
A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems 143

A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time 
Systems

Shinpei Kato

0

A Fixed-Priority Scheduling Algorithm for

Multiprocessor Real-Time Systems

Shinpei Kato
The University of Tokyo

Japan

1. Introduction

Major chip manufacturers have adopted multicore technologies in recent years, due to the
thermal problems that distress traditional single-core chip designs in terms of processor per-
formance and power consumption. Nowadays, multiprocessor platforms have proliferated
in the marketplace, not only for servers and personal computers but also for embedded ma-
chines. The research on real-time systems has been therefore renewed for those multiprocessor
platforms, especially in the context of real-time scheduling.
Real-time scheduling techniques for multiprocessors are mainly classified into partitioned
scheduling and global scheduling. In the partitioned scheduling class, tasks are first assigned to
specific processors, and then executed on those processors without migrations. In the global
scheduling class, on the other hand, all tasks are stored in a global queue, and the same num-
ber of the highest priority tasks as processors are selected for execution.
The partitioned scheduling class has such an advantage that can reduce a problem of multi-
processor scheduling into a set of uniprocessor one, after tasks are partitioned. In addition,
it does not incur runtime overhead as much as global scheduling, since tasks never migrate
across processors. However, there is a disadvantage in theoretical scheduling performance,
i.e., schedulability a likelihood of a system being schedulable. Specifically, the worst-case
leads to that a periodic task system can cause deadline misses in partitioned scheduling, if the
system utilization exceeds 50% (Lopez et al., 2004).
The global scheduling class is meanwhile attractive in the worst-case schedulability. In this
class, Pfair (Baruah et al., 1996) and LLREF (Cho et al., 2006) are known to be optimal algo-
rithms. Any task sets are scheduled successfully by those algorithms, if the processor utiliza-
tion does not exceed 100%. However, the number of migrations and context switches is often
criticized. This scheduling class also provides concise and efficient algorithms, such as EDZL
(Cho et al., 2002) and EDCL (Kato & Yamasaki, 2008a), which perform with less preemptions
than the optimal ones, but the absolute worst-case processor utilization is still 50%.
For the purpose of finding a balance point between partitioned scheduling and global schedul-
ing, recent work have made available a new class, called semi-partitioned scheduling in this pa-
per. In this scheduling class, most tasks are fixed to specific processors as partitioned schedul-
ing to reduce the number of migrations, while a few tasks may migrate across processors to
improve available processor utilization as much as possible.
In addition to scheduling classes, the real-time systems community often argue priority-
driven scheduling policies. Commodity operating systems for practical use usually pre-

8

www.intechopen.com



Parallel and Distributed Computing144

fer fixed-priority algorithms in terms of implementation simplicity and priority-based pre-
dictability. The most well-known fixed-priority algorithm is Rate Monotonic (RM) (Liu &
Layland, 1973). Andersson et al. showed that RM based on global scheduling offers the bound
on system utilization no greater than 33% (Andersson et al., 2001), while RM based on par-
titioned scheduling offers the one up to 50% (Andersson & Jonsson, 2003). So if we restrict
our attention to fixed-priority algorithms, partitioned scheduling may be more efficient than
global scheduling.
This chapter presents a new fixed-priority algorithm based on semi-partitioned scheduling.
The presented algorithm has two major contributions. First, it allows tasks to migrate across
processors only if they cannot be assigned (fixed) to any individual processors, to strictly dom-
inate the previous algorithms based on classical partitioned scheduling. Second, its schedul-
ing policy conforms Deadline Monotonic (DM) (Leung & Whitehead, 1982), which is a gener-
alization of RM for arbitrary-deadline tasks, to make available the prior analytical results of
DM (and RM). The contents of this chapter are based on the paper in (Kato & Yamasaki, 2009).
The reminder of this chapter is organized as follows. The next section reviews prior work on
semi-partitioned scheduling. The system model is defined in Section 3. Section 4 then presents
a new algorithm based on semi-partitioned scheduling. Section 5 evaluates the effectiveness
of the new algorithm. This chapter is concluded in Section 6.

