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1. Introduction

The analysis of a transmission line allows a complex study that can be used to measure losses
in line, to understand the behavior of them in case of a voltage surge and other kinds of
phenomena.

This chapter presents the development of a routine that evaluates a method for determining
real transformation matrices in three-phase systems considering the presence of ground-wires.
Thus, for Z (longitudinal impedance) and Y (transversal admittance) matrices that represent
the transmission line, the ground wires are considered not implicit in the values of the phases.
This routine was developed using the mathematical tool MatlabTM.

As a proposal, the routine uses a real transformation matrix throughout the frequency range
of analysis. This transformation matrix is an approximation of the exact transformation matrix.
For elements related to the phase of the system considered, the transformation matrix is
composed from the elements of the Clarke’s matrix [18].

In parts related to ground wires, the elements of the transformation matrix must establish a
relationship with the elements of the phases considering the establishment of a unique, single
homopolar reference in mode domain.

In case of three-phase transmission lines with the presence of two ground wires, it is not
possible to obtain the complete diagonalization of Y and Z matrices in mode domain. Finally,
a correction routine is applied with the goal of minimizing errors obtained for the eigenvalues.
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2. Background

Different methods can be used in order to analyze electromagnetic transient phenomena in
transmission lines. Many mathematical tools can be used. The main tools are: circuit analysis
using Laplace transform and Fourier transform, state variables and also differential equations.
These tools can be included in a numerical routine in order to obtain the values of voltage and
current in electromagnetic transient simulation for any point in the circuit.

The EMTP (ElectroMagnetic Transient Program) identifies a type of program, considering its
various versions, which performs simulations of transients in electrical networks [1]. The
prototype was developed in the 1960s by professionals in power systems, led by Dr. Hermann
Dommel (University of British Columbia, Vancouver, BC, Canada), and Dr. Scott Meyer
(Bonneville Power Administration in Portland, Oregon, USA). Currently, the EMTP is the basis
of simulations of electromagnetic transients in power systems.

With EMTP-type programs, the following tests may be performed: simulation by switching
and lightning surges, transient and temporary overvoltages, transients in electric machines,
resonance phenomena, harmonics, power quality and power electronics applications. The
most popular type programs are EMTP: MicroTran, PSCAD and ATP.

In analysis of transmission systems, there are simulators that represent different types of
systems, from generation, transmission and distribution.

Because it is practically impossible to perform the simulation of electromagnetic transients on
real transmission lines, simulations by digital models become useful tools. However, these
tools do not provide satisfactory performance as regards the correct representation of the
electrical line parameters, as these are dependent on the frequency.

In modal domain, it’s possible to represent the transmission line circuits using simple circuits
and easily entering frequency dependence of longitudinal parameters.

In general, a system composed of n-phases can be transformed into independent modes using
a real and unique transformation matrix, if transposition applies to all phases for the frequency
range used (ideal transposition). If the analyzed system is not transposed, a mode is obtained
for each phase using the frequency dependent phase-mode transformation matrix.

Applying  real  and  unique  transformation  matrix  for  the  nontransposed  lines,  approxi‐
mate results can be obtained. Thus, there is an approximate representation of frequency
dependence using a real phase-mode transformation matrix [2]-[3]. One possible simplifica‐
tion is  to consider the transformation matrix frequency independent,  obtaining insignifi‐
cant  errors  related  to  the  eigenvalues  that  represent  the  line.  Using  the  mentioned
simplification,  the  obtained  numerical  routine  may  be  faster  because  it  avoids  using  a
convolution method [4]-[28].

The objective of this chapter is to analyze the application of a real transformation matrix that
is frequency independent in three-phase lines considering the presence of two ground wires.
Errors are presented in relation to the exact values obtained from the matrix of eigenvalues.
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The proposed model is based on an approximate modal transformation performed by a single
real phase-mode transformation matrix, and frequency independent. This matrix is obtained
by linear combination of Clarke’s matrix elements. With the implementation of the transfor‐
mation matrix frequency independent, it’s obtained a diagonal matrix for transposed lines. In
case of a three-phase transmission line not transposed the line parameters matrix can’t be
diagonalized, with application of a single real phase-mode transformation matrix mentioned.
For these cases, the goal is to analyze the relative errors obtained by the establishment
circumstances to use a transformation matrix frequency independent.

For the proposed method in this chapter, a similar mathematical basis is used to homopolar
hypothesis of a single reference for all phases of the system regardless of the geometrical
distribution and organization of the three-phase circuit. Thus, the development is based on
the analysis of eigenvectors and eigenvalues, using a linear combination of Clarke’s matrix
elements, and assuming a unique homopolar reference.

It’s presented two different proposals for real matrices and frequency independent in order to
replace the modal transformation matrix of a typical three-phase transmission line in the
presence of two ground-wires.

