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1. Introduction 

A control allocation system implements a function that maps the desired control forces 
generated by the vehicle motion controller into the commands of the different actuators.  In 
order to achieve high reliability with respect to sensor failure, most underwater vehicles 
have more force-producing actuators than the necessary number required for nominal 
operations. Therefore, it is common to consider the motion control problem in terms of 
generalised forces—independent forces affecting the different degrees of freedom—, and 
use a control allocation system. Then, for example, in case of an actuator failure the 
remaining ones can be reconfigured by the control allocation system without having to 
change the motion controller structure and tuning.  
The control allocation function hardly ever has a close form solution; instead the values of 
the actuator commands are obtained by solving a constrained optimization problem at each 
sampling period of the digital motion control implementation loop. The optimization 
problem aims at producing the demanded generalized forces while at the same time 
minimizing the use of control effort (power).  
Control allocation problems for underwater vehicles can be formulated as optimization 
problems, where the objective typically is to produce the specified generalized forces while 
minimizing the use of control effort (or power) subject to actuator rate and position 
constraints, power constraints as well as other operational constraints. In addition, 
singularity avoidance for vessels with rotatable thrusters represents a challenging problem 
since a non-convex nonlinear program must be solved. This is useful to avoid temporarily 
loss of controllability. In this article, a survey of control allocation methods for over-actuated 
underwater vehicles is presented. The methods are applicable for both surface vessels and 
underwater vehicles. 
Over-actuated control allocation problems are naturally formulated as optimization 
problems as one usually wants to take advantage of all available degrees of freedom (DOF) 
in order to minimize power consumption, drag, tear/wear and other costs related to the use 
of control, subject to constraints such as actuator position limitations, e.g. Enns (1998), 
Bodson (2002) and Durham (1993). In general, this leads to a constrained optimization O
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problem that is hard to solve using state-of-the-art iterative numerical optimization software 
at a high sampling rate in a safety-critical real-time system with limiting processing capacity 
and high demands for software reliability. Still, real-time iterative optimization solutions 
can be used; see Lindfors (1993), Webster and Sousa (1999), Bodson (2002), Harkegård (2002) 
and Johansen, Fossen, Berge (2004). Explicit solutions can also be found and implemented 
efficiently by combining simple matrix computations, logic and filtering; see Sørdalen 
(1997), Berge and Fossen (1997) and Lindegaard and Fossen (2003). 
 

 

Fig. 1. Block diagram illustrating the control allocation problem. 

The paper presents a survey of control allocation methods with focus on mathematical 
representation and solvability of thruster allocation problems. The paper is useful for 
university students and engineers who want to get an overview of state-of-the art control 
allocation methods as well as advance methods to solve more complex problems. 

1.1 Problem formulation 

Consider an underwater vehicle (Fossen, 2002): 

 
=$

$
η η ν

ν + ν ν + ν ν + η = τ
J

M C D g

( )

( ) ( ) ( )
 (1.1) 

that is controlled by designing a feedback control law of generalized control forces: 

 
nτ = α ∈B u R( )

  (1.2) 

where pα∈R is a vector azimuth angles and r∈u R are actuator commands. For marine 

vehicles, some control forces can be rotated an angle about the z-axis and produce force 

components in the x- and y-directions, or about the y-axis and produce force components in 

the x- and z-directions. This gives additional control inputsα  which must be computed by 

the control allocation algorithm. The control law uses feedback from position/attitude 
Tx y z ϕ θ ψ=η [ , , , , , ] and velocity Tu v w p q r=ν [ , , , , , ] as shown in Figure 1. 

For marine vessels with controlled motion in n DOF it is necessary to distribute the 

generalized control forces τ to the actuators in terms of control inputsα and u.  Consider 

(1.2) where n r×α ∈B R( ) is the input matrix. If B has full rank (equal to n) and r n> ,   you have 

control forces in all relevant directions, this is an over-actuated control problem. Similarly, the 

case r n<  is referred to as an under-actuated control problem. 
Computation of α andu from τ  is a model-based optimization problem which in its simplest 

form is unconstrained while physical limitations like input amplitude and rate saturations 
imply that a constrained optimization problem must be solved. Another complication is 
actuators that can be rotated at the same time as they produce control forces. This increases 
the number of available controls from r to r+p.  
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2. Actuator models 

The control force due to a propeller, a rudder, or a fin can be written 

 F ku=   (1.3) 

where k is the force coefficient and u is the control input depending on the actuator 
considered; see Table 1. The linear model F=ku can also be used to describe nonlinear 
monotonic control forces. For instance, if the rudder force F is quadratic in rudder angle δ, 
that is 

 δ δ= | |,F k   (1.4) 

the choice | |u δ δ= , which has a unique inverse ( )sign u uδ = ,  satisfies (1.3).  