2. Related Work

The concept of semi-partitioned scheduling was originally introduced by EDF-fm (Anderson
et al., 2005). EDF-fm assigns the highest priority to migratory tasks in a static manner. The
fixed tasks are then scheduled according to EDF, when no migratory tasks are ready for exe-
cution. Since EDF-fm is designed for soft real-time systems, the schedulability of a task set is
not tightly guaranteed, while the tardiness is bounded.
EKG (Andersson & Tovar, 2006) is designed to guarantee all tasks to meet deadlines for
implicit-deadline periodic task systems. Here, a deadline is said to be implicit, if it is equal
to a period. EKG differs from EDF-fm in that migratory tasks are executed in certain time
slots, while fixed tasks are scheduled according to EDF. The achievable processor utilization is
traded with the number of preemptions and migrations by a parameter. The optimal parame-
ter configuration leads to that any task sets are scheduled successfully with more preemptions
and migrations.
In the later work (Andersson & Bletsas, 2008), EKG is extended for sporadic task systems.
Here, a task is said to be sporadic, if its job arrivals are separated at least length equal to
its period. The extended algorithm is also parametric with respect to the length of the time
slots reserved for migratory tasks. EDF-SS (Andersson et al., 2008) is a further extension of
the algorithm for arbitrary-deadline systems. Here, a deadline is said to be arbitrary, if it is
not necessarily equal to a period. It is shown by simulations that EDF-SS offers a significant
improvement on schedulability over EDF-FFD (Baker, 2005), the best performer among parti-
tioned scheduling algorithms.
EDDHP (Kato & Yamasaki, 2007) is designed in consideration of reducing preemptions, as
compared to EKG. In EDDHP, the highest priority is assigned to migratory tasks, and other
fixed tasks have the EDF priorities, though it differs in that the scheduling policy guarantees
all tasks to meet deadlines unlike EDF-fm. It is shown by simulations that EDDHP outper-
forms partitioned EDF-based algorithms, with less preemptions than EKG. EDDP (Kato &
Yamasaki, 2008b) is an extension of EDDHP in that the priority ordering is fully dynamic. The
worst-case processor utilization is then bounded by 65% for implicit-deadline systems.

www.intechopen.com



A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems 145

RMDP (Kato & Yamasaki, 2008c) is a fixed-priority version of EDDHP: the highest priority
is given to migratory tasks, and other fixed tasks have the RM priorities. It is shown by
simulations that RMDP improves schedulability over traditional fixed-priority algorithms.
The worst-case processor utilization is bounded by 50% for implicit-deadline systems. To the
best of our knowledge, no other algorithms based on semi-partitioned scheduling consider
fixed-priority assignments.
We have several concerns for the previous algorithms mentioned above. First, tasks migrate
across processors, even though they can be assigned to individual processors. Hence, we are
not sure that those algorithms are truly more effective than classical partitioned scheduling
approaches. Then, such tasks may migrate in and out of the same processor many times
within the same period, which is likely to cause the cache hit ratio to decline. The number
of context switches is also problematic due to repetition of migrations. In addition, optional
techniques for EDF and RM, such as synchronization and dynamic voltage scaling, may not
be easily available, since the scheduling policy is more or less modified from EDF and RM. In
this chapter, we aim at addressing those concerns.

3. System Model

The system is composed of m identical processors P1, P2, ..., Pm and n sporadic tasks
T1, T2, ..., Tn. Each task Ti is characterized by a tuple (ci,di, pi), where ci is a worst-case com-
putation time, di is a relative deadline, and pi is a minimum inter-arrival time (period). The
utilization of Ti is denoted by ui = ci/pi. We assume such a constrained task model that sat-
isfies ci ≤ di ≤ pi for any Ti. Each task Ti generates an infinite sequence of jobs, each of which
has a constant execution time ci. A job of Ti released at time t has a deadline at time t + di.
Any inter-arrival intervals of successive jobs of Ti are separated by at least pi.
Each task is independent and preemptive. Any job is not allowed to be executed in parallel.
Jobs produced by the same task must be executed sequentially, which means that every job
of Ti is not allowed to begin before the preceding job of Ti completes. The costs of scheduler
invocations, preemptions, and migrations are not modeled.

4. New Algorithm

We present a new algorithm, called Deadline Monotonic with Priority Migration (DM-PM),
based on the concept of semi-partitioned scheduling. In consideration of the migration and
preemption costs, a task is qualified to migrate, only if it cannot be assigned to any individ-
ual processors, in such a way that it is never returned to the same processor within the same
period, once it is migrated from one processor to another processor. On uniprocessor plat-
forms, Deadline Monotonic (DM) has been known as an optimal algorithm for fixed-priority
scheduling of sporadic task systems. DM assigns a higher priority to a task with a shorter
relative deadline. This priority ordering follows Rate Monotonic (RM) for periodic task sys-
tems with all relative deadlines equal to periods. Given that DM dominates RM, we design
the algorithm based on DM.

4.1 Algorithm Description

As the classical partitioning approaches Andersson & Jonsson (2003); Dhall & Liu (1978);
Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995), DM-PM assigns each task to a partic-
ular processor, using kinds of bin-packing heuristics, upon which the schedulable condition

www.intechopen.com



Parallel and Distributed Computing146

for DM is satisfied. In fact, any heuristics are available for DM-PM. If there are no such pro-
cessors, DM-PM is going to share the task among more than one processor, whereas a task
set is decided to be unfeasible in the classical partitioning approaches. In a scheduling phase,
such a shared task is qualified to migrate across those multiple processors.