3. Mathematical model

A transmission line is represented by a longitudinal impedance Z and the transversal admit‐
tance Y matrices, the characteristics of ground wires are not implied in the values related to
the phases. Thus, for a line with two ground wires, the Z and Y matrices are 5-order ones.

For the mentioned systems, the three-phase circuit configurations are considered and the
transposed case can be described by a system where each three-phase circuit is ideally
transposed and there are coupling impedances and admittances among the three-phase
circuits. For EMTP type programs, if each three-phase circuit is considered independently, the
transformation matrix is frequency dependent for general cases. For the method proposed in
this chapter, a similar mathematical base is used for all considered cases: the assumption of
unique ground reference for all phases of the system independently of the geometrical
distribution and the organization of the three-phase circuits. The unique ground reference
leads to a unique homopolar mode in mode domain.

The relationships between transversal voltages uF and the longitudinal currents iF can be
expressed by the following equations, where Z is the longitudinal impedance matrix per unit
length and Y is the transversal admittance matrix per unit length in phase domain.

-
d uF

dx =Z ⋅ iF  and -
d iF

dx =Y ⋅uF (1)

Applying the eigenvector and eigenvalue analyses for YZ and ZY product matrices, the λ
diagonal eigenvalue matrix and the eigenvector matrices are determined. The eigenvector
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matrices, TV  and T I , correspond to voltage and current mathematical relationships, respec‐
tively. The TV  and T I  matrices are related to λ based on the following equation:

λ =TV ⋅Z ⋅Y ⋅TV
-1 =T I ⋅Y ⋅Z ⋅T I

-1 (2)

If the TV  and T I  transformation matrices are used, the eigenvalues can be obtained in mode
domain using (1). The per unit length longitudinal impedance matrix (ZMD) and transversal
admittance matrix (YMD) are:

ZMD =TV ⋅Z ⋅T I
-1 and  YMD =T I ⋅Y ⋅TV

-1 (3)

In general, these frequency dependent transformation matrices (TV  and T I ) are different and
have complex elements. Using the proposed methodology, the transformation matrices are
changed into a single real transformation matrix (TSR). The TSR matrix is determined from
linear combinations of the Clarke’s matrix elements [4]-[7]. The determination of exact
eigenvalues is approximated and changed into the following:

λSR =TSR ⋅Z ⋅Y ⋅TSR
-1 =TSR ⋅Y ⋅Z ⋅TSR

-1  (4)

In case of the EMTP type programs, the transformation matrices are real, if the system is ideally
transposed. For this, there is only one self-impedance value for all phase interactions. Con‐
sidering the admittance values, a similar structure to the impedance values is obtained.
Applying the EMTP type programs, a system composed by three-phase circuits is analyzed as
a non-transposed case, if the each three-phase circuit is considered transposed independently
of the ground wires.

Using a single homopolar mode reference, the λSR matrix is equal to the exact eigenvalue
matrix (λ) [8] as well as TV  and T I  being equal to a single real transformation matrix for
transposed cases [9]-[11]. So, with a single homopolar mode reference, there is a link between
the three-phase circuit and the ground wires of the system. With this technique, a transfor‐
mation matrix (TSR) is obtained which has interesting characteristics: single, real, frequency
independent, line parameter independent and identical to voltages and currents. With these
characteristics, phase-mode transformations are carried out using only one matrix multipli‐
cation.

The homopolar or zero sequence components (V a0,  V b0 and V c0) for a three-phase system are
equal and they make the unique ground reference for the three-order phasor system. Using
the homopolar reference phasor concept, the application of a single mode reference to the
single real phase-mode transformation matrix is proposed. So, the homopolar mode is used
as the only mode reference for the analyzed transmission line systems. To compose the TSR

matrix, each mode must have a unitary modulus. Because of this, each homopolar mode
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element value depends on the number of phase conductors. If this number is identified by n,
the homopolar mode elements are described by (6).

TSR-n = 1

n
(5)

4. Ground wires in three-phase transmission line

Considering two ground wires in a three-phase lines system, these matrices are 5-order ones.
Therefore, the single real phase-mode transformation matrix has the following structure
presented in (6).

TSR5 =

- 1

6

2

6
- 1

6
0 0

1

2
0 - 1

2
0 0

1

5

1

5

1

5

1

5

1

5
1

5

1

5

1

5
- 1

5
- 1

5

0 0 0 1

2
- 1

2

(6)

In case of a three-phase lines system is ideally transposed, it creates only one coupling
impedance between the lines. The average self-phase impedance value is represented by A.
The average coupling impedances are represented by B, within a circuit, and C, between the
line and ground wires or other circuits. The average ground wires impedance value is
represented by D. The average coupling impedance between the both ground wires is
represented by E. For the case of a single three-phase line in the presence of two ground wires
(Fig. 1), the structure of the impedance matrix is shown in (7).