 

Actuator u α  Tf  

Main propeller/longitudinal 
thrusters 

pitch/rpm - [ ,0,0]xF  

Transverse thrusters  pitch/rpm - [0, ,0]yF  

Rotatable thruster in the 
horizontal plane 

pitch/rpm angle α α[ , ,0]cos sinx xF F  

Rotatable thruster in the 
vertical plane 

pitch/rpm angle α α[ sin ,0, cos ]z zF F  

Aft rudders angle - [0, ,0]yF  

Stabilizing fins angle - [0,0, ]zF  

Table 1. Example of actuators and control variables.  

For underwater vehicles the most common actuators are: 

• Main propellers/longitudinal thrusters are mounted aft of the hull usually in 
conjunction with rudders. They produce the necessary force in the x-direction needed 
for transit. 

• Transverse thrusters are sometime going through the hull of the vessel (tunnel 
thrusters). The propeller unit is then mounted inside a transverse tube and it produces a 
force in the y -direction. Tunnel thrusters are only effective at low speed which limits 
their use to low-speed maneuvering and DP. 

• Rotatable (azimuth) thrusters in the horizontal and vertical planes are thruster units 
that can be rotated an angleα about the z-axis or y-axis  to produce two force 

components in the horizontal or vertical planes, respectively.  Azimuth thrusters are 
attractive in low-speed maneuvering and DP systems since they can produce forces in 
different directions leading to an over-actuated control problem that can be optimized 
with respect to power and possible failure situations. 

• Aft rudders are the primary steering device for conventional vessels. They are located 
aft of the vessel and the rudder force yF will be a function of the rudder deflection (the 
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drag force in the x-direction is usually neglected in the control analysis). A rudder force 
in the y-direction will produce a yaw moment which can be used for steering control. 

• Stabilizing fins are used for damping of vertical vibrations and roll motions. They 

produce a force zF in the z-directions which is a function of the fin deflection. For small 

angles this relationship is linear. Fin stabilizers can be retractable allowing for selective 
use in bad weather. The lift forces are small at low speed so the most effective operating 
condition is in transit. 

• Control surfaces can be mounted at different locations to produce lift and drag forces. 
For underwater vehicles these could be fins for diving, rolling, and pitching, rudders 
for steering, etc. 

Table 1 implies that the forces and moments in 6 DOF due to the force vector 

[ , , ]x z
T

yF F Ff = can be written 

x

y

z

z y y z

x z z x

y x x y

F

F

F

F l F l

F l F l

F l F l

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥×⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−
−
−

f

r f
τ

 

(1.5)

where [ , , ]x z
T

yl l lr =  are the moment arms. For azimuth thrusters in the horizontal plane the 

control force F will be a function of the rotation angle. Consequently, an azimuth thruster 

will have two force components cosxF F α= and sin ,yF F α= while the main propeller aft of 

the vehicle only produces a longitudinal force ,xF F= see Table 1. 

2.1 Thrust configuration matrix for non-rotatable actuators 

The control forces and moments for the fixed thruster case (no rotatable thrusters) can be 
written 

 τ = Tf   (1.6) 

where n r×∈T R is the thrust configuration matrix. The control forces satisfies, 

 ,=f Ku   (1.7) 

with control inputs 1 ,..., ][ .T
ruu=u  The force coefficient matrix r r×∈K R is diagonal, 

 1{ ,..., }.rdiag k k=K
 (1.8) 

The actuator configuration matrix is defined in terms of a set of column vectors 
n

i ∈t R according to 

                                                     1( ) [ ,..., ].rα =T t t
                                                (1.9) 

 

If we consider 6 DOF motions, the columns vectors can be derived from (1.5) and (1.9) 
according to 
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m m m

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =−⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦tunnel thruster stabilizing finmain propeller and aft rudder

0

01 0

10 0

00 1

0

0

i i

i

i i

i i i
z y

z x

y x

l

l l
l

l l

t t t  
(1.10)

2.2 Thrust configuration matrix for rotatable actuators 

A more general representation of (1.6) is, 

( )

( ) ,

τ = α
α

T f

= T Ku  
(1.11)

where the thrust configuration matrix )( n r×∈T Rα varies with the azimuth angles 

 
1[ ,..., ] .T

pα αα =
  (1.12) 

The azimuth thruster in the horizontal plane are defined in terms of the column vector 

α

α

αα
α

αα
α α

α α α

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =− ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦−

'****(****) '****(****)azimuth thruster in az
the horizontal plane

sincos

0sin

cos0
, cossin

sin sin cos

sin cos sin

ii

i i i

i i i

ii

i

i

i i
y iz i

z i z i x i

x i y i y i

l l l

ll

l l l

t t

imuth thruster in
the vertical plane

 
(1.13)

where the coordinates ( , , )
i i ix y zl l l denotes the location of the actuator with respect the body 

fixed coordinate system. Similar expressions can be derived for thrusters that are rotatable 

about the x- and y-axes. 