P1 P2

assigned
assigned

assigned

Ti

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P3

Fig. 1. Example of sharing a task.

Figure 1 demonstrates an example of sharing a task among more than one processor. Let us
assume that none of the m processors has spare capacity enough to accept full share of a task
Ti. According to DM-PM, Ti is for instance shared among the three processors P1, P2, and P3.
In terms of utilization share, Ti is “split” into three portions. The share is always assigned
to processors with lower indexes. The execution capacity is then given to each share so that
the corresponding processors are filled to capacity. In other words, the processors have no
spare capacity to receive other tasks, once a shared task is assigned to them. However, only
the last processor to which the shared task is assigned may still have spare capacity, since
the execution requirement of the last portion of the task is not necessarily aligned with the
remaining capacity of the last processor. Thus, in the example, no tasks will be assigned to
P1 and P2, while some tasks may be later assigned to P3. In a scheduling phase, Ti migrates
across P1, P2 and P3. We will describe how to compute the execution capacity for each share
in Section 4.2.
Here, we need to guarantee that multiple processors never execute a shared task simultane-
ously. To this end, DM-PM simplifies the scheduling policy as follows.

• A shared task is scheduled by the highest priority within the execution capacity on each
processor.

www.intechopen.com



A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems 147

• Every job of the shared task is released on the processor with the lowest index, and it is
sequentially migrated to the next processor when the execution capacity is consumed
on one processor.

• Fixed tasks are then scheduled according to DM.

P1

P2

P3

inter-arrival time of

migration

Ti

Fig. 2. Example of scheduling a shared task

Figure 2 illustrates an example of scheduling a shared task Ti whose share is assigned to three
processors P1, P2, and P3. Let c′i,1, c′i,2, and c′i,3 be the execution capacity assigned to Ti on P1,
P2, and P3 respectively. Every job of Ti is released on P1 that has the lowest index. Since Ti is
scheduled by the highest priority, it is immediately executed until it consumes c′i,1 time units.

When c′i,1 is consumed, Ti is migrated to the next processor P2, and then scheduled by the

highest priority again. Ti is finally migrated to the last processor P3 when c′i,2 is consumed on
P2, and then executed in the same manner.
The scheduling policy of DM-PM above implies that the execution of a shared task Ti is re-
peated exactly at its inter-arrival time on every processor, because it is scheduled by the high-
est priority on each processor until the constant execution capacity is consumed. A shared
task Ti can be thus regarded as an independent task with an execution time c′i,k and a mini-
mum inter-arrival time pi, to which the highest priority is given, on every processor Pk. As a
result, all tasks are scheduled strictly in order of fixed-priority, though the scheduling policy
is slightly modified from DM.
We next need to consider the case in which one processor executes two shared tasks. Let us
assume that another task Tj is shared among three processors T3, T4, and T5, following that
a former task Ti has been assigned to three processors P1, P2, and P3, i.e. P3 is not filled to
capacity yet as explained in the previous example with Figure 3. We here need to break a tie
between two shared tasks Ti and Tj assigned to the same processor P3, since they both have
the highest priority. DM-PM is for this designed so that ties are broken in favor of the one
assigned later to the processor. Thus, in the example, Tj has a higher priority than Ti on P3 in
a scheduling phase.
Figure 4 depicts an example of scheduling two shared tasks Ti and Tj, based on the tie-
breaking rule above, that are assigned to processors as shown in Figure 3. Jobs of Ti and
Tj are generally executed by the highest priority. However, the second job of Ti is blocked by
the second job of Tj, when it is migrated to P3 from P2, because Tj has a higher priority. The

www.intechopen.com



Parallel and Distributed Computing148

P3 P4

assigned
assigned assigned

C
P

U
 u

ti
liz

a
ti
o
n

0%

100%

Pm

assigned

P5

Ti

Tj

Fig. 3. Example of assigning two shared tasks to one processor.

third job of Ti is also preempted and blocked by the third job of Tj. Here, we see the reason
why ties are broken between two shared tasks in favor of the one assigned later to the proces-
sor. The execution of Ti is not affected very much, even if it is blocked by Tj, since P3 is a last
processor for Ti to execute. Meanwhile, P3 is a first processor for Tj to execute, and thus the
following execution would be affected very much, if it is blocked on P3.
Implementation of DM-PM is fairly simplified as compared to the previous algorithms based
on semi-partitioned scheduling, because all we have to renew implementation of DM is to set
a timer, when a job of a shared task Ti is released on or is migrated to a processor Pk at time t,
so that the scheduler will be invoked at time t + c′i,k to preempt the job of Ti for migration. If
Pk is a last processor for Ti to execute, we do not have to set a timer. On the other hand, many
high-resolution timers are required for implementation of the previous algorithms Andersson
& Bletsas (2008); Andersson & Tovar (2006); Kato & Yamasaki (2007; 2008b;c).

