Chapter from the book *Robotics, Automation and Control*
Downloaded from: http://www.intechopen.com/books/robotics-automation-and-control
An Approach to Tune PID Fuzzy Logic Controllers Based on Reinforcement Learning

Hacene Rezine¹, Louali Rabah¹, Jèроме Faucher² and Pascal Maussion²

¹Unit of Control, Robotic and Productic Laboratory, Polytechnical Military School
²Ecole Nationale d’Électrotechnique, d’Electronic, d’Informatique et d’Hydraulique de Toulouse
Algeria

1. Introduction

In the traditional control theory, an appropriate controller is designed based on a mathematical model of the plant under the assumption that the model provides a complete and accurate characterization of the plant. However, in some practical problems, the mathematical models of plants are difficult or time-consuming to be obtained because the plants are inherently nonlinear and/or exhibit uncertainty. Thus, new methods are proposed to process these characteristics [1]. In recent years, increased efforts have been centered on developing intelligent control systems that can perform effectively in real-time. These include the development of non-analytical methods of Artificial Intelligence (AI) such as neural networks, fuzzy logic and genetic algorithms [1] but their combinations are also introduced such as Neuro-Fuzzy and Genetic-Fuzzy techniques [2], [3]. Fuzzy logic is a mathematical approach which has the ability to express the ambiguity of human thinking and translate expert knowledge into computable numerical data. It has been shown that fuzzy logic based modeling and control could serve as a powerful methodology for dealing with imprecision and non-linearity efficiently [4]. Also, for real-time applications, its relatively low computational complexity makes it a good candidate. Therefore, fuzzy logic control has emerged as one of the most successful nonlinear control techniques. Fuzzy Logic Controllers (FLC) are based on if – then rules integrating the valuable experiences of human. These rules use linguistic terms to describe systems. The mechanism of a FLC is that the uncertainty is represented by fuzzy sets and an action is generated co-operatively by several rules that are triggered to some degree, and produce smooth and robust control outputs. Recently, many authors proved that it is possible to reproduce the operation of any standard continuous controller using fuzzy controller [5] - [8].

Fuzzy logic controllers has shown good performances on the controlling of the complex, ill-defined and uncertain systems [9] and are being used successfully in many application areas such as mobile robots, subway system, nuclear reactor control and automobile transmission control, etc.

During the building of the FLC, the important tasks are the structure identification and parameters tuning [10]. The structure identification of the FLC includes the input-output variables of a controller, the rule base, the determination of the number of rules, the
antecedent and consequent membership functions and their partition on their spaces respectively, the inference mechanism and the defuzzification method. The parameters tuning includes determining the optimal parameters of membership functions antecedent and consequent but also the scaling factors. [11].

The main problem arises from there not being a systematic approach to improve system performance. In conventional approach, the problem of generation of rules is solved by exploiting the knowledge of an expert or obtaining knowledge base (i.e., training data) by investigating relationship between an existing controller and the target system and forming the rule-base by a trial-and-error approach. An important number of choices is given a priori, these choices are carried with empirical methods, and then the design of the FLC can prove to be long and delicate towards the important number of parameters to determine, and can lead then to a solution with poor performance [12].

With this subjective approach, it is difficult for a designer to examine complex systems to find the necessary number of rules, and to determine appropriate parameters of the rules for implementing the fuzzy controller [13]. Also, it isn’t easy to design an optimized fuzzy controller. Therefore, there has been a strong motivation to automate this process and consequently many researchers have been working to find learning algorithms for fuzzy system design.

Several approaches have been presented to learn and tune the fuzzy rules to achieve the desired performance. These automatic methods may be divided into two categories of supervised and unsupervised learning by whether the teaching signal is needed or not.

In the supervised learning approach, at each time step, if the input-output training data can be acquired, the FLC can be tuned based on the supervised learning methods. The artificial neural network (ANN)-based FLC can automatically determines or modifies the structure of the fuzzy rules and parameters of fuzzy membership functions with unsupervised or supervised learning by representing a FLC in a connectionist way such as ANFIS or other [14]-[17].

The other category contains genetic algorithm (GA) [18]-[23] and reinforcement learning (RL) systems [24]-[26] which are unsupervised learning algorithms with the self-learning ability [9]. The GA-based and RL-based FLCs are two equivalent learning schemes which need a scalar response from the environment to provide the action performance [28], that value is easier to collect than the desired-output data pairs in the real application [11].

The difference between the GA-based and RL-based FLCs lies in the manner of state-action space searching. The GA-based FLC is a population based approach that encodes the structure and/or parameters of each FLC into chromosomes to form an individual, and evolves individuals across generations with genetic operators to find the best one. The RL-based FLC uses statistical techniques and dynamic programming methods to evaluate the value of FLC actions in the states of the world. However, the pure GA-based FLC can not proceed to the next generation until the arrival of the external reinforcement signal and dit is not easy practical in real time applications. In contrast, the RL-based FLC can be employed to deal with the delayed reinforcement signal that appears in many situations [11]. Recently, some researches on combining the advantages of GAs and RL have been proposed [28]-[30].

The basic idea of the reinforcement learning is to learn, through trial-and-error interaction with a dynamic environment which returns a critic, called reinforcement, which can be thought of as a reward or a punishment, the control actions to determine desired changes in the control output that will increase the index of performance. Reinforcement learning
techniques assume that, during the learning process, no supervisor is present to directly judge the quality of the selected control actions, and therefore, the final evaluation of process is only known after a long sequence of action. Also, the problem involves optimizing not only the direct reinforcement, but also the total amount of reinforcements the agent can receive in the future. This leads to the temporal credit assignment problem, i.e., how to distribute reward or punishment to each individual state-action pair to adjust the chosen action and improve its performance [31].

Supervised learning is more efficient than the reinforcement learning when the input-output training data are available [32], [33]. However, in most real-world application, precise training data is usually difficult and expensive to obtain or may not be available at all [12]. For the above reasons, reinforcement learning can be used to tune the fuzzy rules of fuzzy systems. Kaelbling, littman and Moore [34], and more recently Sutton and Barto [35], characterize two classes of methods for reinforcement learning: methods that search the space of value functions and methods that search the space of policies. The former class is exemplified by the temporal difference (TD) method and the latter by the genetic algorithm (GA) approach [36]. To solve reinforcement learning problem, the most approach is TD method [37]-[39]. Two TD based reinforcement learning approaches have been proposed the Adaptive Heuristic Critic (AHC) [40], [41] and Q-learning [42], [43]. The AHC consists of two separate networks: an action network actor) and an evaluation network (critic). Based on the AHC, many learning approaches have been proposed [20], [26], [40], [44]. One drawback of these actor-critic architectures is that they usually suffer from the local minimum problem in network learning due to the use of gradient descent learning method. Besides the aforementioned AHC algorithm based learning architecture, more and more advances are being dedicated to learning schemes based on Q-learning [45]. Some Q-learning based reinforcement learning structures have also been proposed [46] - [52]. Q-Learning is also modified to Dyna [53], TPQ-Learning [54], CQ-Learning [55], Q(λ)-Learning [56], and so on. Glorennec and Jouffe [51],[52],[57] extened the original Q-Learning method into a fuzzy environment and introduced two fuzzy reinforcement learning methods, i.e., Fuzzy Actor-Critic Learning (FACL) and Fuzzy Q-Learning (FQL), to select the optimal conclusion for each fuzzy from an associated discrete action set. In these methods, the antecedent parameters are set using the a priori task knowledge of the user. From the point of view of reinforcement learning, a fuzzy inference system (FIS) is a means to introduce generalization in the state space and generate continuous actions in the reinforcement-learning problem whereas from the point of view of FISs, reinforcement learning is a learning method used to tune a fuzzy controller in a flexible way [58]. Fuzzy Q-learning collapses the two measures used by fuzzy actor/critic algorithms into one measure referred to as the Q-value [1]. It may be considered as a compact version of the FACL, also we adopt Fuzzy Q-learning in this work because it is conceptually simpler in implementation, and has been found empirically to converge faster in many cases [59], [60], for each fuzzy rule, a q value is defined for each fuzzy consequence, which is the estimated cumulative reward for the fuzzy antecedents and fuzzy consequence pair of the rule. Q-learning is used to update these q values. Optimal or sub-optimal FLC can be constructed by choosing the highest q value for each rule. However the predefined value set needs to be set up by human experts and it is kept unchanged during learning, also if an improper value set is assigned, then those algorithms may not succeed at all [48], [50].
Horiuchi and al [49] consider a similar algorithm, termed fuzzy interpolation based Q-learning and further propose an extended roulette selection method so that continuous-valued actions can be selected stochastically based on the distribution of Q-values [61] proposes another version of Q-learning dealing with fuzzy constraints. In this case, we do not have fuzzy rules, but “fuzzy constraints” among the actions that can be done in a given state. These works, however, only adjust the parameters of FIS online. Structure identification, such as partitioning the input and output space and determination of the number of fuzzy rules are still carried out offline and it is time consuming. In [4] a novel online self-organizing learning algorithm is developed so that structure and parameters identification are accomplished automatically and simultaneously based only on Q-learning. In [45], [48], a dynamic fuzzy Q-learning is proposed for fuzzy inference system design. In this method, the consequent parts of fuzzy rules are randomly generated and the best rule set is selected based on its corresponding Q-value based genetic reinforcement learning. The problem in these approaches [4], [45], [50] is that if the optimal solution is not present in the randomly generated set, then the performance may be poor.