Z5 =

A B B C C
B A B C C
B B A C C
C C C D E
C C C E D

(7)

The three-phase transmission line circuit tower (Fig. 2) has a height of 36.0 m and is the
structure used in this chapter. This is a 400 km length line that operates in 440 kV. It is a system
whose conductors are disposed in such way that there is a vertical symmetry plane.
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Figure 1. Coupling impedances for a three-phase transmission line with two ground wires for transposed cases.
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Figure 2. Three phase line tower with two ground wires

The result determined through (4) is a diagonal matrix and the matrix elements are the exact
eigenvalues, for the cases where the ground wires are implicit in the phase values and the line
is transposed. The impedance matrix in mode domain (ZM ) can be calculated as:

ZM =TSR ⋅Z ⋅TSR
-1 (8)

Considering ground wires, the single real phase-mode transformation matrix does not
perfectly diagonalize the impedance matrix.
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λSR5 =

A - B 0 0 0 0
0 A - B 0 0 0

0 0 3A + 6B - 12C + 2D + 2E
5

3A + 6B - 2D - 2E
5 0

0 0 3A + 6B - 2D - 2E
5

3A + 6B + 12C + 2D + 2E
5 0

0 0 0 0 D - E

(9)

5. Initial configuration routine

A routine with initial configuration was developed in order to set parameters that would be

used for other routines. This routine was developed using Matlab and is presented below:

initial_conf.m

%Three-phase line with vertical symmetry

ntpc = 1; %three-phase circuit amount

ngw = 2; %ground wires amount

ncond = ntpc*3+ngw;  %conductors amount

frequency     %subroutine to call an array of frequencies from 0 to 1 GHz

%Conductors’ position in x axis (in meters)

xc(1)=   0;

xc(2)=   9.27;

xc(3)=   18.54;

xc(4)=   1.76;   %ground wire 1

xc(5)=   16.78;  %ground wire 2

%Conductors’ position in y axis (in meters)

yc(1)=  24.07-0.7*13.43; %the subtracted value is the sag of each wire

yc(2)=  27.67-0.7*13.43;

yc(3)=  24.07-0.7*13.43;

yc(4)=  36.00-0.7*6.40;

yc(5)=  36.00-0.7*6.40;

%Radius (in meters)

rc  = 2.52e-2;  %total radius

rin  = 0.93e-2;  %internal radius

r_dist = 0.4;   %distance between conductors

nph = 4;  %number of conductors per phase

Arg  = rc*r_dist^3*sqrt(2); %argument of root

GMR  = power(Arg,1/nph);  %geometric mean radius

radius  = GMR;

sk_radius = rc-rin;  %for skin effect procedure

gw_radius = 0.9144e-2;  %ground wire radius

resist = 1000;                %Earth resistance (ohms x meters)

mizero = 4*pi*1e-7;           %magnetic permeability (H/m)

epszero = 8.8542*1e-9; %dielectric permittivity (F/km)

sigma= 3.82*1e7;              %conductor’s conductivity (mho/m)
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6. Eigenvalue analyses for non-transposed three-phase transmission line

Considering the three-phase line tower with two ground wires shown in Fig. 2, the total
longitudinal impedance value is composed by earth effect, calculated by Carson`s method [28],
external effects and skin effect. For phase 1, the longitudinal resistance is shown in Fig. 3 (a),
the longitudinal inductance in Fig. 3 (b) and capacitance in Fig. 3 (c).
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Figure 3. (a) Longitudinal Resistance, (b) Longitudinal inductance, (c) Capacitance : phase 1.

The longitudinal resistance and inductance and the capacitance of phase 1 were obtained using
a routine developed in MatLab, which is commented and shown below:

external_impedance.m

clear all

'Calculating Z due to external effect’

%File Reading (calling subroutine of initial configuration)
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initial_conf

for j = 1:ncond,

xi(j) = xc(j);

yi(j) = -yc(j);

for k = j:ncond

  str = ['Zext' int2str(j) '_' int2str(k) '.m'];

  fid(j,k) = fopen(str,'w');

  if j==k

 str = ['%% External impedance of phase ' int2str(j) ' \n clear x\n x = [\n'];

 fprintf(fid(j,k),str);

  else

 str = ['%% External impedance between phase ' int2str(j) ' and ' int2str(k) ' 