4.2 Execution Capacity of Shared Tasks

We now describe how to compute the execution capacity of a shared task on each processor.
The amount of execution capacity must guarantee that timing constraints of all tasks are not
violated, while processor resource is given to the shared task as much as possible to improve
schedulability. To this end, we make use of response time analysis.
It has been known Liu & Layland (1973) that the response time of tasks is never greater than
the case in which all tasks are released at the same time, so-called critical instant, in fixed-
priority scheduling. As we mentioned before, DM-PM guarantees that all tasks are scheduled
strictly in order of priority, the worst-case response time is also obtained at the critical instant.
Henceforth, we assume that all the tasks are released at the critical instant t0.
Consider two tasks Ti and Tj, regardless of whether they are fixed tasks or shared tasks. Ti

is assigned a lower priority than Tj. Let Ii,j(di) be the maximum interference (blocking time)
that Ti receives from Tj within a time interval of length di. Since we assume that all tasks meet

www.intechopen.com



A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems 149

P1

P2

P3

inter-arrival time of Ti

P4

P5

inter-arrival time of Tj

Fig. 4. Example of scheduling two shared tasks on one processor.

deadlines, a job of Ti is blocked by Tj for at most Ii,j(di). Given the release at the critical instant
t0, it is clear that the total amount of time consumed by a task within any interval [t0, t1) is
maximized, when the following two conditions hold.

1. The task is released periodically at its minimum inter-arrival time.

2. Every job of the task consumes exactly ci time units without being preempted right after
its release.

The formula of Ii,j(di), the maximum interference that Ti receives from Tj within di, is derived
as follows. According to Buttazzo (1997), the maximum interference that a task receives from
another task depends on the relation among execution time, period, and deadline. Hereinafter,
let F = ⌊di/pj⌋ denote the maximum number of jobs of Tj that complete within a time interval
of length di.
We first consider the case of di ≥ Fpj + cj, in which the deadline of Ti occurs while Tj is not
executed, as shown in Figure 5. In this case, Ii,j(di) is obtained by Equation (1).

Ii,j(di) = Fcj + cj = (F + 1)cj (1)

We next consider the case of di ≤ Fpj + cj, in which the deadline of Ti occurs while Tj is
executed, as shown in Figure 6. In this case, Ii,j(di) is obtained by Equation (2).

Ii,j(di) = di − F(pj − cj) (2)

www.intechopen.com



Parallel and Distributed Computing150

pj pj pj

c j

t d
time

c j c j c j

0 i

Fig. 5. Case 1: di ≥ Fpj + cj.

pj pj pj

c j

t d
time

c j c j c j

0 i

Fig. 6. Case 2: di ≤ Fpj + cj.

For the sake of simplicity of description, the notation of Ii,j(di) unifies Equation (1) and Equa-
tion (2) afterwards. The worst-case response time Ri,k of each task Ti on Pk is then given by
Equation (3), where Pk is a set of tasks that have been assigned to Pk, and Hi is a set of tasks
that have priorities higher than or equal to Ti.

Ri,k = ∑
Tj∈Pk∩Hi

Ii,j(di) + ci (3)

We then consider the total amount of time that a shared task competes with another task. Let
Ts be a shared task, and Pk be a processor to which the share of Ts is assigned. As we mention
in Section 4.1, a shared task Ts can be regarded as an independent task with an execution
time c′s,k and a minimum inter-arrival time ps, to which the highest priority is given, on every

processor Pk. The maximum total amount Ws,k(di) of time that Ts competes with a task Ti on
Pk within a time interval of length di is therefore obtained by Equation (4).

Ws,k(di) =

⌈

di

ps

⌉

c′s,k (4)

In order to guarantee all tasks to meet deadlines, the following condition must hold for every
task Ti on every processor Pk to which a shared task Ts is assigned.

