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1. Introduction  

1.1 Statement of the Problem 
Endo-neuro-sonography (ENS) has gained special attention in recent years. Its major 
advantages over traditional brain surgery are that it is a minimally invasive surgical 
technique and the endoscopic camera and ultrasound images provide useful information. 
Ultrasound images are inexpensive compared to tomographic and resonance magnetic 
images (which are very hard to obtain in an intraoperative setting) and allow surgeons to 
see beyond the tissues within the brain. Another way would be to extract three-dimensional 
(3D) information from the combined endoscopic and ultrasound images to help surgeons 
better locate brain structures (such as tumors). Some work has been done in this direction, 
mainly in the replacement of classic ultrasound (2D imaging methodology) by 3D 
ultrasound equipment (Unsgaard et al., 2006). We have focused our attention on using 
classic ultrasound techniques and endoscopic images to extract 3D information. We propose 
tracking the ultrasound probe in the endoscopic images and then computing the ultrasound 
probe’s pose in 3D space without an external method (optical or magnetic). We tested two 
alternative methods to track the ultrasound probe in endoscopic camera images as well as 
two methods to segment brain structures in ultrasound images, and then we compared the 
latter two types. We used conformal geometric algebra for the necessary geometric 
calculations and to put the results in 3D space. 

 
1.2 Outline of Our Method 
The equipment setup is as follows: The ultrasound probe is introduced through a channel in 
the endoscope and is seen by the endoscopic camera. With visual tracking equipment 
(Polaris), we can calculate the 3D position of the endoscope tip; we want to know the 
ultrasound (US) probe’s pose in order to have the exact location of the US sensor. This is 
important because the US probe is flexible and rotate on its own axis. It can also move back 
and forth, and since the channel is wider, there is also random movement around the 
channel (Fig. 1). The US probe is connected to a drive unit for a micro-tip transducer; the 
transducer is rotated to generate a 360  beam at 10 MHz. By tracking the US probe in the 
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endoscopic image in successive video frames, we can use multiple-view 3D estimation 
techniques to find the pose of the US probe’s axis. With this pose and the exact location of 
the endoscope’s tip, we can estimate the 3D coordinates of the US probe’s tip. This is 
fundamental since the US image is orthogonal to the US probe’s axis (see Fig. 2). We know 
that in one small interval of time x, the ultrasound probe is fixed, and the endoscopic camera 
undergoes a movement that is equivalent to an inverse motion, that is, the endoscopic 
camera is fixed, and the ultrasound probe undergoes a movement. In Figs. 1 and 2, we 
showed the 3D virtual representation of the phantom brain used for the experiments. This 
model was constructed with magnetic resonance images of the phantom. 

 
1.3 Structure of the Chapter 
This chapter is organized as follows. Section 2 describes the techniques used to track the 
ultrasound probe in the endoscopic images. Two alternative methods are presented: 
saturation thresholding and particle filtering. Section 3 is devoted to ultrasound image 
processing. We present a method based on morphological operators to segment brain 
structures and compare its performance versus level-set methods. Section 4 describes how to 
calculate the 3D pose of the probe using conformal geometric algebra (CGA) and multiple-
view methods. We present our conclusions in Section 5. 
 

 

 

 
Fig. 1. ENS equipment setup. 
 

 
Fig. 2. Scene for the virtual representation. The plane   that is to be calculated contains the 
US image to be segmented and is orthogonal to the unit vector  . 

 
2. Endoscopic Image Processing 

2.1 Tracking the Ultrasound Probe 
The goal here is tracking the US probe that is seen in the endoscopic camera images. To 
achieve this, we use two alternative techniques: saturation thresholding and particle filters. 
The goal is to track the axis line of the US probe throughout the images. Knowing this line is 
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important because it allows us to compute its 3D coordinates using the camera’s projection 
matrix. Such a projection is done as follows: Every line is backprojected to form a plane in 
the space, which contains the line and the camera’s center. Using two consecutive images, 
the intersection of its respective planes will yield the line in 3D (Hartley & Zisserman, 2004). 
To obtain a more accurate result, we take only the unitary vector of this line (because the 
calculation of the translation in the projection matrix is up to a scalar factor). We translate 
the first point (the tip of the endoscope) obtained by the Polaris lecture by a distance d2 (see 
Fig. 2) along the direction of the unitary vector in the direction of the previously obtained 
line, and this translated point will be the position of the US sensor in 3D, making it possible 
to obtain the plane   to make the virtual representation. The d2 distance is taken from two 
retroprojected points of the US probe in the 3D space, these points are begin and end of the 
tracked US probe in each pair of images. Polaris gives us the linear transformation between 
its frame and the attached tracker to the endoscopic camera and, to calculate the linear 
transformation between the tracker and the image frame, we use the hand–eye calibration 
method (Bayro-Corrochano & Daniilidis, 1996). Now we give a brief overview of the 
saturation thresholding and particle filter methods that were independently used to track 
the axis of the US probe.  