\n clear x\n x = [\n'];

 fprintf(fid(j,k),str);

 end

end

end

%Image conductor coordinates

for j = 1: ncond,

   xi(j) =  xc(j);

 yi(j) = -yc(j);

end

%External inductance (H/km)

for j = 1:ncond,

   for k = j:ncond,

      if j == k

         if j < ntpc*3+1

 ld = radius;

 else

 ld = gw_radius;

 end

      else

         dx = xc(j) - xc(k);

 dy = yc(j) - yc(k);

 ld = sqrt(dx^2 + dy^2);

      end

      dx = xcondut(j) - xi(k);

 dy = ycondut(j) - yi(k);

 bd = sqrt(dx^2 + dy^2);

      induct(j,k) = 1000*(1/(2*pi))*mizero*log(dezao/dezinho);

 end

end

for j = 1:length(freq),

    for k = 1:ncond

        for m = k:ncond

            z = i*2*pi*freq(j)*induct(k,m);

 fprintf(fid(k,m), '%30.20f  %30.20f\n',real(z),imag(z));

        end

    end
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end

for j = 1:ncond

    for k = j:ncond

 fprintf(fid(j,k), ']; \n');

 str = ['ze' int2str(j) '_' int2str(k) ' = x(:,1) + i*x(:,2);'];

 fprintf(fid(j,k), str);

    end

end

fclose('all');

z_skins.m

%Internal impedance (skin effect)

clear all

'Calculatin Z due to skin effect'

%File reading

initial_conf

fid10 = fopen('zskin.m','w');

fprintf(fid10, '%% Internal impedance \n clear x\n x = [\n');

%===========================================================

%Bessel Formula

%==========================================================

%mi  = mizero/1000 ;

%radiuso = raio/1000  ;

for j = 1:length(freq),   

   m  = sqrt(i*2*pi*freq(j)*mizero*sigma);

 mr = sk_radius * sqrt(i*2*pi*freq(j)*mizero*sigma);

 I0 = BESSELI(0,(mr),1);   

   I1 = BESSELI(1,(mr),1);

   %Impedance calculus (number 4 appears because there are 4 subconctors)

 z = (1/4)*1000*((1/sigma)*m)/(2*pi*sk_radius)*(I0/I1);

  fprintf(fid10, '%30.20f  %30.20f\n',real(z),imag(z));

end

fprintf(fid10, ']; \n');

fprintf(fid10, 'zskin = x(:,1) + x(:,2)*i;');

fclose('all');

z_carson.m

%Impedance due to earth effect (Carson’s method)

clear all

'Calculating Z due to earth effect - Carson's method

%File reading

initial_conf

nt = 120; %amount of terms to be used (number multiple of 4)

v = -1;   %variable used for signal

%Image conductors coordinates
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for j = 1:ncond,

   xi(j) = xc(j);

 yi(j) = -yc(j);

    for k = j:ncond

 str = ['Zcarson' int2str(j) '_' int2str(k) '.m'];

       fid(j,k) = fopen(str,'w');

 if j==k

 str = ['%% Phase impedance ' int2str(j) ' due to earth effect \n clear x\n x 

= [\n'];

 fprintf(fid(j,k),str);

 else

 str = ['%% Impedance between phases ' int2str(j) ' and ' int2str(k) ' due to 

Earth effect \n clear x\n x = [\n'];

 fprintf(fid(j,k),str);

       end

   end   

end

for j = 1:ncond,

   for k = j:ncond,       

      dx  = xc(j) - xi(k);

 dy  = yc(j) - yi(k);

 bd(j,k)  = sqrt(dx^2 + dy^2);      

      cat  = yc(j) + yc(k);

 cossine  = cat/bd(j,k);

 ang(j,k) = acos(cossine);      

 end

end

%*****************************************************************************

% Calculus of terms b, c and d of Carson’s series

%*****************************************************************************

%signal change each 4 terms

n = 0;

for j = 1:nt/4,

   v = -v;

   for k = 1:4,

 n = n+1; 

 signal_b(n) = v;

   end

end

%Calculus of bi element

b(1) = sqrt(2)/6;

b(2) = 1/16;

for j = 3:nt,

   b(j) = abs(b(j-2))*(1/(j*(j+2)))*signal_b(j);

end

%Calculus of ci element

c(2) = 1.3659315;
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for j = 4:nt,

   c(j) = c(j-2) + (1/j) + (1/(j+2));

end

%Calculus of di element

d = (pi/4)*b;

%*****************************************************************************

for f = 1:length(freq),

   for j = 1:ncond,

      for k = j:ncond,         

         phi = ang(j,k);

 a = sqrt(mizero*2*pi*freq(f)/resist)*bd(j,k);         

         subrotine_carson_delta_r;

         subrotine_carson_delta_x;         

         fprintf(fid(j,k), '%30.20f  %30.20f\n',delta_r(j,k), delta_x(j,k));

  end

   end

end

for j = 1:ncond,

    for k = j:ncond,

 fprintf(fid(j,k), ']; \n');

 fprintf(fid(j,k), ['zsolo' int2str(j) '_' int2str(k) ' = x(:,1) + i*x(:,

2);']);

    end

end

fclose('all');

subrotine_carson_delta_r.m

if a < 5,

%'ok'