Ri,k + Ws,k(di) ≤ di (5)

It is clear that the value of c′s,k is maximized for Ri,k + Ws,k(di) = di. Finally, c′s,k is given by

Equation (6), where G = ⌈di/ps⌉.

c′s,k = min

{

di − Ri,k

G

∣

∣

∣

∣

Ti ∈ Pk

}

(6)

In the end, we describe how to assign tasks to processors. As most partitioning algorithms
Dhall & Liu (1978); Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995) do, each task is

www.intechopen.com



A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems 151

1. for each Pk ∈ Π

2. creq := cs;
3. c′s,k := 0;

4. for each Ti ∈ Pk

5. if Ti is a shared task then

6. x := (di − ci)/⌈di/ps⌉;
7. else

8. x := (di − Ri,k)/⌈di/ps⌉;
9. end if

10. if x < c′s,k then

11. c′s,k := max(0, x);

12. end if

13. end for

14. if c′s,k �= 0 then

15. Pk := Pk ∪ {Ts}:
16. creq := creq − c′s,k:

17. if creq = 0 then

18. Π := Π \ {Pk}:
19. return SUCCESS:
20. else if creq < 0 then

21. c′s,k := c′s,k + creq:

22. return SUCCESS:
23. else

24. Π := Π \ {Pk}:
25. end if

26. end if

27. end for

28. return FAILURE:

Fig. 7. Pseudo code of splitting Ts.

assigned to the first processor upon which a schedulable condition is satisfied. The schedu-
lable condition of Ti for Pk here is defined by Ri,k ≤ di. If Ti does not satisfy the schedulable
condition, its utilization share is going to be split across processors.
Figure 7 shows the pseudo code of splitting Ts. Π is a set of processors processors that have
spare capacity to accept tasks. creq is a temporal variable that indicates the remaining exe-
cution requirement of Ts, which must be assigned to some processors. For each processor,
the algorithm computes the value of c′s,k until the total of those c′s,k reaches cs. The value of

each c′s,k is based on Equation (6). Notice that if Ti is a shared task that has been assigned

to Pk before Ts, the temporal execution capacity is not denoted by (di − c′i,k)/⌈di/pi⌉ but by

(di − ci)/⌈di/pi⌉ (line 6), because a job of Ti released at time t always completes at time t + ci

given that Ti is assigned the highest priority. Otherwise, it is denoted by (di − Ri,k)/⌈di/ps⌉
(line 8). The value of c′s,k must be non-negative (line 11). If c′s,k is successfully obtained, the

share of Ts is assigned to Pk (line 15). Now creq is reduced to creq − c′s,k (line 16). A non-positive
value of creq means that the utilization share of Ts has been entirely assigned to some proces-

www.intechopen.com



Parallel and Distributed Computing152

sors. Thus, it declares success. Here, a negative value of creq means that the execution capacity
has been excessively assigned to Ts. Therefore, we need to adjust the value of c′s,k for the last
portion (line 21). If creq is still positive, the same procedure is repeated.

4.3 Optimization

This section considers optimization of DM-PM. Remember again that a shared task Ts can be
regarded as an independent task with an execution time c′s,k and a minimum inter-arrival time
ps, to which the highest priority is given, on every processor Pk. We realize from this charac-
teristic that if Ts has the shortest relative deadline on a processor Pk, the resultant scheduling
is optimally conformed to DM, though the execution time of Ts is transformed into c′s,k.
Based on the idea above, we consider such an optimization that sorts a task set in non-
increasing order of relative deadline before the tasks are assigned to processors. This leads
to that all tasks that have been assigned to the processors before Ts always have longer rel-
ative deadlines than Ts. In other words, Ts always has the shortest relative deadline at this
point.
Ts may not have the shortest relative deadline on a processor Pk, if other tasks are later as-
signed to Pk. Remember that those tasks have shorter relative deadlines than Ts, since a
task set is sorted in non-increasing order of relative deadline. According to DM-PM, Ts is
assigned to processors so that they are filled to capacity, except for a last processor to which
Ts is assigned. Thereby for optimization, we need to concern only such a last processor Pl that
executes Ts.
In fact, there is no need to forcefully give the highest priority to Ts on Pl , because the next job
of Ts will be released at the beginning of the next period, regardless of its completion time,
whereas it is necessary to give the highest priority to Ts on the preceding processors, because
Ts is never executed on the next processor unless the execution capacity is consumed. We thus
modify DM-PM for optimization so that the prioritization rule is strictly conformed to DM.
As a result, a shared task would have a lower priority than fixed tasks, if they are assigned to
the processor later.
The worst case problem. Particularly for implicit-deadline systems where relative deadlines
are equal to periods, a set of tasks is scheduled on each processor Pk successfully, if the proces-
sor utilization Uk of Pk satisfies the following well-known condition, where nk is the number
of the tasks assigned to Pk, because the scheduling policy of the optimized DM-PM is strictly
conformed to DM.

