters values are set to be random 

numbers. 
C. Estimating consequent parameters 
There are several methods to obtain the consequent parameters (Angelov & Filev, 2004; 

Babuska & Verbruggen, 1997; Abonyi et al., 2002). In part we propose an algorithm based 

also on KF that can compute directly the consequent parameters from the data set and the 

estimated premise membership functions. 
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Fig. 8. ECG signal 
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Fig. 9. Extraction of one period ECG signal 

From equation (13) we have 

 ( )
1

( )

c
T

i i i

i

y bϕ
=

= +∑ x a x   (24) 

where 

1

( )
( )

( )

i
i c

i

i

βϕ
β

=

=∑
x

x

x

 is the normalized activation value of the ith rule. The 

development of (24) gives 
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1

1

1 2( )[ 1] ( )[ 1] .... ( )[ 1]c

c

c

a

b

y

a

b

ϕ ϕ ϕ
⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎡ ⎤⎣ ⎦⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Bx x x x x x   (25) 

Let 1 1 ...
T

c ca b a b= ⎡ ⎤⎣ ⎦Θ  the ( 1) 1c n + ×  TS parameters vector and let the extended 

vector [ 1]e =x x  with dimension 1 ( 1)n× + , also if we put 

1 2[ .... ]e e c eϕ ϕ ϕ=C x x x , then equation (25) can be rewritten as follows : 

 y = CΘ   (26) 

with C  is an 1 ( 1)n c× +  vector. 

To apply Kalman filter, we must introduce the measurement noise kv , so the measurement 

equation corresponding to (27) at the moment k  will take the following form : 

 k k k ky v= +C Θ   (27) 

then, we can consider that the state variable is kΘ , so the state equation will take the 

following expression : 

 1 1k k k− −= +A wΘ Θ   (28)   

where A  is an ( 1) ( 1)c n c n+ × +  transition matrix and kw  is a state noise. kv  and kw  

must satisfy some conditions as cited in the previous subsection. 

Now we can apply Kalman filter to estimate the TS parameter vector kΘ  as follows: 

 / 1 1/ 1
ˆ ˆ
k k k k− − −= AΘ Θ   (29) 

 / 1 1/ 1
T

k k k k− − −= +P A P A Q   (30) 

 ( ) 1

/ 1 / 1
T T

k k k k k k k k r
−

− −= +K P C C P C  (31) 

 ( )/ / 1 / 1
ˆˆ ˆ

k k k k k k k k ky− −= + −K CΘ θ Θ  (32) 

 / / 1 / 1k k k k k k k k− −= −P P K C P  (33) 

where ˆ
kΘ  is the estimated value of ˆ

kΘ  and kK  is the computed Kalman gain, / 1k k−P  and 

/k kP  are the one step predicted and filter estimate error covariance matrices, respectively. 

Also, for simplicity we will take =A I . 

3.3 Application 
In order to illustrate the effectiveness of the proposed method, we consider the problem of 
approximating the electrocardiogram (ECG) signal. The ECG is the graphical representation 
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Fig. 10. (a) Clustering result for the ECG signal 
             (b) Obtained membership function  
             (c) Performance of our model for the ECG signal. 

of the electrical activity generated by the heart. This activity shows dynamical behavior 
which is neither periodic nor deterministically chaotic.  
To avoid the confusion between the two proposed Kalman filters, we will denote KF1 the 
filter used for premise membership functions and KF2 the filter used for the consequence 
parameters.   
The considered ECG signal is taken from a publically available database of MIT (see figure 
8). Before structure identification, extraction of one period ECG is done (see figure 9). In the 
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structure identification of the proposed method, 9 clusters are detected as shown in Fig. 
10(a). By taking the projection of U  on x , taking an 0.1cutα − =  and by applying Kalman 
filter KF1, the premise membership functions are obtained (see figure 10(b)). The resulting 
model using our strategy is as follows: 

 : , 1,2,...,9i i i iR If x is A Then y a x b i= + =   (34) 

where Ai are the obtained premise membership functions, and ai, bi are the TS parameters to 
be estimated. After applying Kalman filter KF2, the TS parameters of the fuzzy model are 
obtained and presented in the antecedent membership function. The ECG signal and the 
simulated ECG signal (ECG model) are shown in Figure 10(c).  

4.  Conclusion 

Investigations presented in this chapter were divided into two parts. In the first part, Kalman 
filter was used as an alternative controller. The main idea of this technique is to transform the 
Kalman filter from a state estimator to a control action estimator. We developed a Kalman 
controller system for real-time target tracking. According to our simulation results, we can say 
that this type of controller is very robust to load and stochastic disturbances.    
In the second part, a fuzzy modelling algorithm is proposed and its validity is verified 
through computer simulations. This new algorithm has an excellent capacity to describe a 
given system. We have showed that Kalman filter can be used with fuzzy clustering to 
obtain a useful method to fuzzy modeling. The proposed algorithm is composed of three 
steps: 1) fuzzy clustering; 2) determination of premise membership functions; 3) estimation 
of the TS parameters. In the first step, the GKCA algorithm was used in order to detect 
clusters of different shapes. In the second step, a Kalman filter has been used in order to 
estimate the parameter values of the premise membership functions by considering the 
point-wise defined membership functions as a training sets. In the third step, Kalman filter 
is also used as a linear regression to efficiently choose the parameter values of the 
consequent part (TS parameters) of the fuzzy model from the input output data of the 
identified system. Consequently, the hybrid clustering and Kalman filter method can be 
efficiently constructed. The performances of the proposed modeling technique was 
demonstrated on modeling of ECG signal. 
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