2.3 Extended thrust configuration matrix for rotatable actuators 
When solving the control allocation optimization problem an alternative representation to 
(1.10) is attractive to use. Equation (1.11) is nonlinear in the controls α and u. This implies 
that a nonlinear optimization problem must be solved. In order to avoid this, the rotatable 
thrusters can be treated as two forces.  
Consider a rotatable thruster in the horizontal plane (the same methodology can be used for 
thrusters that can be rotated in the vertical plane), 

= cos

cos ,

F Fx i i

k ui i i

i
α

α=

 

(1.14)
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= sin

sin .

F Fy i i

k ui i i

i
α

α=
 (1.15)

Next, we define an extended force vector according to 

 e e e=f K u
  (1.16) 

such that 

 e e eτ = TK u
  (1.17) 

where eT  and eK are the extended thrust configuration and thrust coefficient matrices, 

respectively and eu is a vector of extended control inputs where the azimuth controls are 

modelled as 

cos

sin
ix i i

iy i i

u u

u u

α
α

=
=

 (1.18)

The following examples show how this model can be established for an underwater vehicle 
equipped with two main propellers and two azimuth thrusters in the horizontal plane. 
Example 1: Thrust configuration matrices for an ROV/AUV with rotatable thrusters 
The horizontal plane forces X and Y in surge and sway, respectively and the yaw moment N satisfy 
(see Figure 2), 

( )

W
T Kuτ = α

 (1.19)

1 1 2 2 3 4

1 1

2 2

3 3
1 1 2 2

4 4

0 0 0
1 0 1 1

0 0 0
0 1 0 0 .

0 0 0
sin cos sin cos

0 0 0x y x y y y

k u
X

k u
Y

k u
N l l l l l l

k u
α α α α

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − − ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (1.20)

 

Fig. 2. ROV/AUV equipped with two azimuth thrusters (forces F1 and F2) and two main 
propellers (forces F3 and F4). The azimuth forces are decomposed along the x- and y-axis. 

www.intechopen.com



A Survey of Control Allocation Methods for Underwater Vehicles 

 

115 

By using the extended thrust vector, (1.19) can be rewritten as, 

e e e

W
T K uτ =

 (1.21)

1 2 3 4

11

11

22

22

3 3

4 4

0 0 0 0 0

0 0 0 0 0
1 0 1 0 1 1

0 0 0 0 0
0 1 0 1 0 0 .

0 0 0 0 0
0 0

0 0 0 0 0

0 0 0 0 0

x

y

x

y
x x y y

uk

uk
X

uk
Y

uk
N l l l l

k u

k u

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ − ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (1.22)

Notice that eT is constant while ( )T α depends on .α  This means that the extended control input 

vector eu  can be solved directly from (1.21) by using a pseudo-inverse. This is not the case for (1.20) 

which represents a nonlinear optimization problem. The azimuth controls can then be derived from 

the extended control vector eu by mapping the pairs 1 1( , )x yu u  and 2 2( , )x yu u  using the relations, 

2 2
1 1 1 1 1

2

1

2
2 2 2 2 22

, atan 2( , ),

, atan 2( , ).

x y y x

x y y x

u u u u u

u u u u u

α

α

= + =

= + =
 (1.23)

The last two controls u3 and u4 
are elements in ue. □  

3. Linear quadratic unconstrained control allocation 

The simplest allocation problem is the one where all control forces are produced by thrusters 
in fixed directions alone or in combination with rudders and control surfaces such that 

constant, ( ) constant.= = =T Tα α
 

Assume that the allocation problem is unconstrained-i.e., there are no bounds on the vector 

elements ,i if α  and iu  and their time derivatives.  Saturating control and constrained control 

allocation are discussed in Sections 4-5. 

For marine craft where the configuration matrix T is square or non-square ( )r n≥ , that is 

there are equal or more control inputs than controllable DOF, it is possible to find an 
optimal distribution of control forces f, for each DOF by using an explicit method. Consider 
the unconstrained least-squares (LS) optimization problem (Fossen & Sagatun, 1991),  

{ }
subject to:

min  

 

TJ =

− =
f

f Wf

Tf 0.τ
 (1.24)

Here W is a positive definite matrix, usually diagonal, weighting the control forces. For 
marine craft which have both control surfaces and propellers, the elements in W should be 
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selected such that using the control surfaces is much more inexpensive than using the 
propellers. 