  r1 = b(1)*a*cos(phi);

  for nj = 1:(nt/4) -1,

    term1 = b(4*nj +1)*(a^(4*nj +1))*cos((4*nj + 1)*phi);

 r1 = term1 + r1;

 end

  parc1 = (c(2) - log(a))*(a^2)*cos(2*phi);

 parc2 = (phi*(a^2)*sin(2*phi));

 r2 = b(2)*(parc1 + parc2);      

  for nj = 1:(nt/4) -1,

    parc1 = (c(4*nj +2) - log(a))*(a^(4*nj +2))*cos((4*nj +2)*phi);

 parc2 = (phi*(a^(4*nj +2))*sin((4*nj +2)*phi));

 r2 = r2 + b(4*nj +2)*(parc1 + parc2);

 end

  r3 = b(3)*(a^3)*cos(3*phi);         

  for nj = 1:(nt/4) -1,

    term3 = b(4*nj + 3)*(a^(4*nj + 3))*cos((4*nj + 3)*phi);

 r3 = r3 + term3;

  end

 r4 = d(4)*(a^4)*cos(4*phi);       

 for nj = 1:(nt/4) -1,

    term4 = d(4*nj + 4)*(a^(4*nj + 4))*cos((4*nj + 4)*phi);
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 r4 = r4 + term4;

 end

  delta_r(j,k) = 4*2*pi*freq(f)*(1e-4)*((pi/8) - r1 + r2 + r3 - r4);

else

  t1 = cos(phi)/a;

  t2 = sqrt(2)*cos(2*phi)/(a^2);

 t3 = cos(3*phi)/(a^3);

  t4 = 3*cos(5*phi)/(a^5);

  t5 = 5*cos(7*phi)/(a^7);

  delta_r(j,k) = (4*2*pi*freq(f)*(1e-4)/sqrt(2))*(t1 -t2 + t3 +t4 +t5);

end

subrotine_carson_delta_r.m

%Carson’s series to calculate reactance of conductors due to Earth effect

if a < 5,

  x1 = b(1)*a*cos(phi);

  for nj = 1:(nt/4) -1,

    term1 = b(4*nj +1)*(a^(4*nj +1))*cos((4*nj + 1)*phi);

 x1 = term1 + x1;

  end

  x2 = d(2)*(a^2)*cos(2*phi);

  for nj = 1:(nt/4) -1,

    term2 = d(4*nj + 2)*(a^(4*nj + 2))*cos((4*nj + 2)*phi);

    x2 = x2 + term2;

  end

  x3 = b(3)*(a^3)*cos(3*phi);

  for nj = 1:(nt/4) -1,

    term3 = b(4*nj + 3)*(a^(4*nj + 3))*cos((4*nj + 3)*phi);

 x3 = x3 + term3;

  end

  term4 = (c(4) - log(a))*(a^4)*cos(4*phi) + (phi)*(a^4)*sin(4*phi);

  x4 = b(4)*term4;

  for nj = 1:(nt/4) -1,

    term4 = (c(4*nj + 4) - log(a))*(a^(4*nj + 4))*cos((4*nj + 4)*phi) + 

(phi)*(a^(4*nj + 4))*sin((4*nj + 4)*phi);

    x4 = x4 +  b(4*nj + 4)*term4;

  end         

 delta_x(j,k) = 4*2*pi*freq(f)*(1e-4)*(0.5*(0.6159315 - log(a)) + x1 - x2 + x3 

- x4);

else

  t1 = cos(phi)/a;

  t2 = sqrt(2)*cos(2*phi)/(a^2);

  t3 = cos(3*phi)/(a^3);

  t4 = 3*cos(5*phi)/(a^5);

  t5 = 5*cos(7*phi)/(a^7);

  delta_x(j,k) = (4*2*pi*freq(f)*(1e-4)/sqrt(2))*(t1 - t3 + t4 + t5);

end

The theoretical procedure of routines presented above can be fully found in [29]-[30]. The above

routines show how useful Matlab is in order to perform calculus and link routines. It’s easy to

note that the routines are simple to implement and to understand.
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The principal point to be observed is that all the data generated by the routines are stored into
m-files to be used by other routines. To perform this action, first it’s necessary to open a file (if
doesn’t exist, it’ll be automatically created) and link with a variable, for this operation, function
fopen shall be used, the arguments of this function are the name of file and the kind of action
to be performed by the file, in this case, w was used in order to write in the file. To write in the
file, the function fprintf must be used, the arguments are the name of file, the text (which can
be variables of decimal point (%d), float point (%f), and so forth, followed by the variables
name. Finally, it’s necessary to close the file, with the function fclose. In this case the argument
all is used in order to close all opened files.

As the procedure for calculus in all impedances cases shown above are the same, a lasso
function can be used in order to make the routine shorter. Thus, structure for is implemented
together structure if in order to make a loop and to decide what kind of operation shall be
performed.