In order to solve these problems, this paper provides a systematic procedure for designing Fuzzy PID (FPID) controllers based on a reinforcement learning method. It is an automatic method capable of self-tuning parameters of a FLC based only on reinforcement signals. Continuous states are handled and continuous actions are generated by fuzzy reasoning. Prior knowledge can be embedded into the fuzzy rules, which can reduce the training time significantly. The proposed method is an efficient learning method whereby not only the conclusion part of a FLC can be tuning online, but also the parameters of antecedent part of a FLC can be tuning. We employ this approach for testing output voltage control of a DC/DC buck converter which is a traditional benchmark for testing nonlinear controllers, due to their inherent nonlinear characteristics [62], [63].

The best-known industrial process controller is the proportional-integral-derivative (PID) controller because of its simple structure, easy of design, inexpensive maintenance, low cost, and robust performance in a wide range of operations. However, it has been known that conventional PID controllers generally do not work well for nonlinear systems, higher order and time-delayed linear systems, and particularly complex and vague systems that have no precise mathematical models. To overcome these difficulties, the FPID controllers were developed and their improvement is still investigated [64]-[82]. This paper is devoted to this problem and describes some of the design aspects of the FPID.

The key concept of the proposed learning scheme is to evaluate all the principal parameters FPID in a procedure in three stages. The idea is to start with a basic FPID controller with its structure is chosen a priori and fixed during learning. In this work, we employ a Takagi-Sugeno of order zero as the controller of the system and the parameters tuning of fuzzy controller are the main issue researched. The membership functions or consequent parameters of each input/output variable are determined with an equidistant partition. The neccessary scaling factors of the basic FPID are deduced from an initially one open-loop experimental response indiciacal as Ziegler-Nichols or Broida methods. This simple experimental on-site can be thought of as initial knowledge of the system and this basic FPID controller can yield an action that is feasible but far from optimal. In view of this, Reinforcement Learning is added to tune the fuzzy controller online. The predefined settings are used as starting points, also it is possible to determine the optimal parameters without too many iterations and the system can be operated safely even during learning.
Also in stage second FQL algorithm is used to select the optimal parameters of the FPID from an finite discrete set around the precedent predefined settings. This can be thought of as roughly tuning. The FQL algorithm proposed by Jouffe [52] is here extended for the antecedent parameters. Finally, in the third stage, a fine tuning procedure is follow to improve the FPID performance. This fine tuning is developed into an architecture composed of two integrated feedforward networks is proposed. One network (Q estimator QE-FIS) acts as a critic network to guide the learning of the other network (the action network). The action network is our FPID controller. Using the temporal difference (TD) prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the gradient-descent algorithm to adapt itself in continuous according to the internal reinforcement signal. With the proposed architecture, the best parameters of the FPID in considering an IAE-criterion are determined. This stage can be seen as fine tuning and this way can solve the local minima problem. As a result, unlike many fuzzy Q-learning approaches that select the optimal action based on finite discrete actions [83]-[85], our proposed algorithm allows to obtain a continuous control output, the agent to learn more effectively, and helps reduce the time spent acting randomly. The salient features in our method are: (1) antecedents parameters of the fuzzy rules also can be updated, (2) not only discrete-valued antecedents/consequents parameters but also continuous-valued can be treated. (3) our technique can be used a precise simulator to speed up the learning process after final learning is achieved through the real system. Simulation and experiment results of a DC/DC Buck Converter indicate that efficiency and effectiveness of the proposed approach. Furthermore, the FPID controller learned by this approach has robust and adaptability, and can be applied to the different environments.

This paper is organized as follows. Section II briefly introduces reinforcement learning. The implementation and the limits of the Fuzzy-Q-Learning algorithm are introduced in section III. The architecture of the controller is described in section IV. The learning algorithms and parameter update laws are presented in section V. Section VI illustrates the performance of our proposed method through a static converter and compares experimental results with related works. Finally, conclusions and prospects are drawing in section VII.

2. Fuzzy PID system presentation

2.1 Control structure
The aim of this paper is the implementation of a FPID controller achieving the following properties:
1. Robustness around the operating point (e.g., in the case of a load change);
2. Good dynamic performance (i.e., rise time, overshoot, settling time, and limited output ripple) in the face of input voltage variations (and load changes);
3. Invariant dynamic performance in presence of varying output operating points.
We use a FPID based on the Takagi-Sugeno-type zero order method. In the FLC literature many forms of FPID structures [66], [71], [74] have been proposed. The controller in our work is a simple and classical FPID controller drawn on Fig.1. It is divided in two parts: a fuzzy part which performs the proportional-derivative action and a crisp integrator which is placed parallel of this fuzzy part so as to ensure a zero steady state error. Such a FPID
combines a high efficiency with implementation easyness and is userfriendly because of its FPID-like action.

The two inputs of the controller are the error $e(k)$ between the reference signal y^* and the measured signal y and the variation of this error $de(k)$. The output variable is the change in the control quantity $\Delta c_n(k)$. So as to ensure a good portability of the FPID controller, normalisation factors called em, dem and gm are used (Fig.1).

Fig 1. Structure of the Fuzzy PID Controller

The FPID considered here uses triangular membership functions with strong fuzzy partition because of its facilities and excellent approximation properties, and have been shown to be sufficient in a number of applications. We adopt for the two normalised input values $e_n(k)$ and $de_n(k)$ seven triangular membership functions on each input and seven singletons at the output. We use the Mac Vicar-Whelan ‘base rules (1977) with 49 fuzzy rules. The membership functions are called PB, PS, PVS, Z, NVS, NS and NB (P: Positive, N: Negative, B: Big, S: Small, VS: Very Small). So as to warrant a similar response of the system for positive or negative solicitations, a zero-symmetry can be imposed for both input membership functions and output singletons and a classical antidiagonal rules table is used. In addition, for a good portability of the FPID, the two inputs and the output are normalized on a [-1, +1] universe of discourse. Furthermore, the FPID is supposed to be well-normalized, it implies that the position of PB’s and NB’s apex are assigned to ±1 respectively. For the two inputs and the output of the FPID, the positions of the PS’s and PVS’s membership function’s apex are mobile. Furthermore, the and-method is based on the product and the defuzzification method on the center of gravity is considered.

2.2 Factors definitions
In this part, we suppose that we don’t know the dynamic of the system to control. Even for such a very simple fuzzy control structure, the tuning parameters of such a FPID are very numerous (positions of membership functions, normalisation gains, fuzzy rules, …). In this paper and so as to limit the number of tuning parameters, we just hold 15 or 26 of these parameters back, which contributions to the optimization process according to the IAE criterion seem to be the greatests. These 15 or 26 parameters, that constitute the set of controlable factors, are the following:
An Approach to Tune PID Fuzzy Logic Controllers Based on Reinforcement Learning

Fig 2. Membership functions for the two inputs e, de

- On the input e of the FPID: the position of the membership functions apex PS and PVS, the position of the membership functions apex NS and NVS is obtained by symmetry (fig.2.). The normalization factor em is supposed to be equal to the magnitude of the step solicitation.
- On the input de of the FPID: the position of the membership functions apex PS and PVS and the position of the membership functions apex NS and NVS is obtained by symmetry.
- On the output Δc_n of the FPID: the positions of the PS's and PVS's singletons. The principle of reinforcement learning allows considering for each fuzzy rule an individual discrete action set. Also at the end of the learning processus, the same linguistic label (Table I.4.) can have other significance in the base rule. Consequently, we obtain 11 or 22 tuning parameters in the case of a classical antidiagonal rules table or not respectively.

The normalization factor de_{in}, the denormalization gain g_{in} and the integrator gain K_i are fixed during the learning processus. They are determined by an open-loop identification test.

3. Q-learning algorithms

As previously mentioned, there are two ways to learn either you are told what to do in different situations or you get reward or punishment for doing good respectively bad actions. The former is called supervised learning and the latter is called learning with a critic, of which reinforcement learning (RL) is the most prominent representative with the self learning ability. It is shown that supervised learning is more efficient than reinforcement learning [32]. However, reinforcement learning only needs the critic information (evaluative signal) with respect to the different states of the controlled system [35]. This evaluative signal contains much less information than the reference signal used in supervised learning; also the reinforcement learning is appropriate for systems operating in a knowledge-poor environment [28].

The basic idea of reinforcement learning is that agents learn behaviour through trial-and-error interactions with the controlled system, and receive a critic, called reinforcement, which can be thought of as a reward or a punishment for behaving in such a way that a goal is fulfilled. This learning method is based on the common-sense idea that if an action is
followed by a satisfactory state, or by an improvement, then the tendency to produce that action is strengthened, i.e., reinforced [58]. Reinforcement learning does not need teacher signal to guide action, since the learner is not told which action to take, it must discover the policy most effective, i.e. to know, in each possible situation, which action is achieved to maximize the expected cumulative reward in the long-term. In reinforcement learning, the final evaluation of process can be only known after a long sequence of actions. Thus, an internal evaluation function that is more informative than the evaluation function by the external critic is considered. This internal evaluation function takes the form of the expected sum of infinite horizon discounted payoffs, called the evaluation value of a policy:

\[R = \sum_{t=0}^{\infty} \gamma^t r_t \]

(1)

Where \(\gamma \) is the discount factor \((0 \leq \gamma \leq 1) \) used to determine the present value of future rewards and \(r_t \) is the external reinforcement signal received at time \(t \).