3.1 Explicit solution forα = constant using lagrange multipliers 

Define the Lagrangian (Fossen, 2002), 

 
( , ) ( ),T TL = + −f f Wf Tfλ λ τ

  (1.25) 

where r∈Rλ  is a vector of Lagrange multipliers. Consequently, differentiating the 

Lagrangian L with respect to ,f  yields 

 

11
2

2
T TL −∂

= − = =
∂

Wf T 0 f W T
f

λ ⇒ λ.
  (1.26) 

Next, assume that 1 T−TW T  is non-singular such that 

 

1 1 11
2( )

2
T T− − −= = =τ λ ⇒ λ τ.Tf TW T TW T

  (1.27) 
This gives 

 
− −= 1 12( ) ,Tλ τTW T

  (1.28) 
Substituting (1.28)

 
into (1.27) yields,  

 
1 1 1† †, ( ) ,T T

w w
− − −= =τf T T W T TW T

 (1.29) 

where †
wT   is recognized as the generalized inverse. For the case W=I, that is equally weighted 

control forces, (1.29) reduces to the Moore-Penrose pseudo inverse, 

 
1† ) .T T −=T T (TT

  (1.30) 

 Since † ,w=f T τ   the control input vector u can be computed from (1.7) as, 

 
1 †

w
−= τ.u K T

  (1.31) 

Notice that this solution is valid for all α but not optimal with respect to a time-varying α.   

3.2 Explicit solution for varyingα using Lagrange multipliers 

In the unconstraint case a time-varying α can be handled by using an extended thrust 

representation similar to Sørdalen (1997). Consider the ROV/AUV model in Example 1 
where, 

e e

e e e

τ = T f
= T K u

 (1.32)

Application of (1.29) now gives, 
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†

1 ,

e w

e e e
−

= τ

=

f T

u K f
 (1.33)

where 1 1 2 2 3 4[ , , , , , ]Te x y x yu u u u u u=u  and 1 2 3 4 5 6[ , , , , , ] .T
e f f f f f f=f  The optimal azimuth 

angles and thrust commands are then found as 

2 2 2 2
1 1 1 1 2 1 1

1

2 2 2 2
2 2 2 3 4 2 2

2

5
3

3

6
4

4

1

2

1
, atan 2( , ),

1
, atan 2( , ),

,

.

x y y x

x y y x

u u u f f u u
k

u u u f f u u
k

f
u

k

f
u

k

α

α

= + = + =

= + = + =

=

=

 (1.34)

The main problem is that the optimal solution for 1α and 2α  can jump at each sample 

which requires proper filtering. In the next sections, we propose other solutions to this 
problem. 

4. Linear quadratic constrained control allocation 

In practical systems it is important to minimize the power consumption by taking advantage 

of the additional control forces in an over-actuated control problem. It is also important to 

take into account actuator limitations like saturation, tear and wear as well as other 

constraints such as forbidden sectors, and overload of the power system. In general this 

leads to a constrained optimization problem. 

4.1 Explicit solution forα = constant using piecewise linear functions (non-rotatable 

actuators) 

An explicit solution approach for parametric quadratic programming has been developed 

by Tøndel et al. (2003) while applications to marine vessels are presented by Johansen et al. 

(2005). In this work the constrained optimization problem is formulated as 

{ }
, ,

min max

1 2

min

         

, ,...

subject to:

T T

f

r

J f

f f f f f

β=

= +
≤

− ≤ ≤

f s
f Wf s Qs

Tf s

f f f

+ +

τ
≤

 

(1.35)

where  ns ∈ R  is a vector of slack variables and forces 

 
1 2

[ , ,..., ] RT r

r
f f f= ∈f   (1.36) 
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The first term of the criterion corresponds to the LS criterion (1.25), while the third term is 

introduced to minimize the largest force  max | |
i i

f f=  among the actuators.  The constant  

0β ≥  controls the relative weighting of the two criteria. This formulation ensures that the 

constraints min max
i i i
f f f≤ ≤   ( 1,..., )i r=   are satisfied, if necessary by allowing the resulting 

generalized force Tf to deviate from its specification τ . To achieve accurate generalized 

force, the slack variable should be close to zero. This is obtained by choosing the weighting 

matrix 0.4 >Q W Moreover, saturation and other constraints are handled in an optimal 

manner by minimizing the combined criterion (1.35). Let 

 
2 1

min max
[ , , , ] R ,T T T T n rβ + +∈p f f= τ

  (1.37) 
denote the parameter vector and, 

 
1[ , , ] R .T T T r nf + +∈z f s=

 
(1.38) 