In the z_skins.m file it’s noted the use of Bessel function; this is a special function which can be
found in any advanced mathematical calculus. This function is used in order to calculate the
impedance due to skin effect, as described in [29].

calc_capacitance.m

clear all

'Calculating capacitances'

%File reading

initial_conf

fid10 = fopen('capacitance.m','w');

fprintf(fid10, '%% Capacitances \n clear x\n cap = [\n');

%Image conductors coordinates

for j = 1: ncond,

   xi(j) =  xc(j);

 yi(j) = -yc(j);

end

%Potential matrix coefficients

for j = 1:ncond,

   for k = j:ncond,

      if j == k

          if j < ntpc*3+1

 ld = radius;

          else

 ld = gw_radius;

 end

      else

         dx = xc(j) - xc(k);

 dy = yc(j) - yc(k);

 ld = sqrt(dx^2 + dy^2);

      end      

      dx = xc(j) - xi(k);

 dy = yc(j) - yi(k);

 bd = sqrt(dx^2 + dy^2);      

      pot(j,k) = log(bd/ld);

MATLAB Applications for the Practical Engineer522



      pot(k,j) = pot(j,k);

   end

end

cap = 2*pi*epslonzero*(inv(pot));

for j = 1:ncond,

 for k = 1:ncond,

 fprintf(fid10, '%30.20f  ',cap(j,k));

    end

 fprintf(fid10, '\n');

end

fprintf(fid10, ']; \n');

fclose('all');

Evaluation of proposed real transformation matrix

A first analysis is based on Eq. (9). Through iterative process the exact eigenvectors and
eigenvalues, and also the eigenvectors and eigenvalues, from Clark`s matrix are calculated. At
the end of process the relative difference is calculated for each mode with Eq. (10).

err(%)=
λcl - λex

λex
⋅100 (10)
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Figure 4. Relative differences between the exact modes and the quasi-modes.

The relative difference between modes α, β, 0 and δ is relatively low (Fig. 4 (a)), however, the
relative difference of mode γ is high (Fig. 4 (b)). To minimize the error shown for mode 4, a
correction procedure for non-transposed three-phase transmission line cases [31]-[35] shall be
used in a future work.

In order to verify the limits of this method, a frequency range from 10 Hz  to 1 GHz  was
applied, from the results of resistance, inductance and capacitance obtained, it was verified
that the method could converge until 1 MHz , after this range the method is not valid and
need a new approach will be requested.
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The numeric routine used to obtain the results shown above was developed with Matlab and
is described below in details:

external_impedance.m

clear all

'Calculating Z due to external effect’

%File Reading (calling subroutine of initial configuration)

initial_conf

for j = 1:ncond,

xi(j) = xc(j);

yi(j) = -yc(j);

for k = j:ncond

  str = ['Zext' int2str(j) '_' int2str(k) '.m'];

  fid(j,k) = fopen(str,'w');

  if j==k

 str = ['%% External impedance of phase ' int2str(j) ' \n clear x\n x = [\n'];

 fprintf(fid(j,k),str);

  else

 str = ['%% External impedance between phase ' int2str(j) ' and ' int2str(k) ' 

\n clear x\n x = [\n'];

 fprintf(fid(j,k),str);

 end

end

end

%Image conductor coordinates

for j = 1: ncond,

   xi(j) =  xc(j);

 yi(j) = -yc(j);

end

%External inductance (H/km)

for j = 1:ncond,

   for k = j:ncond,

      if j == k

         if j < ntpc*3+1

 ld = radius;

 else

 ld = gw_radius;

 end

      else

         dx = xc(j) - xc(k);

 dy = yc(j) - yc(k);

 ld = sqrt(dx^2 + dy^2);

      end

      dx = xcondut(j) - xi(k);

 dy = ycondut(j) - yi(k);

 bd = sqrt(dx^2 + dy^2);

      induct(j,k) = 1000*(1/(2*pi))*mizero*log(dezao/dezinho);

 end
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end

for j = 1:length(freq),

    for k = 1:ncond

        for m = k:ncond

            z = i*2*pi*freq(j)*induct(k,m);

 fprintf(fid(k,m), '%30.20f  %30.20f\n',real(z),imag(z));

        end

    end

end

for j = 1:ncond

    for k = j:ncond

 fprintf(fid(j,k), ']; \n');

 str = ['ze' int2str(j) '_' int2str(k) ' = x(:,1) + i*x(:,2);'];

 fprintf(fid(j,k), str);

    end

end

fclose('all');

z_skins.m

%Internal impedance (skin effect)

clear all

'Calculatin Z due to skin effect'

%File reading

initial_conf

fid10 = fopen('zskin.m','w');

fprintf(fid10, '%% Internal impedance \n clear x\n x = [\n');