 
2.2 Saturation Thresholding 
The saturation thresholding method can help segment objects like ultrasound probes. 
Images are converted from RGB (Red, Green, Blue) format to HSV (Hue, Saturation, Value).  BGRV ,,max ;    VBGRVS /,,min*255   if 0V ; otherwise, 0S . Figure 3(a) 
and (b) show the saturation histogram and saturation image, respectively. Selecting all 
values inside [58, 255] yields the binary image in Fig. 3(c). We use the chain code to calculate 
the smallest and largest areas that should be eliminated, as shown in Fig. 3(d). The 
ultrasound probe can be described by two line segments indicating its contour. The main 
axis is calculated as the average segment. We cast rays from the region support endpoints 
and select the two rays that best encompass the segmented region [see Fig. 4(a)]. A good 
candidate is the ray containing more background pixels than segmented pixels. The results 
are shown in Fig. 4(b), which displays the main axis of the ultrasound probe.  
 

 

 
Fig. 3. Saturation histogram. 
 

 
Fig. 4. Estimated line using saturation thresholding. 

 
2.3 Tracking with Particle Filters 
Another approach to perform visual tracking is to use a Bayesian tracker, thus treating 
motion tracking as a Bayesian state-estimation problem. In order to use a Bayesian 
framework, one must model the object being tracked as a state vector. Also needed is a 
method to evaluate how well the predicted states of the state vector fit the observation. The 
most widely used Bayesian tracker is the Kalman filter. However, Kalman filters require a 
Gaussian observation probability and a Gaussian posterior probability density. Our 
observations show that the random movement of the ultrasound probe can hardly be 
described as Gaussian. This situation made us look for a more general tracker: the particle 
filter. 

 
2.3.1 The Particle Filter 
Particle filters emerged from the pioneer work of Isard and Blake (1998). These filters were 
introduced to track objects in visual clutter and can handle multimodal observation 
probabilities.  
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Let’s assume that tx represents the state (state vector) of the object at time t  and that  tt xxX ,,1   represents its history over time. The vector  tt zzZ ,,1   encloses all 

the observations iz up to time t . In our framework, tz  represents an endoscopic image at 

time t . The particle filter approximates the posterior  tt Zxp  of the probability 

distribution. The key idea in particle filtering is to approximate the probability distribution 
(and consequently the posterior) by a weighted finite set of samples, the particles. Let       ,,1  , NnsS n

t
n
t    be a weighted set of N  different samples. Every sample  is  

represents a possible object state, and a weight  i  is associated with it. This weight 
represents the likelihood for the associated particle to be the true location of the target 
object. The weights are normalized so that    N

i
n

1
1 . 

By applying Bayes’ law, the posterior  tt Zxp  can be recursively expressed as 

      1 ttttttt ZxpxzpkZxp . (1) 

 
With the state vector at time 1t , the posterior  11  tt Zxp  can be obtained by 

marginalizing over 1tx , making it possible to obtain the distribution  1tt Zxp : 

           
11

111111 ,,
tt x ttttx ttttt ZxpxxpZxxpZxp , 

(2) 

 
where the chain rule was applied  [  1tt xxp  is the dynamic model]. To perform the 

filtering operation, a new set of particles is created by selecting with replacement N  
particles from the N  particles created at time 1t . The probability of selecting a particle  is  is proportional to its normalized weight  i . Then the new particles are updated using 
the system’s evolution model. The new weights for the updated particles are calculated, 
measuring how well the object position represented by each particle fits with the 
observation tz  at time t . After the weights are normalized, the mean state is estimated at 

each time by        N

n
nn sSE

1
 . 

Subsequent locations of the probe can be represented as a rotation and translation with 
respect to the initial line estimate. A state vector can be represented as         ii

y
i
x

i ddds ,, , 

with its components describing this translation and rotation. This model evolves in each 
stage according to  
 

 

ttt NSS  1 , (3) 

 
where Nt is white Gaussian noise. 
To obtain the weight of each particle, the image of the area selected in the first picture is 
obtained and rotated and translated according to the particle’s (state vector) components. 
The transformed image is then compared to the observed image by means of the 
Bhattacharyya distance between their color histograms, as described by Nummiaro et al. 
(2003). 