Uk ≤ nk(2
1/nk − 1) (7)

The worst-case processor utilization is derived as 69% for nk → ∞. Thus to derive the worst-
case performance of DM-PM, we consider a case in which an infinite number of tasks, all of
which have very long relative deadlines (close to ∞), meaning very small utilization (close to
0), have been already assigned to every processor. Note that the available processor utilization
is at most 69% for all processors.
Let Ts be a shared task with individual utilization (us = cs/ps) greater than 69%, and Pl be a
last processor to which the utilization share of Ts is assigned. We then assume that another
task Ti is later assigned to Pl . At this point, the worst-case execution capacity that can be
assigned to Ti on Pl is ds − cs = ds(1 − us), due to di ≤ ds. Hence, the worst-case utilization
bound of Ti on Pl is obtained as follows.

ui =
ds(1 − us)

di
≥ (1 − us) (8)

www.intechopen.com



A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems 153

Now, we concern a case in which Ts has a very large value of us (close to 100%). The worst-
case utilization bound of Ti is then derived as ui = 1 − us ≃ 0, regardless of the processor
utilization of Pl . In other words, even though the processor resource of Pl is not fully utilized
at all, Pl cannot accept any other tasks.
In order to overcome such a worst case problem, we next modify DM-PM for optimization
so that the tasks with individual utilization greater than or equal to 50% are preferentially
assigned to processors, before a task set is sorted in non-increasing order of relative deadline.
Since no tasks have individual utilization greater than 50%, when Ts is shared among proces-
sors, the worst-case execution capacity of Ti is improved to ui = 1 − us ≥ 50%. As a result,
the optimized DM-PM guarantees that the processor utilization of every processor is at least
50%, which means that the entire multiprocessor utilization is also at least 50%. Given that no
prior fixed-priority algorithms have utilization bounds greater than 50% Andersson & Jonsson
(2003), our outcome seems sufficient. Remember that this is the worst case. The simulation-
based evaluation presented in Section 5 shows that the optimized DM-PM generally performs
much better than the worst case.

4.4 Preemptions Bound

The number of preemptions within a time interval of length L is bounded as follows. Let
N(L) be the worst-case number of preemptions within L for DM. Since preemptions may
occur every time jobs arrive in DM, N(L) is given by Equation (9), where τ is a set of all tasks.

N(L) = ∑
Ti∈τ

⌈

L

pi

⌉

(9)

Let N∗(L) then be the worst-case number of preemptions within L for DM-PM. It is clear that
there are at most m − 1 shared tasks. Each shared task is migrated from one processor to
another processor once in a period. Every time a shared task is migrated from one processor
to another processor, two preemptions occurs: one occurs on the source processor and the
other occurs on the destination processor. Hence, N∗(L) is given by Equation (9), where τ

′ is
a set of tasks that are shared among multiple processors.

N∗(L) = N(L) + 2(m − 1)

⌈

L

min{ps | Ts ∈ τ
′}

⌉

(10)

5. Evaluation

In this section, we show the results of simulations conducted to evaluate the effectiveness
of DM-PM, as compared to the prior algorithms: RMDP Kato & Yamasaki (2008c), FBB-
FDD Fisher et al. (2006), and Partitioned DM (P-DM). RMDP is an algorithm based on semi-
partitioned scheduling, though the approach and the scheduling policy are different from
DM-PM. FBB-FDD and P-DM are algorithms based on partitioned scheduling. FBB-FDD sorts
a task set in non-decreasing order of relative deadline, and assigns tasks to processors based
on a first-fit heuristic Dhall & Liu (1978). P-DM assigns tasks based on first-fit heuristic for
simplicity without sorting a task set. The tasks are then scheduled according to DM. Note that
FBB-FDD uses a polynomial-time acceptance test in a partitioning phase, while P-DM uses a
response time analysis presented in Section 4.2.
To the best of our knowledge, FBB-FDD is the best performer among the fixed-priority algo-
rithms based on partitioned scheduling. We are then not aware of any fixed-priority algo-

www.intechopen.com



Parallel and Distributed Computing154

rithms, except for RMDP, that are based on semi-partitioned scheduling. We thus consider
that those algorithms are worthwhile to compare with DM-PM.
The fixed-priority algorithms based on global scheduling, such as Andersson (2008); Ander-
sson et al. (2001); Baker (2006), are not included in a series of simulations, because the pre-
vious report Kato & Yamasaki (2008c) on simulation-based evaluation of fixed-priority algo-
rithms testified that their schedulability is in general worse than the ones based on partitioned
scheduling.