%===========================================================

%Bessel Formula

%==========================================================

%mi  = mizero/1000 ;

%radiuso = raio/1000  ;

for j = 1:length(freq),   

   m  = sqrt(i*2*pi*freq(j)*mizero*sigma);

 mr = sk_radius * sqrt(i*2*pi*freq(j)*mizero*sigma);

 I0 = BESSELI(0,(mr),1);   

   I1 = BESSELI(1,(mr),1);

   %Impedance calculus (number 4 appears because there are 4 subconctors)

 z = (1/4)*1000*((1/sigma)*m)/(2*pi*sk_radius)*(I0/I1);

  fprintf(fid10, '%30.20f  %30.20f\n',real(z),imag(z));

end

fprintf(fid10, ']; \n');

fprintf(fid10, 'zskin = x(:,1) + x(:,2)*i;');

fclose('all');

z_carson.m

%Impedance due to earth effect (Carson’s method)

clear all
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'Calculating Z due to earth effect - Carson's method

%File reading

initial_conf

nt = 120; %amount of terms to be used (number multiple of 4)

v = -1;   %variable used for signal

%Image conductors coordinates

for j = 1:ncond,

   xi(j) = xc(j);

 yi(j) = -yc(j);

    for k = j:ncond

 str = ['Zcarson' int2str(j) '_' int2str(k) '.m'];

       fid(j,k) = fopen(str,'w');

 if j==k

 str = ['%% Phase impedance ' int2str(j) ' due to earth effect \n clear x\n x 

= [\n'];

 fprintf(fid(j,k),str);

 else

 str = ['%% Impedance between phases ' int2str(j) ' and ' int2str(k) ' due to 

Earth effect \n clear x\n x = [\n'];

 fprintf(fid(j,k),str);

       end

   end   

end

for j = 1:ncond,

   for k = j:ncond,       

      dx  = xc(j) - xi(k);

 dy  = yc(j) - yi(k);

 bd(j,k)  = sqrt(dx^2 + dy^2);      

      cat  = yc(j) + yc(k);

 cossine  = cat/bd(j,k);

 ang(j,k) = acos(cossine);      

 end

end

%*****************************************************************************

% Calculus of terms b, c and d of Carson’s series

%*****************************************************************************

%signal change each 4 terms

n = 0;

for j = 1:nt/4,

   v = -v;

   for k = 1:4,

 n = n+1; 

 signal_b(n) = v;

   end

end

%Calculus of bi element
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b(1) = sqrt(2)/6;

b(2) = 1/16;

for j = 3:nt,

   b(j) = abs(b(j-2))*(1/(j*(j+2)))*signal_b(j);

end

%Calculus of ci element

c(2) = 1.3659315;

for j = 4:nt,

   c(j) = c(j-2) + (1/j) + (1/(j+2));

end

%Calculus of di element

d = (pi/4)*b;

%*****************************************************************************

for f = 1:length(freq),

   for j = 1:ncond,

      for k = j:ncond,         

         phi = ang(j,k);

 a = sqrt(mizero*2*pi*freq(f)/resist)*bd(j,k);         

         subrotine_carson_delta_r;

         subrotine_carson_delta_x;         

         fprintf(fid(j,k), '%30.20f  %30.20f\n',delta_r(j,k), delta_x(j,k));

  end

   end

end

for j = 1:ncond,

    for k = j:ncond,

 fprintf(fid(j,k), ']; \n');

 fprintf(fid(j,k), ['zsolo' int2str(j) '_' int2str(k) ' = x(:,1) + i*x(:,

2);']);

    end

end

fclose('all');

subrotine_carson_delta_r.m

if a < 5,

%'ok'

  r1 = b(1)*a*cos(phi);

  for nj = 1:(nt/4) -1,

    term1 = b(4*nj +1)*(a^(4*nj +1))*cos((4*nj + 1)*phi);

 r1 = term1 + r1;

 end

  parc1 = (c(2) - log(a))*(a^2)*cos(2*phi);

 parc2 = (phi*(a^2)*sin(2*phi));

 r2 = b(2)*(parc1 + parc2);      

  for nj = 1:(nt/4) -1,

    parc1 = (c(4*nj +2) - log(a))*(a^(4*nj +2))*cos((4*nj +2)*phi);

 parc2 = (phi*(a^(4*nj +2))*sin((4*nj +2)*phi));

 r2 = r2 + b(4*nj +2)*(parc1 + parc2);

 end
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  r3 = b(3)*(a^3)*cos(3*phi);         

  for nj = 1:(nt/4) -1,

    term3 = b(4*nj + 3)*(a^(4*nj + 3))*cos((4*nj + 3)*phi);

 r3 = r3 + term3;

  end

 r4 = d(4)*(a^4)*cos(4*phi);       