 
2.4 Tracking Results 
The saturation thresholding (ST) method was applied as explained, and the particle filter 
was applied using up to 300N particles, but little difference is observed in the results 
when 100N . Several images and sequences have been tested. Figure 5 shows the results 
for the particle filter method. Both tracking methods described performed well in practice. 
However, we prefer the ST method (Section 2.2) because it is faster and also because the 
particle filter method is nondeterministic. We obtained an accuracy of %94  with the ST 
method. 
 

  
Fig. 5. The results for the particle filter method. 

 
3. Ultrasound Image Processing 

The goal in this stage is to segment interesting structures in the brain images, such as 
tumors. We used two methods in order to process the ultrasound images; the first 
is based on morphological operators (Castleman, 1996), and the second is the level-set 
method. 
 
3.1 Segmentation of the Tumor Using Morphological Operators 
We are using morphological operators in order to fill small holes that appear due to the 
subsampling provided by the Aloka ultrasound system. The closing morphological operator 
of  image I with subimage M (structuring element) is defined as   MMIMI  , 
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3. Ultrasound Image Processing 

The goal in this stage is to segment interesting structures in the brain images, such as 
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where   and    represent the dilatation and erosion morphological operators, 
respectively. 
We process the ultrasound images in the following way: 
Copy the original image (do not modify it); select a region of interest (ROI); otherwise, the 
ROI will be the complete image. The ROI will be the same for all images. 
If the ROI contains either a section of or the entire central part of the image, we exclude that 
part of the ROI because it only contains noise. 
Normalize the ROI to minimize the contrast/brightness influence. 
Apply a threshold to the gray levels of the ROI, to select only the highest levels. 
Apply a closing morphological operator to fill the holes of the ROI. 
Use the chain code to calculate the smallest areas of the ROI, and eliminate them. 
Apply a logical AND operation between the ROI and the original image. The result is the 
segmented tumor, which is to be represented in 3D. 
 
To normalize image 0I  and to obtain  yxI , , we used the following equations: 
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(4) 

 
where 0I  is the mean of the image intensity and the number 255 represents the maximum 
gray level in the image. Figure 6 shows an example of the segmented tumor in ultrasound 
images.  
 

 
Fig. 6. Isolating the tumor. (a) Original US image to be segmented. (b) The central part of the 
image is excluded and the image is normalized. (c) ROI. (d) Result of segmentation. 

 
3.2 Segmentation of the Tumor Using the Level-Set Method 
The level-set method uses an initial seed on the image. This seed evolves with time until a 
zero velocity is reached or the curve has collapsed (or the maximum number of iterations is 
reached). To evolve the curve, the method uses two lists, called Lin and Lout (Shi, 2005).  
Figure 7 shows the results obtained using the level-set method. Figure 7(a) is an original 
ultrasound image. Figure 7(c) shows the selected and normalized ROI. Figure 7(d) shows 
the initial seed applied to Fig. 7(c). Figure 7(e) shows the collapsed curve. Figure 7(f) is the 
binary mask obtained from Fig. 7(e). This mask is applied to the original image, and we thus 

 

obtained the result of the segmentation [Fig. 7(b)]. The figures were obtained from Aloka 
ultrasound equipment using a phantom brain. 
 

 
Fig. 7. Segmentation using the level-set method.  

 
3.3 Comparison of the Methods 
We obtained a processing time of 0.005305 seconds for the morphological operators method 
versus 0.009 seconds for the level-set method, that is, 188 fps vs. 111 fps. We recommend 
both methods for inline implementation, because they are fast and reliable. 

 
4. Calculating the Ultrasound Probe’s Pose 

4.1 An Outline of Conformal Geometric Algebra 
Conformal geometric algebra (CGA) has been used in many areas such as medical image 
processing, robotics, and artificial vision (Li et al., 2001). CGA represents geometric entities 
such as points, lines, planes, and spheres in an economical and compact form. CGA 
preserves the Euclidean metric and adds two basis vectors:  ee , ; 12 e , 12 e , which are 
used to define the point at the origin    eee