The idea of Reinforcement Learning can be generalized into a model, in which there are two components: an agent that makes decisions and an environment in which the agent acts. For every time step \(t \), the agent is in a state \(s_t \in S \) where \(S \) is the set of all possible states, and in that state the agent can take an action \(u_t \in (U_t) \), where \((U_t) \) is the set of all possible actions in the state \(s_t \). As the agent transits to a new state \(s_{t+1} \) at time \(t+1 \) it receives a numerical reward \(r_{t+1} \). It up to date then its estimate of the evaluation function of the action \(Q(s_t, u_t) \) using the immediate reinforcement, \(r_{t+1} \), and the estimated value of the following state, \(Q^*(s_{t+1}, u'_t) \), which is defined by:

\[Q_t^*(s_{t+1}, u'_t) = \max_{u_t \in U_{t+1}} Q(s_{t+1}, u') \]

(2)

The Q-value of each state/action pair is updated by

\[Q_{t+1}(s_t, u_t) = Q_t(s_t, u_t) + \beta \left(r_{t+1} + \gamma Q^*(s_{t+1}, u'_t) - Q_t(s_t, u_t) \right) \]

(3)

Where \(r_{t+1} + \gamma Q^*(s_{t+1}, u'_t) - Q_t(s_t, u_t) \) is the temporal difference (TD) error and \(\beta \) is the learning rate. This algorithm is called Q-Learning. It shows several interesting characteristics. The estimates of the function \(Q \), also called the Q-values, are independent of the policy pursued by the agent. To calculate the evaluation function of a state, it is not necessary to test all the possible actions in this state but only to take the maximum Q-value in the new state (eq.4). However, the too fast choice of the action having the greatest Q-value:

\[u'_t = \arg \max_{u_t \in U_{t+1}} Q_t(s_{t+1}, u_t) \]

(4)

Can lead to local minima. To obtain a useful estimate of \(Q \), it is necessary to sweep and evaluate the whole of the possible actions for all the states: it is what one calls the phase of exploration [35].
In the previous equation, at state, only the Q-value of the activating action is updated, and the actions taken during the past time steps are not considered. But as is often the case with real, a reinforcement signal may not be available at a time long after the occurrence of a sequence of actions. This requires improving long-term consequences of an action or of a strategy for performing actions, in addition to short-term consequences. This problem is known as temporal credit assignment problem, i.e., how to distribute reward or punishment to each individual state/action pair to adjust the chosen action and improve its performance. Also, to speed learning Sutton [35] extended the evaluation in all the states, according to their eligibility traces that memorize the previously visited state/action pairs weighted by their proximity to time step. They work like a short-term memory process activated by the occurrence of state/action pairs. The eligibility traces combined with Q-learning can be defined in several ways [48], [51]. Accumulating eligibility is defined by:

\[
e_i(s) = \begin{cases}
1 + \gamma \lambda e_{i-1}(s) & \text{if } s = s_i \\
\gamma \lambda e_{i-1}(s) & \text{otherwise}
\end{cases}
\]

where \(\lambda \) is the eligibility rate used to weight time, since it accumulates whenever a state/action pair is selected and decays gradually when it is not selected.

The algorithm Q (\(\lambda \)) is a generalization of Q-Learning (when \(\lambda=0 \)) which uses the eligibilities traces. With eligibility trace, equation (3) is changed to:

\[
Q_{t+1}(s_t, u_t) = Q_t(s_t, u_t) + \beta \left\{ r_{t+1} + \gamma Q^*(s_{t+1}, u_{t+1}) - Q_t(s_t, u_t) \right\} e_i(s)
\]

4. Fuzzy Q-learning algorithms

The discrete Q-Learning such as we described it uses a discrete space of states and actions which must be have reasonable size to enable the algorithms to converge in an acceptable time in practice. In this case, a look-up table can be built up by listing the state/action pairs with their Q values. However in many applications, the number of state/action pairs is very large. Thus a method that is able to make Q-Learning applicable to the continuous problem domain is necessary. The Fuzzy Inference System (FIS) learner is one existing generalization methods which can be introduce generalization in the state space and generate continuous actions in the reinforcement-learning problem.

A- FQL algorithm for consequents part (discrete parameters tuning)

The principle of Fuzzy Q-Learning (FQL) proposed by Jouffe [51] is reinforcement learning method that tunes with only the consequent part in an incremental way based only on reinforcement signals. Each fuzzy rule \(R_i \) has possible \(k \) discrete candidate consequents (actions) \(U_i = \{ u_1, u_2, \ldots, u_k \} \) and it memorizes the parameter vector \(q \) associated with each of these actions. Local actions \(u_1, \ldots, u_k \) selected from \(U \) compete with each other based on their q-values so as to maximize the discounted sum of rewards obtained while achieving the task. Each Rule \(R_i \) of the FPID can be described as follow:
If \(c \) is \(L^i_1 \) and \(d \) is \(L^i_2 \) then \(u^i \) is \(u^i_1 \) with \(q(S, u^i_1) \)

or \(u^i \) is \(u^i_2 \) with \(q(S, u^i_2) \)

\(L^i_m \) is linguistic label related to each input state, \(u^i_j \) is a rule consequent (action) which corresponds to the consequent part of \(i \)-th fuzzy rule \(R_i \) and has its own q-value \(q_j^i \).

1-Generation of Continuous Actions

The current state \(S_t \) is perceived by the means of its activated degree of its firing rules. The winning local action cooperates to produce the global continuous output action which is defined by the weighted sum of the local actions elected in the fired rules that describe this state. It is given by

\[
U_i(S_i) = \sum_{i=1}^{n} \pi_i(S_i, q_i) \alpha_i^i = \sum_{i=1}^{n} u_i^i \alpha_i^i
\]

(7)

Where \(u_i^i \) is the selected action of rule \(R_i \) at time step \(t \) by a policy \(\pi_i(S_i, q_i) \) and \(\alpha_i^i \) is the rule’s normalized firing strength.

After application of the global action, \(U_i(S_i) \), the states change to \(S_{t+1} \).

Optimal or sub-optimal FPID can be constructed by choosing the fuzzy consequence with the highest q value for each rule. But, at the beginning stage for training, q-value can not correctly describe the valuation of action and taking the greedy actions or exploiting the previous experience too much during the learning would lead to local optima. The learning algorithm would fail to find good actions. On the other hand, taking random actions or exploring the spaces too much would affect both the learning convergence and the learning rate. Therefore in order to explore the set of possible actions and acquire experiences through the reinforcement signals, the actions are selected using an Exploration-Exploitation strategy. There are some random policies and the Boltamann probability distribution and - greedy method are the effective exploration/exploitation policy (EEP) to choose action. The algorithm FQL proposed in this paper uses an EEP \[50], \[51], combining an undirected exploration part \(\rho^i(u) \) and directed exploration part \(\eta^i(u) \) which are introduced by a random vector and a counter associated to actions. The proposed exploration-exploitation policy selects a local action from possible discrete actions vector, as follows:

\[
\pi_U(S_i, q_i) = \arg \max_{u \in U} (q_i(S_i, u) + \eta(S_i, u) + \rho(S_i, u))
\]

(8)

The undirected term of exploration \(\eta \) stems from a vector of random values \(\Psi \) (exponential distribution) scaled up or down to take into account the range of q values.

\[
s_j = \begin{cases}
1 & \text{if } \max_u (q(S_i, u)) = \min_u (q(S_i, u)) \\
\frac{s_p (\max_u (q(S_i, u)) - \min_u (q(S_i, u)))}{\max(\psi)}, & \text{otherwise},
\end{cases}
\]

www.intechopen.com
\[\eta(S_t, u) = s \psi_s \] (9)

where \(s_p \) is the noise size, with respect to the range of q qualities, and \(s_f \) is the corresponding scaling factor. Decreasing the factor \(s_p \) implies reducing the undirected exploration

The directed term \(\rho \) gives a bonus to the actions that have been rarely elected

\[\rho(S_t, u) = \frac{\theta}{e^{n_t(S, u)}} \] (10)

where \(\theta \) represents a positive factor used to weight the directed exploration and \(n_t(S, u) \) is the number of time steps in which action \(u \) has been elected. This term is not directly available; it is approximated by the following fuzzy inference:

\[n_t(S_t, u) = \sum_{i=1}^{\infty} n_i(u^i) \alpha^i_t \] (11)

where \(n_i(u^i) \) is the number of applications, at time step \(t \), of action \(u \) in rule \(R_i \). Let be \(u^i_t \) the elected discrete action at time step \(t \) in rule \(R_i \). \(n_t(u^i) \) is then defined according to

\[n_t(u^i) = n_{t-1}(u^i) + 1, \] (12)

2.- Update of Q-Values

We define also a function \(Q \), which gives the action quality with respect to states. Q-values are also obtained by the FPID outputs, which are inferred from the quality of local discrete actions that constitute the global action.

\[Q_{i_t}(S_t, U_t) = \sum_{i=1}^{\infty} q_i(S_t, u^i_t) \alpha^i_t \] (13)

where \(U_t \) is the global continuous action, \(u^i_t \) is the selected action of rule \(R_i \) at time step \(t \) and \(q_i \) is the q-value associated with fuzzy state, \(S_t \) and action, \(u^i_t \).