Hence, it is straightforward to see that the optimization problem (1.35) can be reformulated 
as a QP problem:  

 

{ }

1 1

2 2

subject to:

min

         

T TJ =

=

Φ +

≤

z
z z z Rp

A z C p

A z C p
 

(1.39) 

where: 

1
( ) 1

1 ( 1) ( 2 )

1 1

: , :
1

0

r n r

r n

n r n r n n r

r n

× ×
+ ×

× × + + × +

× ×

⎡ ⎤
⎡ ⎡ ⎤ ⎤⎢ ⎥

= = ⎢ ⎢ ⎥ ⎥⎢ ⎥
⎢ ⎢ ⎥ ⎥⎣ ⎣ ⎦ ⎦⎢ ⎥

⎣ ⎦

Φ
W 0 0

0
0 Q 0 R 0

0 0
 

 

1

1

1 1 2
,, :

1

1

1

1

1

1

r r r n r

r r r n r

r r r n

n n n

r r r n

× × ×

× × ×

× ×

× ×

× ×

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥= − =⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎣ ⎦ ⎦

B

B

I 0 0

I 0 0

I 0

A T I 0 A

I 0

 

(1.40) 

1

1

1 (2 1) 2
1

1

,, :

r n r r r r r

r n r r r r r

n n n r

r n r r r r r

r n r r r r r

× × × ×

× × × ×
× × +

× × × ×

× × × ×

−⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 I 0 0

0 0 I 0
C I 0 C

0 0 0 0

0 0 0 0
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Since 0W > and 0Q > this is a convex quadratic program in z parameterized by p.  

Convexity guarantees that a global solution can be found. The optimal solution ( )∗z p is a 

continuous piecewise linear function ( )∗z p defined on any subset, 

 min max
≤ ≤p p p

 
(1.41) 

of the parameter space. Moreover, an exact representation of this piecewise linear function 

can be computed off-line using multi-parametric QP algorithms (Tøndel and Johansen, 

2003b) or the Matlab Multi-Parametric Toolbox (MPT) by Kvasnica,  Grieder and Baotic (2004).   

Consequently, it is not necessary to solve the QP (1.36) in real time for the current value of 

τ  and the parameters 
min max

,f f  and β , if they are allowed to vary.  

In fact it suffices to evaluate the known piecewise linear function ( )∗z p  as a function of the 

given parameter vector p which can be done efficient with a small amount of computations. 

For details on the implementation aspects of the mp-QP algorithm; see Johansen et al. (2003) 

and references therein. An on-line control allocation algorithm is presented in Tøndel et al. 

(2003a). 

4.2 Explicit solution for varyingα using piecewise linear functions (rotatable thrusters 

and rudders) 

An extension of the mp-QP algorithm to marine vessels equipped with azimuthing thrusters 

and rudders has been given by Johansen et al. (2003). A propeller with a rudder can produce 

a thrust vector within a range of directions and magnitudes in the horizontal plane for low-

speed maneuvering and dynamic positioning. The set of attainable thrust vectors is non-

convex because significant lift can be produced by the rudder only with forward thrust. The 

attainable thrust region can, however, be decomposed into a finite union of convex 

polyhedral sets. A similar decomposition can be made for azimuthing thrusters including 

forbidden sectors. Hence, this can be formulated as a mixed-integer-like convex quadratic 

programming problem and by using arbitrarily number of rudders as well as thrusters and 

other propulsion devices can be handled. Actuator rate and position constraints are also 

taken into account. Using a multi-parametric quadratic programming software, an explicit 

piecewise linear representation of the least-squares optimal control allocation law can be 

pre-computed. The method is illustrated using a scale model of a supply vessel in a test 

basin, see Johansen et al. (2003) for details, and using a scale model of a floating platform in 

a test basin, see Spjøtvold (2008). 

4.3 Explicit solutions based on minimum norm and null-space methods (non-rotatable 
actuators) 

In flight and aerospace control systems, the problems of control allocation and saturating 
control have been addressed by Durham (1993, 1994a, 1994b). They also propose an explicit 
solution to avoid saturation referred to as the direct method. By noticing that there are 
infinite combinations of admissible controls that generate control forces on the boundary of 
the closed subset of attainable controls, the direct method calculates admissible controls in 
the interior of the attainable forces as scaled down versions of the unique solutions for force 
demands. Unfortunately it is not possible to minimize the norm of the control forces on the 
boundary or some other constraint since the solutions on the boundary are unique. The 
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computational complexity of the algorithm is proportional to the square of the number of 
controls, which can be problematic in real-time applications. 
In Bordignon and Durham (1995) the null space interaction method is used to minimize the 
norm of the control vector when possible, and still access the attainable forces to overcome 
the drawbacks of the direct method. This method is also explicit but much more 
computational intensive. For instance 20 independent controls imply that up to 3.4 billon 
points have to be checked at each sample. In Durham (1999) a computationally simple and 
efficient method to obtain near-optimal solutions is described. The method is based on prior 
knowledge of the controls' effectiveness and limits such that pre-calculation of several 
generalized inverses can be done. 