5.1 Simulation Setup

A series of simulations has a set of parameters: usys, m, umin, and umax. usys denotes system
utilization. m is the number of processors. umin and umax are the minimum utilization and the
maximum utilization of every individual task respectively.
For every set of parameters, we generate 1,000,000 task sets. A task set is said to be successfully
scheduled, if all tasks in the task set are successfully assigned to processors. The effectiveness
of an algorithm is then estimated by success ratio, which is defined as follows.

the number of successfully-scheduled task sets

the number of submitted task sets

The system utilization usys is set every 5% within the range of [0.5,1.0]. Due to limitation
of space, we have three sets of m such that m = 4, m = 8, and m = 16. Each task set T is
then generated so that the total utilization ∑Ti∈T

u becomes equal to usys × m. The utilization
of every individual task is uniformly distributed within the range of [umin,umax]. Due to
limitation of space, we have simulated only the case for [umin,umax] = [0.1,1.0]. The minimum
inter-arrival time of each task is also uniformly distributed within the range of [100,10,000].
For every task Ti, once ui and pi are determined, we compute the execution time of Ti by
ci = ui × pi.
Since RMDP is designed for implicit-deadline systems, for fairness we presume that all tasks
have relative deadlines equal to periods. However, DM-PM is also effective to explicit-
deadline systems where relative deadlines are different from periods.

5.2 Simulation Results

Fig. 8. Results of simulations (m = 4 and [umin,umax] = [0.1,1.0]).

www.intechopen.com



A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems 155

Fig. 9. Results of simulations (m = 8 and [umin,umax] = [0.1,1.0]).

Fig. 10. Results of simulations (m = 16 and [umin,umax] = [0.1,1.0]).

Figure 8, 9, and 10 show the results of simulations with [umin,umax] = [0.1,1.0] on 4, 8, and
16 processors respectively. Here, “DM-PM(opt)” represents the optimized DM-PM. DM-PM
substantially outperforms the prior algorithms. Particularly, the optimized DM-PM is able
to schedule all task sets successfully, even though system utilization is around 0.9, while the
prior algorithms more or less return failure at system utilization around 0.6 to 0.7. It has been
reported Lehoczky et al. (1989) that the average case of achievable processor utilization for
DM, as well as RM, is about 88% on uniprocessors. Hence, the optimized DM-PM reflects
the schedulability of DM on multiprocessors. Even without optimization, DM-PM is able to
schedule all task sets when system utilization is smaller than 0.7 to 0.8.

www.intechopen.com



Parallel and Distributed Computing156

On the whole, the performance of DM-PM is better as the number of processors is greater. That
is because tasks are shared among processors more successfully, if there are more processors,
when they cannot be assigned to any individual processors. Although RMDP is also able
to share tasks among processors, it is far inferior to DM-PM, while it outperforms FBB-FDD
and P-DM that are based on classical partitioned scheduling. The difference between DM-PM
and RMDP clearly demonstrates the effectiveness of the approach considered in this paper.
Note that P-DM outperforms FBB-FDD, because P-DM uses an acceptance test based on the
presented response time analysis, while FBB-FDD does a polynomial-time test.

6. Conclusion

A new algorithm was presented for semi-partitioned fixed-priority scheduling of sporadic
task systems on identical multiprocessors. We designed the algorithm so that a task is qual-
ified to migrate across processors, only if it cannot be assigned to any individual processors,
in such a manner that it is never migrated back to the same processor within the same pe-
riod, once it is migrated from one processor to another processor. The scheduling policy was
then simplified to reduce the number of preemptions and migrations as much as possible for
practical use.
We also optimized the algorithm to improve schedulability. Any implicit-deadline systems
are successfully scheduled by the optimized algorithm, if system utilization does not exceed
50%. We are not aware of any fixed-priority algorithms that have utilization bounds greater
than 50%. Thus, our outcome seems sufficient.
The simulation results showed that the new algorithm significantly outperforms the tradi-
tional fixed-priority algorithms regardless of the number of processors and the utilization of
tasks. The parameters used in simulations are limited, but we can easily estimate that the new
algorithm is also effective to different environments.
In the future work, we will consider arbitrary-deadline systems where relative deadlines may
be longer than periods, while we consider constrained-deadline systems where relative dead-
lines are shorter than or equal to periods. We are also interested in applying the presented
semi-partitioned scheduling approach to dynamic-priority scheduling. The implementation
problems of the algorithm in practical operating systems are left open.

7. References

Anderson, J., Bud, V. & Devi, U. (2005). An EDF-based Scheduling Algorithm for Multipro-
cessor Soft Real-Time Systems, Proceedings of the Euromicro Conference on Real-Time
Systems, pp. 199–208.

Andersson, B. (2008). Global Static-Priority Preemptive Multiprocessor Scheduling with Uti-
lization Bound 38%, Proceedings of the International Conference on Principles of Dis-
tributed Systems, pp. 73–88.

Andersson, B., Baruah, S. & Jonsson, J. (2001). Static-priority Scheduling on Multiprocessors,
Proceedings of the IEEE Real-Time Systems Symposium, pp. 193–202.

Andersson, B. & Bletsas, K. (2008). Sporadic Multiprocessor Scheduling with Few Preemp-
tions, Proceedings of the Euromicro Conference on Real-Time Systems, pp. 243–252.