Based on TD Learning, the Q-values corresponding to the rule optimal action are used to estimate the TD error, which is defined as follows:

\[Q^*_t(S_{t+1}) = \sum_{i=1}^{\infty} (\max_{u_t \in U} q_i(S_{t+1}, u^i) \alpha^i_t) \] (14)

and the TD error is defined only with quantities available at time step \(t + 1 \) as follow

\[\tilde{\varepsilon}_{t+1} = r_{t+1} + \gamma Q^*_t(S_{t+1}) - Q_t(S_t, u_t) \] (15)

This TD error can be used to evaluate the action just selected. If the TD error is positive, it suggests that the quality of this action should be strengthened for future use, whereas if the TD error is negative, it suggests that the quality should weakened [4]. The learning rule by taking the eligibility traces is given by
\[q_{t+1}(S_i,u^i_t) = q_t(S_i,u^i_t) + \beta^i_t \tilde{\delta}^i_{t+1} + \alpha^i_t e_t(S_i,u^i_t) \]

(16)

Where \(\beta^i_t \) is the adaptative learning rate of rule \(R_i \) at time step \(t \) which is updating as follow:

\[\delta^i_t = \tilde{\delta}^i_{t+1}, \alpha^i_t \]
Integrates eligibility trace

\[\beta^i_{t+1} = \begin{cases}
\beta^i_t + k & \text{if } \tilde{\delta}^i_{t-1},\delta^i_t > 0, \\
\beta^i_t (1 - \psi) & \text{if } \tilde{\delta}^i_{t-1},\delta^i_t < 0, \\
\beta^i_t & \text{otherwise}
\end{cases} \]

(17)

\[\tilde{\delta}^i_t = (1 - \phi)\delta^i_t + \phi\tilde{\delta}^i_{t-1} \]
Represents the geometric average

\(\beta^i_t \) is used in order to increase the convergence rate during the FPID approximation and prevent oscillations and it is based on the Delta-Bar-Delta learning rule [51]. The rule (17) increments the critic learning rates linearly to prevent them from becoming too large too fast and decrements them exponentially to ensure that they always stay positive and to enable them to decrease rapidly

and \(e_t(S_i,u^i_t) \) is the trace associated with discrete action \(u_i \) of rule \(R_i \) at time step \(t \),

\[e^i_t(S_i,u^i_t) = \begin{cases}
\gamma e_{t-1}(S_i,u^i_t) + \alpha^i_t & \text{if } u_i = u^i_t \\
\gamma e_{t-1}(S_i,u^i_t) & \text{otherwise}
\end{cases} \]

(18)

The traces are updated between the action computation and its application.

B- FQL algorithm for antecedents part (discrete parameters tuning)

In the previous method, the antecedent parameters are set using the a priori task knowledge of the user. To restrict a FPID optimization to the only tuning of the parameters of the consequent part is often insufficient to reach high performances. Also in this paper, we bring a slight difference to the algorithm proceeding by introducing an extension to the Fuzzy Q-Learning algorithm to also allow the online tuning of the parameters of the antecedent part (positions of input fuzzy sets).

The principle of the FQL algorithm applied to the antecedent parameters will consist in selecting for each membership function a modal point from a possible discrete candidate modal points set basing on the evaluation function of the action \(Q(s_i,u_i) \) because as the equations (7, 13) show it, the calculation of the action \(U \) and its quality \(Q(S,u) \) is closely linked to the antecedent parameters by the means of the degrees of activation of the fuzzy rules \(\alpha^i_j \). The algorithm principle is depicted in Fig.3, 4.

Let us consider the FPID controller with the two input variables \(e \) or \(de \). Each universe of discourse of \(e \) or \(de \) is partitioned in \(Nmf_i \) membership functions
$F_i^j : \{ F_i^1, F_i^2, \ldots, F_i^j, \ldots, F_i^{Nmf_i} \}$ with each membership function. F_i^j has an possible discrete modal points set $A(i, j) : \{ a_i^{j,1}, a_i^{j,2}, \ldots, a_i^{j,k}, \ldots, a_i^{j,Nniv_{ij}} \}$, where $a_i^{j,k}$ is the k^{th} modal point of the j^{th} membership function of the input i. F_i^j and $Nniv_{ij}$ is the cardinal of the set. Each Rule R_i of the FPID can be described as follow:

If e is $F_i^1(a_1^{i,1})$ and de is $F_i^2(a_2^{i,1})$ Then u is u_i^j

or $F_i^1(a_1^{i,2})$

or $F_i^2(a_2^{i,2})$

or $F_i^1(a_1^{i,k})$

or $F_i^2(a_2^{i,k})$

\[Q_i(S_t) = \frac{2}{\sum_{i=1}^{Nmf_i} \sum_{j=1}^{Nniv_{ij}} q_i^{j} \cdot \mu_i^j F_i^j(x_i) } \]

where $\mu_i^j F_i^j(x_i)$ is the membership degree of the input variable x_i ($x_1=e$, $x_2=de$) to F_i^j and it measures the contribution of the modal points to the generation of the global action.

Fig. 3. FQL Structure for the antecedent part

As for the previous algorithm (section IV-A) local modal points (a_1, \ldots, a_k) selected from A compete with each other based on their q-values so as to maximize the discounted sum of rewards obtained while achieving the task. Global quality Q for the state S_t is then defined by the inference of these qualities locally elected.
Execution Procedure

In order to describe the working principle of the FQL algorithm applied to the antecedent parameters, a one-time-step global execution procedure is presented. Let \(t+1 \) be the current time step; the learner has performed the action \(U_t \) and has received a reinforcement signal \(r_{t+1} \) according to the state transition \(S_t \rightarrow S_{t+1} \). After the fuzzification step and rule strength computations (describing the new state) by using the modal points \((a_i)\) elected with the step of previous time \(t, \) the eight stages are as follows:

1. Estimation of the \(t \)-optimal evaluation function corresponding to the current state from the best modal points of each membership function, as follows:

\[
Q_i = \sum_{j=1}^{Nmf_i} q_i^j \mu_i^j
\]

Global quality of the FPID

\[
Q = \sum_{i=1}^{Nin} Q_i
\]

Fig. 4. FQL Algorithm Principle for the antecedent part
\[Q_t^*(S_{t+1}) = \sum_{i=1}^{2} \sum_{j=1}^{Nmf_{i,j}} \left(\max_{k=1,\ldots,Nniv_{i,j}} \left(q_i \left(a_{i,j,k} \right) \right) \right) \cdot \mu_i \cdot F_{j,k} \left(x_i \right) \]

(20)

2. Compute the TD error;

\[\tilde{e}_{t+1} = r_{t+1} + \gamma Q_t^*(S_{t+1}) - Q_t(S_t) \]

(21)

3. Update the adaptative learning rate \(\lambda_{i,j,k}^{(t+1)} \) with the Delta-Bar rule by using the equation defined in (17);

4. Tune parameter vector \(q_t \) based on on current eligibility trace;

\[q_t^{(t+1)} = q_t^{(t)} + \lambda_{i,j,k}^{(t+1)} \cdot \tilde{e}_{t+1} \cdot e_t^{(t)} \]

(22)

where: \(i = 1, \ldots, n \), \(j = 1, \ldots, Nmf_i \), \(k = 1, \ldots, Nniv_{i,j} \)

5. Elect the modal points \(a^{(j)}_{i} \) for each membership function \(F_i^{(j)} \) by using an exploration-exploitation strategy identical to that used in algorithm FQL for the consequents part and defined as (8);

6. Estimation of the new evaluation functions for the current state \(t+1 \) with the new modal points vector. We recompute the membership degrees of the inputs to the new membership functions \(\left(\mu_{t+1}^{F_{i,j}} \right) \).

7. Update the eligibility trace which will be used in parameter updating at the next time step:

\[e_t^{(t+1)} = \left\{ \begin{array}{ll}
\gamma \lambda e_t^{(t)}(t) + \mu_{t+1}^{F_{i,j}}(x_i), & \text{if } a_t^{(j)} = a_t^{(j)} \\
\gamma \lambda e_t^{(t)}(t), & \text{otherwise}
\end{array} \right. \]

(23)

Eligibility trace values need to be reset to zeros at the end of each episode;

8. New estimation of the evaluation function corresponding to the elected modal points at the current state for the current state with the new updating parameters:

\[Q_{t+1}(S_{t+1}) = \sum_{i=1}^{2} \sum_{j=1}^{Nmf_{i,j}} q_{t+1}(a_i^{(j)}) \cdot \mu_{t+1}^{F_{i,j}}(x_i) \]

(24)

\(Q_{t+1}(S_{t+1}) \) will be used in the error computation at the next time step.

5. Continuous fuzzy Q-learning algorithm (continuous parameters tuning)

Until now, the definition of controllable factors for the FPID in the reinforcement learning algorithms has just been led on discrete levels [83]- [85] which are kept unchanged during learning. This is the basic idea of most existing algorithms which adopt Q-learning. In general, however, this is not the case and then the algorithm may fail. Indeed, for complex systems like static converter, priori knowledge are not available, then it becomes difficult to determine a set of parameters in which figure the optimal controllable factors for each fuzzy rule and thus the FPID controller can’t accomplish the given task through Fuzzy Q-Learning.
To ensure a fine optimization of these parameters in the vicinity of those obtained in the last section, a continue reinforcement learning algorithm [58] has been proposed. Compared to the idea in this article, we employ an FIS, in the place of a neural network, to estimated $Q(S,u)$ which is only used to tune the parameters of the FPID. As a result, our proposed algorithm is more applicable to real systems because we combine reinforcement learning with an Fuzzy Logic Controller (FLC) and it learns more effectively, and helps reduce the time spent acting randomly.