4.4 Iterative solutions 

An alternative to the explicit solution could be to use an iterative solution to solve the QP 
problem (Sørdalen, 1997). The drawback with the iterative solution is that several iterations 
may have to be performed at each sample in order to find the optimal solution. The iterative 
approach is more flexibility for on-line reconfiguration, as for example a change in W may 
require that the explicit solutions are recalculated. Computational complexity is also greatly 
reduced by a warm start-i.e., the numerical solver is initialized with the solution of the 
optimization problem computed at the previous sample. 
Finally, the offline computed complexity and memory requirements may be prohibited for 
the explicit solution to be applicable to large scale control allocation problems. 
 

 

Fig. 3. Block diagram illustrating the iterative control allocation problem. 

5. Nonlinear constrained control allocation (rotatable actuators)  

The control allocation problem for vessels equipped with azimuth thrusters is in general a 
non-convex optimization problem that is hard to solve. The primary constraint is 

 
( ) ,= T fτ α

 
(1.42) 

where Rp∈α denotes the azimuth angles. The azimuth angles must be computed at each 

sample together with the control inputs R p∈u  which are subject to both amplitude and 

rate saturations. In addition, rotatable thrusters may only operate in feasible sectors 

,min ,maxi i i
α α α≤ ≤  at a limiting turning rate $α.  Another problem is that the inverse, 

 
1 1 1( ) ( )[ ( ) ( )] ,T T T

w

− − −=T W T T W Tα α α α
 

(1.43) 

may not exist for certain α -values due to singularity. The consequence of such a singularity 
is that no force is produced in certain directions. This may greatly reduce dynamic 
performance and maneuverability as the azimuth angles can be changed slowly only. This 
suggests that the following criterion should be minimized (Johansen et al., 2004), 
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(1.44) 

where 

•  
3/2

1
r
i i i
P f=∑ represents power consumption where 0 ( 1,..., )

i
P i r> = are positive 

weights. 

• Ts Qs penalizes the error sbetween the commanded and achieved generalized force. 

This is necessary in order to guarantee that the optimization problem has a feasible 

solution for any τ  and 
0
.α  The weight 0Q >  is chosen so large that the optimal 

solution is s 0≈   whenever possible. 

•  
min max

≤ ≤f f f   is used to limit the use of force (saturation handling). 

• 
min max

≤α α ≤ α   denotes the feasible sectors of the azimuth angles. 

• 
min 0 max

Δ ≤α α − α ≤ Δα   ensures that the azimuth angles do not move to much within 

one sample taking  
0

α   equal to the angles at the previous sample. This is equivalent to 

limiting  | |,$α  -i.e. the turning rate of the thrusters. 

• The term 

1det( ( ) ( ))T

ρ
ε −+ T W Tα α

 

is introduced to avoid singular configurations given by  1det( ( ) ( )) 0.T− =T W Tα α   To 

avoid division by zero,  0,ε >  is chosen as a small number, while 0ρ >  is scalar 

weight. A large ρ ensures high maneuverability at the cost of higher power 

consumption and vice versa. 
The optimization problem (1.44) is a non-convex nonlinear program and it requires a 
significant amount of computations at each sample (Nocedal and Wright, 1999). 
Consequently, the following two implementation strategies are attractive alternatives to 
nonlinear program efforts. 

5.1 Dynamic solution using Lyapunov methods 

In Johansen (2004) a control-Lyapunov approach has been used to develop an optimal 
dynamic control allocation algorithm. The proposed algorithm leads to asymptotic 
optimality. Consequently, the computational complexity compared to a direct nonlinear 
programming approach is considerably reduced. This is done by constructing the 

www.intechopen.com



 Underwater Vehicles 

 

122 

optimizing control allocation algorithm as a dynamic update law which can be used 
together with a feedback control system. It is shown that the asymptotically optimal control 
allocation algorithm in interaction with an exponentially stable trajectory-tracking controller 
guarantees uniform boundedness and uniform global exponential convergence. A case 
study addressing low-speed maneuvering of an overactuated ship is used to demonstrate 
the performance of the control allocation algorithm. Extension to the adaptive case where 
thrust losses are estimated are given in (Tjønnås & Johansen, 2005), and extension to the case 
when actuator dynamics are considered explicitly in the control allocation is given in 
(Tjønnås & Johansen, 2007). 

5.2 Iterative solutions using quadratic programming 

The problem (1.42) can be locally approximated with a convex QP problem by assuming that: 
1. the power consumption can be approximated by a quadratic term in ,f  near the last 

force
0
f  such that  

0
.+ Δf f f=  

2. the singularity avoidance penalty can be approximated by a linear term linearized 

about the last azimuth angle
0

α such that 
0

.= + Δα α α  

The resulting QP criterion is (Johansen et al. , 2004): 
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(1.45) 

The convex QP problem (1.43) can be solved by using standard software for numerical 
optimization. 

5.3 Iterative solutions using linear programming 

Linear approximations to the thrust allocation problem have been discussed by Webster and 
Sousa (1999) and Lindfors (1993).  In Linfors (1993) the azimuth thrust constraints 

 
2 2 max( cos ) ( sin )

i i i i i i
f f f fαα= + ≤

 
(1.46) 

are represented as circles in the ( cos , sin )
i i i i
f f αα -plane. The nonlinear program is 

transformed to a linear programming (LP) problem by approximating the azimuth thrust 
constraints by straight lines forming a polygon. If 8 lines are used to approximate the circles 
(octagons), the worst case errors will be less than ± 4.0%. The criterion to be minimized is a 

linear combination of | |,f that is magnitude of force in the x- and y-directions, weighted 

against the magnitudes 
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2 2| ( cos ) ( sin ) |

i i i i
f f αα +

 
(1.47) 

representing azimuth thrust. Hence, singularities and azimuth rate limitations are not 
weighted in the cost function. If these are important, the QP formulation should be used. 

5.4 Explicit solution using the singular value decomposition and filtering techniques 

An alternative method to solve the constrained control allocation problem is to use the 
singular value decomposition (SVD) and a filtering scheme to control the azimuth directions 
such that they are aligned with the direction where most force is required, paying attention 
to singularities (Sørdalen 1997). Results from sea trials have been presented in Sørdalen 
(1997). A similar technique using the damped-least squares algorithm has been reported in 
Berge and Fossen (1997) where the results are documented by controlling a scale model of a 
supply vessel equipped with four azimuth thrusters. 

6. Case study: allocation problem formulation for an AUV with control 
surfaces 

Some underwater vehicles perform all their missions at forward speed. In these 
applications, the vehicle hull design is streamlined so as to reduce hull drag, and the 
preferred type of control surface is the hydrofoil or fin.  Hydrofoils produce lift, which is the 
useful force for controlling the motion of the vehicle. The side effect of lift generation, 
however, is drag—in other words, drag is the price we pay to obtain lift. Hence, for vehicles 
with several mounted control surfaces, the control allocation seeks the implementation of 
the demanded generalised forces while minimising the foil-induced drag. In this section, we 
formulate the control allocation problem for an AUV with two fixed thrusters and hydrofoil 
control surfaces. 
Figure 4 shows INFANTE—an AUV built and operated by the Insituto Supetior Tecnico de 
Lisboa, Portugal. This AUV has two fixed thrusters at the stern, and six control surfaces: two 
horizontal fins mounted on the bow quarter, two horizontal fins mounted on the stern 
quarter, and two rudders mounted vertically behind the propellers.  
 

 

Fig. 4. INFANTE-AUV. Picture courtesy of Dynamic Systems and Ocean Robotics 
Laboratory (DSOR), Instituto Superior Tecnico de Lisboa, Portugal. Copyright (c) 2001 
DSOR-ISR.  

Standard hydrofoil theory, see for example Marchaj (2000), establishes that the lift force 
produced by the hydrofoils is directed perpendicular to the incoming flow while the drag 
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force is directed along the incoming flow direction.  The magnitude of the lift and drag 
forces can be modelled as, 

 

21
,

2
w f L

L Au Cρ δ=
 

(1.48) 

 

2 21
,

2
w f D

D Au Cρ δ=
 

(1.49) 

where
w

ρ  is the water density, A is the area of the hydrofoil, uf is the fluid velocity relative to 

the hydrofoil, CL and CD are the lift and drag coefficients respectively (measured 

experimentally), and δ is the angle of attack between the hydrofoil and the incoming flow.  
Table 2 shows the different variables associated with the different control actuators 
considered in this case study. Notice that for the positive angle deflection of the control 
surfaces we use the right-hand rule along the direction of the rotation axis towards the tip. 
 