2
1

0
  and the point at infinity   eee . The 

points in CGA are related to Euclidean space by 
0

2

2
eeppp  . A sphere in dual form is 

represented as the wedge of four conformal points that lie on sphere dcbas * ; its 

radius  and its center p in 3R  can be obtained using  2
2

2

es
s
 ,   e

es
sp 2

2
1

. To know if a 

point p  is into/out/on a sphere *s , we use the normalization 1se  to represent the 
sphere as a single vector. In this way, if 0 sp , then p  is into the sphere; if 0 sp , then p  
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is out of * ; if 0 sp , then p  is on the sphere * . A plane in dual form is defined as a 

sphere, but the last point is at infinity: ecba * ; the normal n  to this plane is its 
dual   if the coefficient e  of   is positive, else n , so we can get the signed distance 

from p to * as np  .  Figure 8 shows these concepts. A line in dual form is represented as 

the wedge of two points and the infinity point: ebaL * . A line can also be calculated as 
the intersection of two planes: 21  L . This equation is used to calculate the 3D line that 
represents the ultrasound probe’s axis. As mentioned, we are taking only the unit vector of 
this line. To achieve a translation by a distance 2d  from a point 

1p  in the direction of a line, 

we obtain 
2p : 


 LdT 22
1exp ,  

~

12 TpTp  .  

 

 

Fig. 8. Conformal entities used in the geometric tests. (a) The plane and (b) sphere. 

 
4.2 Putting the Results in 3D Space 
Figure 9(a) shows a slice of a tumor in 3D space; we can see the frame of the Polaris system 
and the calculated axis of the ultrasound probe. Figure 9(b) shows a convex hull applied to a 
set of slices of tumors, that is, the minimal convex set containing all the slices. This convex 
hull was built by using conformal geometric algebra to the geometric tests, as explained in 
Section 4.1.  Figure 10 shows the tumor in a phantom brain model. 
 

 

 
Fig. 9. (a) Virtual representation of the segmented US image. (b) Applying a convex hull to 
the results. 
 

 
Fig. 10. The tumor in a phantom brain model. 

 
5. Conclusions 

In this chapter, we addressed the problem of obtaining 3D information from joint 
ultrasound and endoscopic images obtained with ENS equipment. In order to register both 
sources, we developed two alternative methods to locate the US probe’s tip in endoscopic 
images: using saturation thresholding and a particle filter. Some preliminary results were 
shown. As for the ultrasound image, we presented two methods to segment interesting 
brain structures: morphological operators and level sets. In order to find the better method 
to track the ultrasound probe in the endoscopic camera images and to segment the tumor in 
the ultrasound images, we compared the results obtained with both methods. The results 
were shown in 3D space; the 3D information was calculated from the results obtained by the 
tracking process in endoscopic images. 
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is out of * ; if 0 sp , then p  is on the sphere * . A plane in dual form is defined as a 

sphere, but the last point is at infinity: ecba * ; the normal n  to this plane is its 
dual   if the coefficient e  of   is positive, else n , so we can get the signed distance 

from p to * as np  .  Figure 8 shows these concepts. A line in dual form is represented as 

the wedge of two points and the infinity point: ebaL * . A line can also be calculated as 
the intersection of two planes: 21  L . This equation is used to calculate the 3D line that 
represents the ultrasound probe’s axis. As mentioned, we are taking only the unit vector of 
this line. To achieve a translation by a distance 2d  from a point 

1p  in the direction of a line, 

we obtain 
2p : 


 LdT 22
1exp ,  

~

12 TpTp  .  

 

 

Fig. 8. Conformal entities used in the geometric tests. (a) The plane and (b) sphere. 

 
4.2 Putting the Results in 3D Space 
Figure 9(a) shows a slice of a tumor in 3D space; we can see the frame of the Polaris system 
and the calculated axis of the ultrasound probe. Figure 9(b) shows a convex hull applied to a 
set of slices of tumors, that is, the minimal convex set containing all the slices. This convex 
hull was built by using conformal geometric algebra to the geometric tests, as explained in 
Section 4.1.  Figure 10 shows the tumor in a phantom brain model. 
 

 

 
Fig. 9. (a) Virtual representation of the segmented US image. (b) Applying a convex hull to 
the results. 
 

 
Fig. 10. The tumor in a phantom brain model. 

 
5. Conclusions 

In this chapter, we addressed the problem of obtaining 3D information from joint 
ultrasound and endoscopic images obtained with ENS equipment. In order to register both 
sources, we developed two alternative methods to locate the US probe’s tip in endoscopic 
images: using saturation thresholding and a particle filter. Some preliminary results were 
shown. As for the ultrasound image, we presented two methods to segment interesting 
brain structures: morphological operators and level sets. In order to find the better method 
to track the ultrasound probe in the endoscopic camera images and to segment the tumor in 
the ultrasound images, we compared the results obtained with both methods. The results 
were shown in 3D space; the 3D information was calculated from the results obtained by the 
tracking process in endoscopic images. 
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The performance of the proposed approach was demonstrated using several images that 
were subject to occlusions and changes in illumination and contrast. The results indicated 
that the proposed approach is robust. 
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