The overall architecture of this FLC, inspired of [58] is shown in Fig. 5. It is similar to that of the FACL [51]. The proposed controller is constructed of two parts: a critic, a $Q(S,u)$ estimator FIS (QE_FIS) and an actor, the FPID which have two main responsibilities respectively: the critic is to estimate the optimal-action value function $Q^*(S,u)$, and the actor is to get the control output based on the estimated-action value function $Q(S,u)$. There is an indirect coupling between the two. Indeed, when action U acts in the system, the state S_t transits towards the new state S_{t+1}. According to this transition, the system emits a reinforcement r_{t+1} which is used in the error $TD\tilde{e}_{t+1}$. According to the latter, we adjust the parameters of the evaluation function $Q(S,u)$ which is then used to tuning in a continuous way the controlable parameters of the FPID in such manner to maximize quality $Q(S,u)$ by a rise of gradient. The architecture of this FLC is explained in detail in the following parts of this section.

![Architecture proposed for the continuous tuning of the parameters FPID](image)

A. FIS System for Estimating the Optimal-Action Value Function

As the approximator of the value function for reinforcement learning, different types of approximators have been proposed for different tasks and different objectives. Interested readers can see references indicated in [58] for more information about approximator methods. In this paper, we use a Fuzzy Inference System (FIS) to approximate and to predict the optimal-action value function $Q^*(S,u)$ due its good approximation property. The $Q^*(S,u)$ estimator fuzzy (QE-FIS) is associated with the same inputs S of the FPID also they
can be to amalgamate as an only one fuzzy controller which allows a considerable profit in the computing time. The QE-FIS is based on the prediction TD error \tilde{e}_{t+1} (Fig. 5) for the optimization of its parameters. It is used to guide the FPID controller to tune parameters so that the fuzzy controller will achieve better performance.

B. FPID for producing the control output

The FPID generates the control output u that maximizes the action value function $Q(S,u)$ produced by the QE-FIS incrementally. The final output provided by FPID maximizes $Q(S,u)$ with respect to all possible u, instead of the finite candidate discrete action set U in the last section. By its robustness, the FPID can achieve acceptable performance even in the early stage of learning, in which the approximation error of $Q(S,u)$ is large [58] and the information, obtained in the section preceding, about the candidate discrete factors set U and A allow it to learn more effectively by narrowing the research space and to speed up the learning process.

Consider a multiple-input single-output (MISO) Fuzzy Logic Controller (FLC) that performs a mapping from a state vector $x = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$ to a control input $u \in \mathbb{R}$. Using the Takagi–Sugeno model, the If–Then rules of the FLC may be expressed as:

$$R^l: \text{If } x_1 \text{ is } F^l_1, \ldots \text{and } x_n \text{ is } F^l_n \text{ Then } \begin{align*}
u^l &= K^l_0 + K^l_1 x_1 + \cdots + K^l_n x_n \rightarrow \text{FPID} \\
q^l &= q^l \rightarrow \text{QE-FIS}
\end{align*}$$

where F^l_i is the label of the fuzzy set in x_i for $l = 1, \ldots, M$ (M is rules number), K^l_0, K^l_1, \ldots and K^l_n are the constant coefficient of the consequent part of the fuzzy rule and q^l is local action quality u^l. We consider in a way general the first input x_1 has N_{mf1} membership functions and the second input x_2 has N_{mf2} membership functions. In our application $n = 2, (x_1 = e \text{ and } x_2 = de), N_{mf1} = 7, N_{mf2} = 7, K^l_0 \neq 0, K^l_1 = 0, \ldots$ and $K^l_n = 0$ have different consequents and the local quality q^l entirely qualifies the R^l rule, from where the idea to use it to tune the controllable parameters of the FPID. We use product inference for the fuzzy implication and t norm, singleton fuzzifier, and center-average defuzzifier; consequently, the final output value of the FPID and the final quality value of the QE-FIS are respectively:

$$u(x) = \sum_{k=1}^{N_{mf1}} \sum_{t=1}^{N_{mf2}} \alpha^{k,t} \cdot \left(\sum_{i=0}^{n} K^t_{i} x_i \right)$$

$$Q(x,u) = \sum_{k=1}^{N_{mf1}} \sum_{t=1}^{N_{mf2}} \alpha^{k,t} \cdot q^k_t \sum_{k=1}^{N_{mf1}} \sum_{t=1}^{N_{mf2}} \alpha^{k,t}$$

References

www.intechopen.com
where α^l is the firing strength of the fuzzy rule R_l calculated as follow $\alpha^l = \prod_{i=1}^{n} \mu_{F_i^l}(x_i)$, $\mu_{F_i^l}$ is the membership degree of the fuzzy set F_i^l, $\left(\sum_{i=0}^{n} K_i^l x_i\right)$ is the conclusion part of the fuzzy rule R_l, ($x_0 = 1$) and q^l is the local action quality of the fuzzy rule R_l. With the choice of strong fuzzy partitions $\sum_{k=1}^{N_{mf_1}} \sum_{t=1}^{N_{mf_2}} \alpha^{k,t} = 1$.

C. Stochastic Action Modifier (SAM)

In order to guarantee that $Q(x, a)$ converges to $Q^*(x, a)$ with a probability equal to 1, we implement an exploration strategy for the control output u provided by the FPID which deals with continuous actions. For that, we add a stochastic action modifier (SAM) after the FPID and before the system input [58]. The SAM generates the control command u_c, which is a gaussian random variable with mean u recommended by the FPID and standard deviation σ_u, and σ_u satisfies the condition that it will converge to zero gradually, i.e.

$$u_c = u + \sigma_u(t) \cdot n(t), \text{and} \lim_{t \to \infty} \sigma_u(t) = 0 \quad (27)$$

where $n(t)$ represents a gaussian random variable normalised and centred. The adopted standard deviation is as follow:

$$\sigma_u(t) = \exp\left(\alpha t\right), \text{avec} \quad \alpha > 0 \ . \quad (28)$$

D. Learning algorithms for FLC

In this section, we develop the learning algorithms for the QE-FIS and the FPID. The learning mechanism (estimation of local qualities q^l) of the QE-FIS is the combination of the TD methods and the gradient descent algorithm. The learning mechanism of the FPID is based on gradient rise algorithm. Indeed, the global quality $Q(x, u)$ (see equation 26) qualifies the action u but also the FPID [45]. Thus more its value is high, plus the performances of FPID are better. We adjust consequently the antecedents parameters (modal points of the membership functions) and the consequents parameters (the K_i^l coefficients parameters) of the FPID in such manner to maximize global quality $Q(x, u)$.

While starting of a SIF optimized in the phase of discrete reinforcement learning, the proposed algorithm uses two stages to avoid all risk of instability. These two stages constitute the continuous reinforcement learning algorithm: - the first stage is the simultaneous optimization of the antecedent and consequent parameters of the QE_FIS, while fixing the consequent parameters of FPID ([values found in the phase of the discrete reinforcement learning] - the second stage is the simultaneous optimization of the parameters of the FPID and the QE_FIS, while fixing the antecedent parameters to the values found in the stage one.

1. Learning algorithm for consequent (QE-FIS)

From the previous section on reinforcement learning, we know TD methods learn their estimates, in part, on the basis of other estimates. We can also tune the consequent
parameters of our proposed QE-FIS based on this method. We can achieve the task of approximating the optimal-action value function with the QE-FIS by reducing the TD error \tilde{E}_{t+1}, continuously with a descent gradient algorithm.

The quality-update rule of the QE-FIS is then given by:

$$ q^l_{t+1} = q^l_{t} + \eta_{t+1} \tilde{E}_{t+1} \cdot e^l_{t} $$

(29)

The adaptive learning rate η_{t+1} and the eligibility traces for the QE-FIS are determined on the rules by using respectively the equations \((17) \) and \((18) \);

The TD error is calculated as follows:

$$ \tilde{E}_{t+1} = r_{t+1} + \gamma \max_{u'} Q(x_{t+1}, u') - Q(x_{t}, u_{t}) $$

(30)

In this expression, we consider that $\max_{u'} Q(x_{t+1}, u') \approx Q(x_{t+1}, u_{t+1})$ because u_{t+1} is the output FPID tuned continuously to maximize $Q(x, u)$, therefore \tilde{E}_{t+1} is written as follows:

$$ \tilde{E}_{t+1} = r_{t+1} + \gamma Q(x_{t+1}, u_{t+1}) - Q(x_{t}, u_{t}) $$

(31)

2. Learning algorithm for FPID and antecedent parameters QE-FIS

Now, we consider how to improve the control policy using the associated value function. In other words, we consider how to tune the parameters of the FPID controller based on the approximated $Q(x, u)$ obtained from the previous section.