Andersson, B., Bletsas, K. & Baruah, S. (2008). Scheduling Arbitrary-Deadline Sporadic
Task Systems Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium,
pp. 385–394.

www.intechopen.com



A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems 157

Andersson, B. & Jonsson, J. (2003). The Utilization Bounds of Partitioned and Pfair Static-
Priority Scheduling on Multiprocessors are 50%, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 33–40.

Andersson, B. & Tovar, E. (2006). Multiprocessor Scheduling with Few Preemptions, Proceed-
ings of the IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 322–334.

Baker, T. (2005). An Analysis of EDF Schedulability on a Multiprocessor, IEEE Transactions on
Parallel and Distributed Systems 16: 760–768.

Baker, T. (2006). An Analysis of Fixed-Priority Schedulability on a Multiprocessor, Real-Time
Systems 32: 49–71.

Baruah, S., Cohen, N., Plaxton, C. & Varvel, D. (1996). Proportionate Progress: A Notion of
Fairness in Resource Allocation, Algorithmica 15: 600–625.

Buttazzo, G. (1997). HARD REAL-TIME COMPUTING SYSTEMS: Predictable Scheduling Algo-
rithms and Applications, Kluwer Academic Publishers.

Cho, H., Ravindran, B. & Jensen, E. (2006). An Optimal Real-Time Scheduling Algorithm for
Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium, pp. 101–110.

Cho, S., Lee, S., Han, A. & Lin, K. (2002). Efficient Real-Time Scheduling Algorithms for
Multiprocessor Systems, IEICE Transactions on Communications E85-B(12): 2859–2867.

Dhall, S. K. & Liu, C. L. (1978). On a Real-Time Scheduling Problem, Operations Research
26: 127–140.

Fisher, N., Baruah, S. & Baker, T. (2006). The Partitioned Multiprocessor Scheduling of Spo-
radic Task Systems according to Static Priorities, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 118–127.

Kato, S. & Yamasaki, N. (2007). Real-Time Scheduling with Task Splitting on Multiprocessors,
Proceedings of the IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 441–450.

Kato, S. & Yamasaki, N. (2008a). Global EDF-based Scheduling with Efficient Priority Promo-
tion, Proceedings of the IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pp. 197–206.

Kato, S. & Yamasaki, N. (2008b). Portioned EDF-based Scheduling on Multiprocessors, Pro-
ceedings of the ACM International Conference on Embedded Software.

Kato, S. & Yamasaki, N. (2008c). Portioned Static-Priority Scheduling on Multiprocessors,
Proceedings of the IEEE International Parallel and Distributed Processing Symposium.

Kato, S. & Yamasaki, N. (2009). Semi-Partitioned Fixed-Priority Scheduling on Multiproces-
sors, Proceedings of the IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pp. 23–32.

Lauzac, S., Melhem, R. & Mosses, D. (1998). An Efficient RMS Admission Control and Its
Application to Multiprocessor Scheduling, Proceedings of the IEEE International Parallel
Processing Symposium, pp. 511–518.

Lehoczky, J., Sha, L. & Ding, Y. (1989). The Rate Monotonic Scheduling Algorithm: Exact
Charaterization and Average Case Behavior, Proceedings of the IEEE Real-Time Systems
Symposium, pp. 166–171.

Leung, J. & Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling of Periodic
Real-Time Tasks, Performance Evaluation, Elsevier Science 22: 237–250.

Liu, C. L. & Layland, J. W. (1973). Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment, Journal of the ACM 20: 46–61.

www.intechopen.com



Parallel and Distributed Computing158

Lopez, J., Diaz, J. & Garcia, D. (2004). Utilization Bounds for EDF Scheduling on Real-Time
Multiprocessor Systems, Real-Time Systems 28: 39–68.

Oh, Y. & Son, S. (1995). Allocating Fixed-Priority Periodic Tasks on Multiprocessor Systems,
Real-Time Systems 9: 207–239.

www.intechopen.com



Parallel and Distributed Computing
Edited by Alberto Ros

ISBN 978-953-307-057-5
Hard cover, 290 pages
Publisher InTech
Published online 01, January, 2010
Published in print edition January, 2010

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware
design to application development. Particularly, the topics that are addressed are programmable and
reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies,
cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale
network simulation, and parallel routines and algorithms. In this way, the articles included in this book
constitute an excellent reference for engineers and researchers who have particular interests in each of these
topics in parallel and distributed computing.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shinpei Kato (2010). A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems, Parallel and
Distributed Computing, Alberto Ros (Ed.), ISBN: 978-953-307-057-5, InTech, Available from:
http://www.intechopen.com/books/parallel-and-distributed-computing/a-fixed-priority-scheduling-algorithm-for-
multiprocessor-real-time-systems



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