Variable Description Positive convention 

δ pb Port bow fin angle Forward edge down 

δ sb Starboard bow fin angle Forward edge up 

δ ps Port stern fin angle Forward edge down 

δ ss Starboard stern fin angle Forward edge up 

δ pr Port rudder angle Forward edge to port 

δ sr Starboard rudder angle Forward edge to port 

Tp Port thuster thust Forward 

Ts Starboard thuster thust Forward 

Table 2. Manipulated variables associated with the different actuators of the AUV shown in 
Figure 4. 

For the control allocation problem, we will assume that the velocity uf is either measured or 
estimated. We will also assume that the vehicle manoeuvres slowly from its equilibrium 
operational condition at forward speed. Hence, we can neglect the small drift angles; and 
thus, the lift and drag forces of the different hydrofoils can be considered to act along the x- 
and y-direction of the body-fixed coordinate system attached to the vessel. Furthermore, 

under the slow manoeuvring assumption and small drift angle, the angle of attack δ  of the 
hydrofoils can be approximated by the mechanical angle of rotation of the hydrofoils.  
For the particular vehicle under study, we can consider motion control objectives in 5DOF 
(surge, heave, pitch, roll, and yaw). With these objectives, the fins can be used to control 
heave, pitch and roll, the rudders to control yaw, and the thrusters to control surge. Then, 
we can simplify the allocation problem by taking a three-step approach: 
1. Solve the allocation of the fins to obtain the deflection angles that implement the 

desired heave force and pitch and roll moments while minimising the induced drag. 
2. Compute rudder angles based on the demanded yaw moment. 
3. Compute thrust demand for the thrusters based on the demanded surge force while 

compensating for the fin and rudder induced drag forces.   
The separation into these three steps simplifies the optimisation problem associated with the 
allocation. The first step results in a quadratic programme with linear constraints since only 
the lift forces are used. Then the rudders are used only for controlling the heading or yaw.  
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Finally, after computing the fin and rudder deflection angles, the thrust can be computed to 
implement the desired surge force and to compensate for the drag forces of the fins and 
rudders. 
The above allocation scheme could be interpreted as a feed-forward compensation for the 

side effects of the fin and rudder drag induced forces.     

Step 1: fin Allocation 
Based on the above assumptions and the adopted positive convention for the variables 

shown in Table 1, we obtain the following vector of fin commands and force configuration 

matrix for heave, pitch and roll allocation 

 
,

T

fins pb sb ps ss
δ δ δ δ⎡ ⎤= ⎣ ⎦f

 
(1.50) 
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where  
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Since the fin-induced drag is proportional to the square of the angle of attack, a natural 

objective function to minimize in the control allocation problem is a quadratic function. 

Depending on the difference in size and hydrodynamic characteristics of the bow and stern 

hydrofoils, we could perhaps use a different weighting to the two sets of fins.  Thus, the fin 

allocation problem can be formulated as a standard quadratic program:   
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(1.54) 

where wb and ws represent the weighting for the bow and stern fins—note that only their 

relative value is of importance. 
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Step 2: Rudder Allocation 
In nominal operational conditions, we can use the same deflection for both rudders. Hence, 
the allocation problem reduces to inverse of the mapping from angle to rudder moment:  

 
2

,c

pr sr r

r r prop L

N

x A v C
δ δ

ρ
= =

 

(1.55) 

where xr denotes the longitudinal position of the rudders relative to the adopted body-fixed 
reference system, vprop is the flow velocity in the wake of the propeller, Nc is the yaw moment 
demanded by the vehicle motion controller. 
Step 3: Thruster Allocation 
In nominal operational conditions, we can use the same demand for the two thrusters. This 
demand is computed to implement the desired thrust demanded by the controller and to 
compensate the drag induced by the fins and rudders 

 
( )1

,
2

p s c cs
T T X X= = +

 
(1.56) 

where Xc is the surge force demanded by the vehicle motion controller, and Xcs is the added 
resistance due to the deflection of all the control surfaces 

 
( ) ( ) ( )2 2 2 2 2 2 ,b s r
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X k k kδ δ δ δ δ δ= + + + + +

 
(1.57) 

with the following drag related coefficients for the bow fins, stern fins, and rudders 
respectively 
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(1.58) 

In this section, we have considered a case study and formulated the control allocation 
problem for a particular AUV with two thrusters and six control surfaces. We have made 
some simplifying assumptions and considered the nominal operational conditions. Similar 
modelling procedures to that followed in this case study can be applied to other AUV with 
different actuators. 

7. Conclusion 

A survey of methods for control allocation of overactuated marine vessels has been 
presented. Both implicit and explicit methods formulated as optimization problems have 
been discussed. The objective has been to minimize the use of control effort (or power) 
subject to actuator rate and position constraints, power constraints as well as other 
operational constraints. 
A case study of an AUV with control surfaces has been included in order to show how 
quadratic programming can be used to solve the control allocation problem. 
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