In order to optimize the output of the FPID, we can update the parameters of the FPID to maximize the action value function $Q(x, u)$ with respect to the control output u for the current state. As a result, the learning algorithms of the FPID can be derived using gradient rules

2.1 Learning algorithm for antecedent parameters

The parameters of the modal point vector a^j_i $i = 1, ..., n$ $j = 1, ..., Nmf_i$ are updated by a rise gradient algorithm:

$$ a^j_i(t+1) = a^j_i(t) + \rho \frac{\partial Q(x_{t+1}, u_{t+1})}{\partial a^j_i} $$

(32)

Let us consider the case of a modal point of the first input. The calculation of the $\frac{\partial Q(x, u)}{\partial a^j_i}$ revealed the three expressions $\mu^{F^j_{i-1}}(x_i), \mu^{F^j_i}(x_i)$ et $\mu^{F^j_{i+1}}(x_i)$ where the modal point a^j_i can intervene in two expressions in maximum among these three. The calculation of the membership degrees of different fuzzy set F^j_{i-1}, F^j_i et F^j_{i+1} shows that it exists four possible cases:

The table 1 recapitulates every case to be considerate.
1. There is a discontinuity to the point \(a_i^j \) (superior limit of \(F_i^{-1} \), modal point of \(F_i^j \) and inferior limit of \(F_i^{j+1} \)), indeed:

\[
\lim_{x_i \to a_i^{-1}} \frac{\partial Q(x, u)}{\partial a_i^{-1}} \neq \lim_{x_i \to a_i^{+1}} \frac{\partial Q(x, u)}{\partial a_i^{+1}} \neq \frac{\partial Q(x, u)}{\partial a_i^j} \bigg|_{x = a_i^j}
\]

Superior limit of \(F_i^{-1} \):

\[
\lim_{x_i \to a_i^{-1}} \frac{\partial Q(x, u)}{\partial a_i^{-1}} = \lim_{x_i \to a_i^{-1}} \left\{ \frac{\left(q_i^j - q_i^{-1} \right) \left(a_i^{-1} - x_i \right)}{\left(a_i^{-1} - a_i^j \right)^2} \right\} = \frac{q_i^j - q_i^{-1}}{\left(a_i^{-1} - a_i^j \right)}
\]

Inferior limit of \(F_i^{j+1} \):

\[
\lim_{x_i \to a_i^{+1}} \frac{\partial Q(x, u)}{\partial a_i^{+1}} = \lim_{x_i \to a_i^{+1}} \left\{ \frac{\left(q_i^j - q_i^{+1} \right) \left(a_i^{+1} - x_i \right)}{\left(a_i^{+1} - a_i^j \right)^2} \right\} = \frac{q_i^j - q_i^{+1}}{\left(a_i^{+1} - a_i^j \right)}
\]

Modal point of \(F_i^j \):

\[
\frac{\partial Q(x, u)}{\partial a_i^j} \bigg|_{x = a_i^j} = 0
\]

In order to solve this problem of discontinuity, we impose the following constraint:

\[
\lim_{x_i \to a_i^j} \frac{\partial Q(x, u)}{\partial a_i^j} = 0
\]

In this case the modal point is not adjusted and it keeps its old value \(a_i^j (t + 1) = a_i^{j+1} (t) \). This constraint doesn’t really affect the performances of the tuning algorithm because the parameters of the FPID are sufficiently close to the optimum.

2. The calculation of the \(\frac{\partial Q(x, u)}{\partial a_i^j} \) becomes indefinite when \(a_i^j = a_i^{-1} \) and \(a_i^j = a_i^{+1} \).

We can avoid this case by imposing constraints of non overlappings of the membership functions to keep the legibility of the fuzzy rules.
3. In order to insure the legibility of the fuzzy rules ovoiding labels inversions of the inputs membership functions, we imposed constraints during the adjustment process. Therefore we have to fix a superior limit and an inferior limit for each mobile modal points as can be shown in Fig. 6.

![Fig. 6. Fixation of the variation limits modal points](image)

The modal points of PS and PVS are mobile, so we have fixed their limits in order to have a maximal movement field which explains the choice of percentage (70%) to the right and to the left of respectively PS and of PVS. The field between the two modal points is equally shared (50%). The modal points of the negative part (NS et NVS) are obtained by symmetry.

2-2 Learning algorithm for consequents parameters

The constant coefficient of the consequent part of the fuzzy rule is also updated by a rise gradient algorithm:

\[
K_i^j(t+1) = K_i^j(t) + \beta \frac{\partial Q(x_t, u_{t+1})}{\partial K_i^j}
\]

With

\[
\frac{\partial Q(x_{t+1}, u_{t+1})}{\partial K_i^j} = \frac{\partial Q(x_{t+1}, u_{t+1})}{\partial u} \cdot \frac{\partial u}{\partial K_i^j}
\]

Not having a mathematical model of the process, we approximate the Jacobian \(\frac{\partial Q(x, u)}{\partial u} \) as follow:

\[
\frac{\partial Q(x_{t+1}, u_{t+1})}{\partial u} = Q(x_{t+1}, u_{t+1}) - Q(x_t, u_t) \frac{u_{t+1} - u_t}{u_t}
\]

The previous expression becomes very large if \(u_t \approx u_{t+1} \) which can cause an inflation of the FPID parameters. To remedy it, we adopt an important and frequently used simplification which consists in replacing the Jacobian by its sign [86]. Finally, we obtain the following equation:

\[
\frac{\partial Q(x_{t+1}, u_{t+1})}{\partial K_i^j} = \text{sign} \left(\frac{\partial Q(x_{t+1}, u_{t+1})}{\partial u} \right) \cdot \alpha_i x_t \text{ with } x_0 = 1;
\]
2.3. Execution Procedure

We present the detailed of an one-time-step global execution procedure as follows. Let \(t+1 \) be the current time step; the FPID obtain the new control output \(u_{t+1} \) based on (25) by using perception \(\alpha_i (x) \). The action \(u_{t+1} \) after its transformation by the SAM becomes the \(u_{c,t+1} \) (27). The action \(u_{c,t+1} \) is applied on the system and makes it transits from the state \(x_t \) towards \(x_{t+1} \). The performance of the FPID controller is evaluated by the signal of reinforcement \(r_{t+1} \).

The perception organ in common to the FPID and QE_FIS, perceives then this state \(x_{t+1} \) by the means of the firing strength of the rules \(\alpha_i^j (x_{t+1}) \). Let us note that \(\alpha_i^j (x_{t+1}) \) is subscripted by \(t \), for it is the perception of \(x_{t+1} \) but using the perception parameters (modal points) which we adjusted to the time step \(t \).

A. The one stage of the learning algorithm consists in the execution procedure of the continuous tuning of the antecedent parameters of the FPID/QE-FIS. The eight steps are as follows:

1. Estimation of the function of evaluation t-optimal of the current state that is provided by the QE_FIS;

\[
Q_t^*(x_{t+1}, u_{t+1}) = \sum_{i=1}^{Nmf_1} \sum_{j=1}^{Nmf_2} \alpha_i^j (x_{t+1}) \cdot q_i^{j-} \tag{37}
\]

The indice \(t \) indicates that we have used the parameters adjusted to the previous time step.

2. Compute the TD error \(\tilde{E}_{t+1} \) using (21);

3. Tune parameter vector \(q \) of the QE_FIS according to (22) and (17);

4. Tune the antecedent parameters (modal points) of the FPID as defined in (32). The term of adjustment \(\frac{\partial Q(x,u)}{\partial \alpha_i} \) is given by table 1 and the learning rate \(\rho \) is also adaptive according to the rule Delta Bar Delta seen in equation (17);

5. Recompute the perception since we adjusted the position of the modal points which makes change perception;

\[
\alpha_{i,j}^{t+1} (x_{t+1}) = \mu_i^{F_1} (x_1 (t+1)) \cdot \mu_j^{F_2} (x_2 (t+1)) \tag{38}
\]

\(i = 1, \ldots, Nmf_1 \); \(j = 1, \ldots, Nmf_2 \)

6. Update the eligibility trace used for the parameters tuning of the QE_FIS according to (23);

7. New calculation of the evaluation function corresponding to the action \((u_{t+1}) \) and the current state \((x_{t+1}) \) with the new parameters;

\[
Q_{t+1} (x_{t+1}, u_t) = \sum_{i=1}^{Nmf_1} \sum_{j=1}^{Nmf_2} \alpha_{i,j}^{t+1} (x_{t+1}) \cdot q_{i,j}^{t+1} \tag{39}
\]

This value will be used for the calculation of the TD error at the next step of time.

8. Calculation of the control output \(u_{t+1} \), by using new perception;
An Approach to Tune PID Fuzzy Logic Controllers Based on Reinforcement Learning

\[
u_{t+2} = \sum_{i=1}^{Nmf_1} \sum_{j=1}^{Nmf_2} \alpha_{i,j}^{t+1} (x_{t+1}) \cdot u_{i,j}^{t+1}
\]

(40)

B. The stage second of the learning algorithm consists in the execution procedure of the continuous tuning of the consequent parameters of the FPID. The antecedent parameters are fixed to the values found in the stage one. The seven steps are as follows:

1. Estimation of the function of evaluation t-optimal of the current state \(Q_t^*(x_{t+1}, u_{t+1}) \) as defined in (38), that is provided by the QE_FIS;
2. Compute the TD error \(e_{t+1} \) using (21);
3. Tune parameter vector \(q \) of the QE_FIS according to (22) and (17);
4. New calculation of the t-optimal evaluation function of the current state by using the new parameters of the QE_FIS:

\[
Q_{t+1} (x_{t+1}, u_{t+1}) = \sum_{i=1}^{Nmf_1} \sum_{j=1}^{Nmf_2} \alpha_{i,j}^{t+1} (x_{t+1}) \cdot q_{i,j}^{t+1}
\]

(41)

5. Update the eligibility trace used for the parameters tuning of the QE_FIS according to (23); This stage completes the learning part of the QE_FIS;
6. Tune the parameters of the FPID according to (33) and (36);

We use perception \(\alpha^t (x_i) \) and \(x_i (t) \) for the tuning parameters of FPID, for it is them which are responsible for the issue of the control output \(u_{t+1} \);
7. Calculation of the control output \(u_{t+2} \) by using the new parameters of FPID:

\[
u_{t+2} = \sum_{i=1}^{Nmf_1} \sum_{j=1}^{Nmf_2} \alpha_{i,j}^{t+1} (x_{t+1}) \cdot u_{i,j}^{t+1}
\]

(42)

6. Simulations-experimentations

The proposed fuzzy reinforcement-learning controller has been simulated for the DC/DC buck converter control problem and some simulation and experimentation results are presented.