 for nj = 1:(nt/4) -1,

    term4 = d(4*nj + 4)*(a^(4*nj + 4))*cos((4*nj + 4)*phi);

 r4 = r4 + term4;

 end

  delta_r(j,k) = 4*2*pi*freq(f)*(1e-4)*((pi/8) - r1 + r2 + r3 - r4);

else

  t1 = cos(phi)/a;

  t2 = sqrt(2)*cos(2*phi)/(a^2);

 t3 = cos(3*phi)/(a^3);

  t4 = 3*cos(5*phi)/(a^5);

  t5 = 5*cos(7*phi)/(a^7);

  delta_r(j,k) = (4*2*pi*freq(f)*(1e-4)/sqrt(2))*(t1 -t2 + t3 +t4 +t5);

end

subrotine_carson_delta_r.m

%Carson’s series to calculate reactance of conductors due to Earth effect

if a < 5,

  x1 = b(1)*a*cos(phi);

  for nj = 1:(nt/4) -1,

    term1 = b(4*nj +1)*(a^(4*nj +1))*cos((4*nj + 1)*phi);

 x1 = term1 + x1;

  end

  x2 = d(2)*(a^2)*cos(2*phi);

  for nj = 1:(nt/4) -1,

    term2 = d(4*nj + 2)*(a^(4*nj + 2))*cos((4*nj + 2)*phi);

    x2 = x2 + term2;

  end

  x3 = b(3)*(a^3)*cos(3*phi);

  for nj = 1:(nt/4) -1,

    term3 = b(4*nj + 3)*(a^(4*nj + 3))*cos((4*nj + 3)*phi);

 x3 = x3 + term3;

  end

  term4 = (c(4) - log(a))*(a^4)*cos(4*phi) + (phi)*(a^4)*sin(4*phi);

  x4 = b(4)*term4;

  for nj = 1:(nt/4) -1,

    term4 = (c(4*nj + 4) - log(a))*(a^(4*nj + 4))*cos((4*nj + 4)*phi) + 

(phi)*(a^(4*nj + 4))*sin((4*nj + 4)*phi);

    x4 = x4 +  b(4*nj + 4)*term4;

  end         

 delta_x(j,k) = 4*2*pi*freq(f)*(1e-4)*(0.5*(0.6159315 - log(a)) + x1 - x2 + x3 

- x4);

else

  t1 = cos(phi)/a;

  t2 = sqrt(2)*cos(2*phi)/(a^2);

  t3 = cos(3*phi)/(a^3);

  t4 = 3*cos(5*phi)/(a^5);
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  t5 = 5*cos(7*phi)/(a^7);

  delta_x(j,k) = (4*2*pi*freq(f)*(1e-4)/sqrt(2))*(t1 - t3 + t4 + t5);

end

The above routines show the procedure to calculate the correct and proposed method values.
The first routine call subroutines capacitance and Zfull (which is the sum of impedances shown
before), thus for the correct value it uses the eigenvalue function (eig) and for the proposed
method it performs calculus as shown before.

The second routine gets all processed data and plot the information considering the relative
difference between the correct value and the proposed one as could be seen in Fig. 4.

7. Conclusion

The objective of this project was to analyze the application of modal transformation matrix
that is independent of frequency in analyses of three-phase lines considering the presence of
2 ground wires. Through analysis, both the limits of this approach and the possible errors in
relation to the exact values obtained from eigenvalues and eigenvectors.

The model proposed in this project uses approximate modal transformation, accomplished
through a transformation matrix independent of frequency. This matrix is obtained by linear
combination of elements of Clarke’s matrix. With application of this transformation matrix
independent of frequency, it obtains diagonal matrices for the cases of transposed three-phase
lines. For non-transposed three-phase lines, matrices of parameters are not diagonal with the
application of the transformation matrix mentioned. For those cases not implemented, the
proposal is to analyze the relative errors obtained by establishing circumstances in which one
can use a transformation matrix independent of frequency.

This chapter presented a method that can be used for analyzing electromagnetic transients
using real transformation matrices in three-phase systems considering the presence of ground
wires. This method was implemented using Matlab, and then the routines used to develop it
were presented and commented. The proposal analyzed used a real transformation matrix for
the entire frequency range considered in this case. For those elements related to the phases of
the considered system, the transformation matrix was composed of the elements of Clarke’s
matrix. In part related to the ground wires, the elements of the transformation matrix had to
establish a relationship with the elements of the phases considering the establishment of a
single homopolar reference in the mode domain. In the case of three-phase lines with the
presence of two ground wires, it was unable to get the full diagonalization of the matrices Z
and Y in the mode domain. The relative errors between the proposed routine and the correct
values of eigenvalues were shown by graphs plotted using Matlab. Thus, for a future work, a
correction routine will be used for non-transposed three-phase transmission line cases for the
transformation matrix presented.
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