1. DC/DC Buck Converter

The system is a 1kW DC/DC Buck Converter with the control of its output voltage in current mode which consists in imposing the current peak which crosses the smoothing inductance \(L \) therefore also the output current in the variable resistive load. It has an impulse response under deadened. We will carry out a voltage fuzzy control of the cascade type. To restrict the influence of measure noise, the output voltage is filtered using a 50 Hz low-pass first-order filter. The general diagram of such a chopper is given in fig. 7. The values of the different components of the system are given by table 2.

The inner structure of the FPID part and its fifteen (or twenty six) resulting tuning factors are defined on the normalised universe of discourse by the user. Thus values for the scaling factors \(dem \) and \(gm \) and the integrator gain called \(Ki \) have to be defined. The scaling factor
em is supposed to be defined considering the benchmark step magnitude. Due to their
global effect on the control performance and robustness, optimal input and output scaling
factors play critical role in the FPID controller and they have the highest priority in terms of
tuning and optimisation [68],[79]. To tune them a lot of strategies have been proposed.
Only these last three parameters pre-established values that we will provide in this part will
depend on the open-loop identification of the process and on the sample period. In this way,
this methodology can be seen as a Ziegler-Nichols-like tuning strategy for fuzzy controllers.
In order to evaluate the performances of the control strategy, this pre-established set will be
provided for a very common industrial benchmark: no-load step response, nominal load
regulation, no-load regulation. It will warrant a high performances process response on this
benchmark combined with a high robustness. The non-linear charge will be connected or
disconnected according to the following functioning cycle fixed for the whole of our tests at
0.5 second: the no-load starting \((R_0 = 20\Omega)\) is carried out at \(t=0s\); to sudden maximum load
connection \((R = 150\Omega)\) at \(t=0.166s\) (at the third of the horizon); and sudden disconnection \((R_0 = 20\Omega)\)
intervenes at \(t=0.333s\) (at the two thirds of the horizon).

![Fig. 7. General diagram of the Buck chopper](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_e)</td>
<td>60V</td>
</tr>
<tr>
<td>(L)</td>
<td>1.3 mH</td>
</tr>
<tr>
<td>(C_s)</td>
<td>165 (\mu)F</td>
</tr>
<tr>
<td>(I)</td>
<td>(\leq 10A)</td>
</tr>
<tr>
<td>(R_{load})</td>
<td>20 (\Omega)</td>
</tr>
<tr>
<td>(R_0)</td>
<td>150 (\Omega)</td>
</tr>
<tr>
<td>(V_s)</td>
<td>0 to 10 V</td>
</tr>
</tbody>
</table>

TABLE II. System Parameters Values

2. Open-loop identification test
In this paper, in the first part we want to propose pre-established settings for this FPID that
are based on just one open-loop step identification test of the process. These predefined
settings already exist in case of use of the FLC with an open-loop stable or evolutive process
[62-63], that are widely found in electrotechnical applications. The control quality for this
system will be evaluated considering the Integrative Absolute Error (IAE) between the
reference and the measured signal on the specified benchmark. The FPID will then be all the
more robust since these IAE-criterion remains insensitive to uncontrolable factors (white
noise, process misindentification ...).
The open-loop identification of this stable process like DC/DC Buck converter will provide three parameters called K, T and τ for an open-loop transfer function of the process that can be expressed as Eq. 4. Figure 8 presents the open-loop response of the considered system.

$$FT(p) = K \cdot \frac{e^{-Tp}}{1 + \tau p} = \frac{FT_{50Hz}}{1 + 0.0174p}$$

(43)

with: $K=14.7$, $T=0.0028s$, $\tau=0.002.8s$

Pre-established settings for the FPID-like FLC is provided in Table 3. The choice is inspired from the Broïda predefined settings [62] for conventional PID controllers by imposing an equal distribution of the membership function s of the inputs/outputs variables and in the case of a value step magnitude c with Tech the sampling period equal to 0.00015 s.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_m</td>
<td>$c = 60V$</td>
</tr>
<tr>
<td>K_i</td>
<td>$K_i = \frac{0.8}{K \cdot T} = 19.4363$</td>
</tr>
<tr>
<td>de_m</td>
<td>$de_m = \frac{2.5}{\tau \cdot T} \cdot (\tau + 0.4 \cdot T) \cdot T_{ach} \cdot c = 8.5530 \text{dV/dt}$</td>
</tr>
<tr>
<td>g_m</td>
<td>$g_m = \frac{0.8}{K \cdot T} \cdot (\tau + 0.4 \cdot T) \cdot c = 21.5977$</td>
</tr>
</tbody>
</table>

TABLE III. Pre-Defined Factors Levels

Fig. 9 and Fig. 10 give the simulation results for the DC/DC converter controlled either by a conventional PID controller whose parameters have been set according to the Broïda
settings or by our FPID with pre-established settings (table 2) i.e. equally-distributed for antecedent memberships function and consequent values. With the FPID, all the simulations lead to an outstanding improvement of the behavior with respect to the standard tunings of the Broida PID controller. The measured IAE-criterion is 0.9729 V.s in the FPID case and 1.134 V.s in the classical PID case. Beyond this 17%-criterion improvement, we can underline the similar behavior of the two controllers.

![Output voltage control](image1.png) ![Imposed reference current](image2.png)

Fig. 9. Broida PID controller

3. Discret parameter tuning

Now, we apply the discret FQL algorithms to tuning the antecedent parameters then the consequent parameters of the FPID controller determined previously. The values for the scaling factors dem, gm, Ki and em are fixed during the learning processus and therefore we have eight parameters tuning (table 3). This doesn’t constitute a difficulty because the reinforcement learning method doesn’t depend on the parameter number to tune, which constitute a considerable advantage as compared to the other tuning methods such as the experimental product-plan method [62],[63].

First of all, it’s necessary to define the levels (two in our case) for each of the considered controllable factors. Referring to Figure 2 and seeing the 50%-overlapping rate as a mechanical constraint, the positions of the PVS’s and PS’s membership functions apex aren’t
totally independent. When the position of PS is fixed at x (x between 0 and +1), the position of PVS can only be between 0 and x. Thus, it’s more advisable to define the two levels of these input factors relatively [62]. Under his assumption, the two chosen levels for each of the eight tuning factors are provided in Table 4.

![Diagram of Output voltage control and Imposed reference current](image)

Fig. 10. Broida FPID controller

<table>
<thead>
<tr>
<th>Factors</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>0.30</td>
<td>0.40</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>PVS</td>
<td>0.12</td>
<td>0.17</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>PSde</td>
<td>0.30</td>
<td>0.40</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>PVSde</td>
<td>0.12</td>
<td>0.17</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>PSs</td>
<td>0.20</td>
<td>0.40</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td>PVSs</td>
<td>0.20</td>
<td>0.40</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td>NS</td>
<td>-0.20</td>
<td>-0.40</td>
<td>-0.60</td>
<td>-0.80</td>
</tr>
<tr>
<td>NVS</td>
<td>-0.20</td>
<td>-0.40</td>
<td>-0.60</td>
<td>-0.80</td>
</tr>
</tbody>
</table>

TABLE IV. Controlable Factors Levels

The choice of these levels has been achieved so a to sweep the area of researches.
3.1 Reinforcement function
The next step is to define the reinforcement signal \(r \). The process performances are evaluated by the maximum absolute value of the error deviation \(e \), because the objective of the FPI controller is to minimise this error as small as possible in tracking and in regulation. The reinforcement signal \(r \) may be defined as follows:

\[
r(t) = \begin{cases}
-\frac{|e|}{e_{\text{max}}} & \text{If } |e| \leq e_{\text{max}}, \text{success} \\
-1 & \text{If } |e| > e_{\text{max}}, \text{failure}
\end{cases}
\]

We adopt a reinforcement function with a punitive policy in order to obtain optimal parameters in a short time period. In our simulations, we assume the maximum allowed error as 0.05. The parameters used in the simulations and experimentations are summarized in Table 5. The second value of parameter indicated in this table relates to the learning algorithm for consequents parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factors</td>
<td>(\gamma)</td>
<td>0.9/0.95</td>
</tr>
<tr>
<td>Proximity factors of the omission function</td>
<td>(\lambda)</td>
<td>0.9</td>
</tr>
<tr>
<td>(eligibility traces)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial learning rate</td>
<td>(\rho)</td>
<td>0.1</td>
</tr>
<tr>
<td>Interferer in the adaptative learning rate</td>
<td>(K_\rho)</td>
<td>0.0001/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Interferer in the adaptative learning rate</td>
<td>(\psi_\rho)</td>
<td>0.5/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Interferer in the adaptative learning rate</td>
<td>(\varphi_\rho)</td>
<td>0.5</td>
</tr>
<tr>
<td>Tolerance Noise/Amplitude of the quality</td>
<td>(S_p)</td>
<td>0.1</td>
</tr>
<tr>
<td>Proportioning of the exploration</td>
<td>(\theta)</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE V. Parameters of the Discrete FQL algorithm

At first we tried to put into functions the two algorithms (FQL applied to the premises and FQL applied to the conclusions) similarly. But different attempts have shown that a simultaneous tuning of antecedent and consequent parameters lead to instability, therefore we opted for a separated tuning procedure beginning with the FQL for antecedent part followed by those of the consequent part.

The final tunings are provided in Table 6. Figures 11, 12 and 13 present the simulations results on the DC/DC converter. The “before optimisation” results have been obtained when the membership functions and the singletons are equidistributed on the universe of discourse. This kind of “medium”setting can be seen as a preliminary setting but constitutes unfortunately often the final setting of the FLC too.

3.2 Simulations and experimental results
Stage one: antecedent parameters tuning
We use the FQL algorithm applied to the antecedents with equally-distributed consequent values. We obtain the following results.
TABLE VI. Modal points determined by discrete tuning

The results of simulations (fig.11) during the learning stage give an IAE criterion equals to 0.8544. We can notice then an improvement due to a larger space of solutions.

![Graph showing output voltage control and imposed reference current](image)

Fig.11. tecedent tuning of the FPID controller

Stage second: consequent parameters tuning

Initially, to show the importance to tune the antecedents parameters, we execute classic algorithm FQL with equally-distributed for antecedent memberships function. The results of simulations obtained during the learning stage give an IAE criterion equals 0.938, what corresponds to a deterioration of 10% of the optimization criterion as compared to the value obtained with classic FQL algorithm. Then we use the consequent FQL algorithm with the modal point values of the input membership functions determined in stage one. We get then the rule base shwoned in the table 7. The results of the simulations obtained during the learning (fig 12 and 13) show an improvement of the IAE criterion, equals now to 0.5318 compared to respectevely 0.8544 for the during the learning and validation phase. Therefore
we have reached an improvement of the criterion of 12\% as compared to the stage one. These simulations results show an important decreasing of the optimisation criterion (about 45\%) as compared to the value obtained before the tuning by FQL algorithms. Moreover the behaviour of tracking is improved because the response time is shorter.

![Output voltage control](image1)
![Imposed reference current](image2)

Fig. 12. Consequent tuning of the FPID controller with classic FQL algorithm

<table>
<thead>
<tr>
<th>e</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>-1</td>
</tr>
<tr>
<td>NS</td>
<td>-1</td>
</tr>
<tr>
<td>NVS</td>
<td>-1</td>
</tr>
<tr>
<td>Z</td>
<td>-1</td>
</tr>
<tr>
<td>PVS</td>
<td>-0.8</td>
</tr>
<tr>
<td>PS</td>
<td>-0.4</td>
</tr>
<tr>
<td>PB</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>de</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>-1</td>
</tr>
<tr>
<td>NS</td>
<td>-1</td>
</tr>
<tr>
<td>NVS</td>
<td>-1</td>
</tr>
<tr>
<td>Z</td>
<td>-1</td>
</tr>
<tr>
<td>PVS</td>
<td>-0.2</td>
</tr>
<tr>
<td>PS</td>
<td>-0.8</td>
</tr>
<tr>
<td>PB</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE VII Antidiagonal rule base
4. Continuous parameter tuning

The previous obtained results (tables 6 and 7) constitute values close to the optimum which just need to be refined by means of the proposed continuous tuning algorithm. The parameters of the continuous FQL algorithm used in the simulations/experimentations are summarized in Table 8.

The simulation results obtained with non antidiagonal table 10 shown on system responses of the fig.14, an IAE criterion of 0.4789 during the learning phase, which constitute a decreasing of 10% in comparison to the discreet tuning and of 58% in comparison to the classic Broïda PID. Let’s remind also that the method of experimentation plans measure an IAE criterion of 1.05 (standard tuning) and 0.56 (robust tuning) with 16 experimental tests, therefore we have reached an improvement of 54% (standard tuning) and 15% (robust tuning) in relation to this method.
TABLE VIII Parameters of the Continuous FQL algorithm

We obtain the following results with the continuous FQL algorithm.

<table>
<thead>
<tr>
<th>Parametres</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discounted factor</td>
<td>γ</td>
<td>0.9</td>
</tr>
<tr>
<td>Proximity factor of the omission function (eligibility traces)</td>
<td>λ</td>
<td>0.9</td>
</tr>
<tr>
<td>Learning rate QE_FIS</td>
<td>ρ</td>
<td>0.0001</td>
</tr>
<tr>
<td>Interfere in the adaptative learning rate</td>
<td>K_η</td>
<td>0.00001</td>
</tr>
<tr>
<td>Interfere in the adaptative learning rate</td>
<td>ψ_η</td>
<td>0.5</td>
</tr>
<tr>
<td>Interfere in the adaptative learning rate</td>
<td>φ_η</td>
<td>0.5</td>
</tr>
<tr>
<td>Learning rate FPID control</td>
<td>β</td>
<td>0.00001</td>
</tr>
<tr>
<td>Learning rate of the antecedents</td>
<td>ρ</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

TABLE IX Modal points determined by continuous tuning

<table>
<thead>
<tr>
<th>Factors</th>
<th>PS_e</th>
<th>PVS_e</th>
<th>PS_de</th>
<th>PVS_de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level selected</td>
<td>0.75</td>
<td>0.07</td>
<td>0.3</td>
<td>0.171</td>
</tr>
</tbody>
</table>

TABLE X Non Antidiagonal rules base

The best values controllable factors determined by simulations are then used to carry out the experimental tests. The experimental results (fig 16) are very similar to the simulation.
results, which confirms the performances of experimental methodology proposed. Moreover, it has better results on the system responses and IAE criterion in comparison with standard and robust methods experimental plans as can be seen in Fig.15. The Table 11 relating to the IAE criterion confirmed the quality of the obtained responses by our approach. The different results show that it carries out one compromised for the two types of operation in tracking and in regulation. Also, the performances of the system can be greatly improved by executing a specific FPID controller for each operation type in comparison to one FPID controller functioning on all the operating range. The figure 17 shows that the time of response and the time of reject of the perturbations have considerably decreased. These simulations results show an important decreasing of the optimisation criterion (about 2%) as compared to the value obtained with the only using of one FPID controller tuning by FQL algorithms.

![Output voltage control](image1.png) ![Imposed reference current](image2.png)

Fig. 14. Continuous tuning of the FPID controller
Output voltage control

Imposed reference current

IAE criterion

Fig. 15. Experimental results of FPID controller (standard and robust methods of experimental plans)
Fig. 16. Experimental results of the FPID controller continuous tuning

<table>
<thead>
<tr>
<th>Methods</th>
<th>IAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID Broida</td>
<td>1.134</td>
</tr>
<tr>
<td>FPID Broida</td>
<td>0.9729</td>
</tr>
<tr>
<td>Classic FQL</td>
<td>0.9</td>
</tr>
<tr>
<td>Discret FQL</td>
<td>0.5454</td>
</tr>
<tr>
<td>Continous FQL (one FPID)</td>
<td>0.5396</td>
</tr>
<tr>
<td>Continous FQL (two FPID)</td>
<td>0.4693</td>
</tr>
<tr>
<td>Experimental plans (standard)</td>
<td>1.05</td>
</tr>
<tr>
<td>Experimental plans (robust)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

TABLE XI Comparative table of the various methods
7. Conclusion

On the whole, this paper provides some new and original headlines for the on-site tuning of PID like fuzzy logic controllers. With the Broida methodology for conventional PID controllers; it is possible to obtain satisfying basic FPID. These settings depend only on two or three parameters (K, T and eventually τ) extracting from an open-loop identification test of the process.

A second set of pre-defined settings for the controllable factors FPID is proposed and selected from the reinforcement learning design procedure. Two discrete tuning algorithms are developed based FQL for antecedent parameters and consequent parameters tuning respectively. The process performances are always evaluated considering the IAE-criterion between the reference and the measured signal. The FPID will then be all the more robust since this IAE-criterion remains insensitive to uncontrollable factors (here white noise, process misidentification or high order process). This second stage tuning could be seen as an on-site roughly FPID tuning strategy.
Finally the paper presents the controller architecture composed of the QE-FIS and the FPID for solving continuous space reinforcement learning problems and fine tuning controllable factors. The QE-FIS is used to estimate the optimal action-value function, and the FPID is used to get the control output based on the estimated action value function provided by the QE-FIS. With the proposed architecture, the parameters learning algorithms for the QE-FIS and the FPID are developed based on techniques of temporal difference and rise gradient algorithm. The two stages (discrete tuning and continuous tuning) complete one another because the first stage does a preliminary tuning which reduces the field of researches and provides an initialization to the second stage. This initialization of the parameter vector close to the optimum enables to avoid the local optimums of the gradient methods. Finally, the simulations and the experimentation of the DC/DC converter demonstrate the validity and performance of the proposed learning algorithms and give better results as compared to the method of experimentation plans.

8. Acknowledgment

Hacène Rezine: was born in 1955 in El-Kala, Algeria. He received an engineering degree from the Ecole Nationale d’Ingénieurs et de Techniciens, Alger in 1979, the Engineer Degree from the Ecole Nationale Supérieur d’Electrotechnique, d’Électronique, d’Informatique, et d’Hydraulique, Toulouse, France in 1980 and the Doctor-Engineer Degree from the Institut Nationale Polytechnique of Toulouse in 1983. He is currently the Head of Unit of teaching and control research of the Algerian Polytechnic Military School. His current research areas include Electrical drives, Mobile robotic, Fuzzy control and Artificial Intelligent Control.

Rabah Louali: was born in October, 15th, 1982 in Blida (Algeria). He received the Engineering degree in 2006, from the Military Polytechnic School (Algeria). Currently, he is Magister student at this school. His current research areas include Mobile Robotic, Control of System and Fuzzy control.

9. References

This book was conceived as a gathering place of new ideas from academia, industry, research and practice in the fields of robotics, automation and control. The aim of the book was to point out interactions among various fields of interests in spite of diversity and narrow specializations which prevail in the current research. The common denominator of all included chapters appears to be a synergy of various specializations. This synergy yields deeper understanding of the treated problems. Each new approach applied to a particular problem can enrich and inspire improvements of already established approaches to the problem.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following: