
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

JPEG for Arabic Handwritten Character
Recognition: Add a Dimension of Application

Abdurazzag Ali Aburas and Salem Ali Rehiel
International Islamic University Malaysia

Electrical and Computer Engineering
Malaysia

1. Introduction

The ultimate objective of any Optical Character Recognition (OCR) system is to simulate the

human reading capabilities. That is why OCR systems are considered a branch of artificial

intelligence and a branch of computer vision as well [Sunji Mori (1999)] Character

recognition has received a lot of attention and success for Latin and Chinese based

languages, but this is not the case for Arabic and Arabic-like languages such as Urdu,

Persian, Jawi, Pishtu and others [Abdelmalek Z (2004)]. Researchers classify OCR problem

into two domains. One deals with the image of the character after it is input to the system

by, for instant, scanning in which is called Off-line recognition. The other has different input

way, where the writer writes directly to the system using, for example, light pen as a tool of

input. This is called On-line recognition.

The online problem is usually easier than the offline problem since more information is

available [Liana M & Venu G (2006)]. These two domains (offline & online) can be further

divided into two areas according to the character itself that is either handwritten or printed

character. Roughly, the OCR system based on three main stages: preprocessing, feature

extraction, and discrimination (called also, classifier, or recognition engine) Figure 1.1

depicts the block diagram of the typical OCR system. Traditional OCR systems are suffering

from two main problems, one comes from features extraction stage and the other comes

from classifier (recognition stage). Feature extraction stage is responsible for extracting

features from the image and passing them as global or local information to the next stage in

order to help the later taking decision and recognizing the character. Two challenges are

faced; if feature extractor extracts many features in order to offer enough information for

classifier, this means many computations as well as more complex algorithms are needed.

Thus, long processor time will be consumed. On the other hand, if few features are extracted

in order to speed up the process, insufficient information may be passed to classifier. The

second main problem that classifier is responsible for, is that most of classifiers are based on

Artificial Neural Networks (ANNs). However, to improve the intelligence of these ANNs,

huge iterations, complex computations, and learning algorithms are needed, which also lead

to consume the processor time. Therefore, if the recognition accuracy is improved, the

consumed time will increase and vice versa. O
p
e
n
 A

c
c
e
s
s
 D

a
ta

b
a
s
e
 w

w
w

.i
-t

e
c
h
o
n
lin

e
.c

o
m

Source: Advances in Robotics, Automation and Control, Book edited by: Jesús Arámburo and Antonio Ramírez Treviño,
ISBN 78-953-7619-16-9, pp. 472, October 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Robotics, Automation and Control

22

Features

extraction
Preprocessing Classification

Input

Character’s

image

Recognized

character

Figure 1.1 The typical OCR block diagram

To tackle these problems, a new OCR construction is proposed in this chapter, where neither
features extractor nor ANN is needed. The proposed construction relies on the image
compression technique (JPEG). Taking advantages of the compressor, that it compresses the
image by encoding only the main details and quantizes or truncates the remaining details
(redundancy) to zero. Then generates a unique vector (code) corresponding to the entire
image. This vector can be effectively used to recognize the character since it caries the main
details of the character’s image. The importance of the main details is that they are common
amongst the same character which is written by different writers.
The principle is illustrated and the algorithm is designed and tested in the related sections.
In the next section a brief review of the related work is described, Arabic character
characteristics are illustrated in section 3. In section 4, an overview of JPEG compression is
shown. In section 5, the concept and the proposed algorithm are presented. The
experimental results are shown and discussed in section 6. The conclusion of the chapter is
drawn in section 7.

2. Review of the related work

Beside the main goal of any OCR system which is simulating human’s reading capability,
the accuracy and time consuming are very important issues in this aspect. Based on the
latest survey which is published in May 2006 by Liana M. and Venu G. [Liana(2006)] all
covered papers have presented their proposals seeking high accuracy and less time. Each
one has treated the issue from different angle of view. Their work can be classified into three
main categories: preprocessing problems, features extraction problems, and recognition
(discrimination) problems. For preprocessing stage, where the image is often converted to a
more concise representation prior to recognition the most common methods are: A skeleton
which is a one-pixel thick representation showing the centrelines of the character.
Skeletonization is also called “thinning” facilitates shape classification and feature detection.
Many researchers have used skeletonization in their proposed preprocessing stages like for
instant [S. Mozaffari et al., (2005)], [S. Alma’adeed et al., (2002)], [S. Alma’adeed et al.,
(2004)]. Another method which is known as “contour” is the Freeman chain code of the
character’s border. In this method chain code stores the absolute position of the first pixel
and the relative positions of successive pixels along the character’s border. This methods has

www.intechopen.com

JPEG for Arabic Handwritten Character Recognition: Add a Dimension of Application

23

been practiced by many like [R. Safabakhsh & P. Adibi (2005)], [L. Souici-Meslati & M.
Sellami (2004)], [N. Farah et al., (2004)], however, skeletonization suffers from
mislocalization of feature and ambiguities particular to each thinning algorithm whereas the
contour approach avoids these problems since no shape information is lost. For the features
extraction stage, where the main role is played and mostly the accuracy of recognition
depends on the information passed from this stage to the classifier (recognizer). These
information can be structural features such as loops, branch-points, endpoints, and dots or
statistical which includes but is not limited to, pixel densities, histograms of chain code
directions, moments, and Fourier descriptors. Because of the importance of this stage many
approaches and techniques have been proposed. For instant, Clocksin in [W.F. Clocksin &
P.P.J. Fernando (2003)] applied moment functions to image and polar transform image.
Many like [A. Amin (2003)], [G. Olivier et al., (1996)], [I.S.I. Abuhaiba et al., (1998)], used
loops, dots, curves, relative locations, height, sizes of parts of characters, loop positions and
types, line positions and directions, and turning points. Where others used statistics from
moments of horizontal and vertical projection like[H. Al-Yousefi & S.S. Udpa (1992)].
Histogram of slopes along contour is used by [M. Dehghan et al., (2001)]. Fourier descriptors
have also been used in this stage by [R. Safabakhsh & P. Adibi (2005)]. Few used techniques
such as wavelet or fractal like [Amir M. et al., (2002)], [Saeed M. et al., (2004 a)] and [Saeed
M. et al., (2004 b)]. Artificial Neural Networks (ANNs) are the common seed of most if not
all classifiers “recognition or discrimination stage”. Many variations have been used in
order to overcome the main disadvantage of ANNs which is time consuming. Sherif and
Mostafa in [Sherif K. & Mostafa M (1996)], for example, presented a parallel design for
backpropagation Neural Networks approach in order to accelerate the computation process.
If we want to mention who did use ANNs in OCR, we may list all of them at least within
our concern field in this chapter “off-line Arabic handwriting character recognition”.

3. Arabic character characteristics

The Arabic alphabet contains basically 28 letters are written from write to left. Each letter
can take from two to five different shapes, thus, roughly the alphabet set can expand to 84
different shapes according to the position of the letter (beginning, middle, end or isolated) as
well as according to the style of writing (Nasekh, Roqa’a, Farisi and few others). This is one
reason makes Arabic recognition complex. The second reason is the similarities among the
different letters and the differences among the same latter. For example, letters Baa, Taa, and
Thaa (number 2,3 & 4 respectively in Arabic Alphabet)are three different letters, but they
have similar body shape, they only differ in number and position of dots (one, two or three
dots below or above the body of the character). Also Jeem, Hhaa & Khaa (number 5, 6, & 7
respectively in Arabic Alphabet) differ only in one dot. On the other hand the differences
among the same letter, for example, letter Haa (number 26 in the Arabic Alphabet) has three
completely different shapes through its positions. Officially, there is a set of rules to write
Arabic letters, but few follow. These rules may help OCR to extract features or segment text,
such as so called base-line rule. This rule states that there are three lines. Each letter or group
of letters has their lines where they should be lie.

4. JPEG compression background

The most important current standard for image compression is JPEG [W.B Pennebaker &
J.L. Mitchell (1993)]. In the JPEG baseline coding system, which is based on the discrete

www.intechopen.com

 Advances in Robotics, Automation and Control

24

cosine transform (DCT) and is adequate for most compression applications, the input and
output images are limited to 8 bits, while the quantized DCT coefficient values are
restricted to 11 bits. The human vision system has some specific limitations, which JPEG
takes advantage of to achieve high rates of compression.

8x8 block

extractor
DCT

Normalizer/

quantizer

Symbol

encoder

8x8 block

merger

Inverse

DCT
Denormalizer

Symbol

decoder

Input

image

Reconstructed

imageCompressed

image

Compressed
image

Unique

vector

MATLAB code

a

b

Figure 4.1 JPEG block diagram. (a) encoder and (b) decoder

As can be seen in the simplified block diagram of Figure 4.1, the compression itself is

performed in four sequential steps: 8x8 sub-image extraction, DCT computation,

quantization, and variable-length code assignment. Since we do not concern in this work

about the reconstruction part, the only part of compression is used (dashed box) and the

vector will be tapped immediately after quantization stage.

5. Proposed algorithm

The main concept of the proposed algorithm is based on the property that the JPEG

compressed image is a vector which can uniquely represent the input image to be correctly

reconstructed later at decompression stage. This property can be effectively used to

recognize the character’s image. A JPEG approximation MATLAB code is used to generate a

vector of coefficients that represent the important information (or main details for the

character’s image). In the next sections the experimental work is illustrated

5.1 Experiment’s tools and platform environment

The data consists of groups for the twenty eight Arabic alphabets, each group was written

by 48 writers from different ages and educational backgrounds. Figure 5.1 shows one

sample of one group “letter Sheen”.

An 40x40 8-bit pixel colour image was used as input image. For experimental reason, the

MATLAB version 7.2.0.232 (R2006a) has been used but in order to improve the speed of the

proposed algorithm a prototype of C++ code might be used. The Intel Pentium 4 CPU,

3.00GHz clock and 960MB RAM of the computer, has been used

www.intechopen.com

JPEG for Arabic Handwritten Character Recognition: Add a Dimension of Application

25

Figure 5.1 A group sample of letter Sheen

5.2 Proposed algorithm top-down flowchart

Figure 5.2 illustrates the sequence of the proposed algorithm’s steps. After the character’s
image is scanned in the system the JPEG approximation MATLAB code will produce a
vector. This vector is assumed to uniquely represent input image since it carries the
important details of that image. Figure 5.3 shows a sample for letter Sheen and letter Ain.
Then Euclidean distance between this vector and each vector in codebook will be measured.
Finally, the minimum distance points to the corresponding character, and then the character
is recognized.

5.3 Proposed system components

The two main components are the code of the compression stage (i.e., JPEG compressor in
the flowchart shown in Figure 5.2) and the codebook

Character’s

Image

JPEG compressor

CodebookEuclidean

Distance

Recognized Character

Figure 5.2 Flowchart diagram of the proposed algorithm

www.intechopen.com

 Advances in Robotics, Automation and Control

26

(A)Graph of a sample

JPEG-approx.

vector for letter

Sheen

(B) Graph of a sample

JPEG-approx.

vector for letter

Ain

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0
-2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0
-2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Figure 5.3 Sample from the produced JPEG-approximation vector; (A) for letter Sheen, (B)
for letter Ain

5.3.1 Compressor MATLAB code

The code listed in List 5.1 is to compress an image (x) using a JPEG approximation based on
8x8 DCT transforms, coefficient quantization, and Huffman symbol coding. Input “Quality”
determines the amount of information that is lost and compression achieved. Y is an
encoding structure containing fields:
[y.size] is the size of the image (x)
[y.numblocks] is the number of the 8x8 encoded blocks
[y.quality] is the quality factor (as percent)
[y.huffman] is the Huffman encoding structure, as returned by mat2huff (see List 8.1)

% This function appeared in [R.C. Gonzalez, R. E. Woods, & S.L.Eddins (2003)]
function y=im2jepg(x,quality)
global vctr % vctr is the vector obtained after the image is
 % JPEG compreseed and before Huffman takes place
error(nargchk(1,2,nargin)); % check input argument
if ndims(x) ~=2 | ~isreal(x)|~isnumeric(x)|~isa(x,'uint8')
 error('the input MUST BE a UINT8 image');
end
if nargin<2
 quality=1; % Default value for quality
end
m=[16 11 10 16 24 40 51 61
 12 12 14 19 26 58 60 55
 14 13 16 24 40 57 69 56
 14 17 22 29 51 87 80 62

www.intechopen.com

JPEG for Arabic Handwritten Character Recognition: Add a Dimension of Application

27

 18 22 37 56 68 109 103 77
 24 35 55 64 81 104 113 92
 49 64 78 87 103 121 120 101
 72 92 95 98 112 100 103 99] * quality;
order=[1 9 2 3 10 17 25 18 11 4 5 12 19 26 33 ...
 41 34 27 20 13 6 7 14 21 28 35 42 49 57 50 ...
 43 36 29 22 15 8 16 23 30 37 44 51 58 59 52 ...
 45 38 31 24 32 39 46 53 60 61 54 47 40 48 55 ...
 62 63 56 64];
 [xm,xn]=size(x)
 x=double(x)-128;
 t=dctmtx(8);
%Compute DCTs of 8x8 blocks and quantize the coefficients
 y=blkproc(x,[8 8], 'P1*x*P2',t,t');
 y=blkproc(y,[8 8],'round(x./P1)',m);
 y=im 2col(y,[8 8], 'distinct'); %Break 8x8 blocks into columns
 xb=size(y,2);
 y=y(order,:);
 eob=max(x(:))+1 %Create end-of-block symbol
 r=zeros(numel(y)+size(y,2),1);
 count=0;
 for j=1:xb
 i=max(find(y(:,j)));
 if isempty(i)
 i=0;
 end
 p=count+1;
 q=p+i;
 r(p:q)=[y(1:i,j);eob];
 count=count+i+1;
 end
 count
 r((count+1):end)=[]; % Delete unused portion of r
 y.size=uint16([xm xn]);
 y.numblocks= uint16(xb);
 y.quality = uint16(quality *100);
 y.huffman =mat2huff(r);
 vctr=r; % This is the produced vector for the proposed system

List 5.1 MATLAB code for the compressor stage

In accordance to the block diagram of Figure 4.1 (A) “dashed box”, function im2jpeg
processes distinct 8x8 sections or blocks of input image x one block at a time (rather than the
entire image at once). Two specialized block processing functions – blkproc and im2col –
were used to simplify the computations (more information available @ MATLAB
Mathworks® documentary). Function blkproc is used to facilitate both DCT computation
and coefficient denormalization and quantization, while im2col is used to simplify the
quantized coefficient reordering and zero run detection. The function im2jpeg listed in List
5.1 uses an alternate matrix formulation

www.intechopen.com

 Advances in Robotics, Automation and Control

28

 T = H F H (1)

Where F is an 8x8 block of image f(x,y), H is an 8x8 DCT transformation matrix generated by
dctmtx(8) (more details for MATLAB functions can be found in MATLAB® Documentary),
and T is the resulting DCT of F. note that the H is used to denote the transpose operation.
The statement y = blkproc(x,[8 8], 'P1*x*P2',h,h') computes the DCTs of image x in 8x8
blocks, using DCT transform matrix h and transpose h’ as parameters P1 and P2 of the DCT
matrix multiplication, P1*x*P2

5.3.2 Codebook building
The codebook can be built as following:
1. Apply the MATLAB code listed in List 5.1 to all available database (our database

contains 1968 written characters) to get 1968 vectors
2. Group the 1968 vectors (vctr) according to their represented character. For instance, the

group of letter Sheen has (in our database) 48 different Sheen that were written by 48
different writers, so it will have 48 vectors (vctr)

3. Average each group (MATLAB function “mean” was used in our experiments). By now
you should get one vector (vctr) for each group. These are the codes (vctrs) located in
the codebook.

6. Results and discussion

Once the codebook is installed the algorithm is ready for testing. Test should cover all
available data (1968 tests) to ensure that the code book can handle wide range of expected
character images and recognize them with minor errors. Two criteria may be used to
examine the system, accuracy and rate of recognition. The accuracy can be measured as the
percent of the correctly recognized characters to the tested characters. The rate of
recognition (or the speed) is the time system takes from the image inputs until it is
recognized. Since the process is a character’s shape-independent, the taken times will be
equal for all images. Adding a timer code can return the time spent by the system. In
addition to JPEG approximation MATLAB code the system needs to calculate Euclidean
distance and the minimum value (the shortest distance). The Euclidean distance (d) between
two vectors X and Y can be defined as :

 ∑ −= 2)(yxd (2)

Whose MATLAB function is

 D=dist(x, y) (3)

Table 6.1 shows the accuracy recognitions’ percentage for each character obtained by the
proposed algorithm. The overall average is also shown. The system was able to recognize
the characters during short time comparing with any existing system using ANN because it
saves time taken by features extractor as well as it uses codebook (lookup table) instead of
ANN. Misrecognition occurred to some letters is because of the nature of the handwritten
character itself neither the algorithm. Thus, there is no rejection state, the character must be
recognized in all situations. It is either correct recognized or incorrect recognized this
confusing in recognition may occur even to humans. To verify this conclusion the algorithm
was examined with printed characters and obtained better results.

www.intechopen.com

JPEG for Arabic Handwritten Character Recognition: Add a Dimension of Application

29

 character Accuracy % character Accuracy %

 Dthad 51.2500 ض Alif 90.8333 15 ا 1

 Ttaa 45.0000 ط Baa 32.5000 16 ب 2

 Dthaa 38.7500 ظ Taa 20.0000 17 ت 3

 Ain 28.3333 ع Thaa 80.4167 18 ث 4

 Ghen 32.5000 غ Jeem 86.6667 19 ج 5

 Faa 30.4167 ف Hhaa 100.0000 20 ح 6

 Qaf 22.0833 ق Khaa 70.0000 21 خ 7

 Kaf 45.0000 ك Dal 36.6667 22 د 8

 Lam 55.4167 ل Theal 28.3333 23 ذ 9

 Meem 71.0417 م Raa 23.1250 24 ر 10

 Noon 42.9167 ن Zaay 28.3333 25 ز 11

ـه Seen 73.1250 26 س 12 Haa 78.3333

 Waw 73.4583 و Sheen 90.8333 27 ش 13

 Yaa 20.6875 ى Sad 62.7083 28 ص 14

Average Accuracy 52.0975

Table 6.1 The recognition accuracy

Moreover, to test algorithm’s intelligence some experiments were done such as taking off
the dot from letter Khaa خ or Jeem ج the algorithm recognized them as Hhaa ح, and from
letter Dhad ض the algorithm recognized it as Sad ص. Also from Theal ذ and Zaay ز they
were recognized as Dal د and Raa ر respectively. Furthermore, when a character was turned
upside-down, the farthest Euclidian distance; instead of the shortest Euclidian distance,
pointed to that character

7. Conclusion

In this chapter we proposed a new structure of off line OCR system which is not based on
ANN, to avoid the time consuming problems. Moreover, it benefited from the JPEG image
compression property that is high compression ratio which produces minimum compressed
image size and every compressed image has a unique vector which helps to identify each
character. By using this unique vector, the proposed system has recognized the input
character after measuring the Euclidean distance between the vector and the vectors in the
codebook, then the shortest distance pointed to the corresponding letter. In addition to the
advantage of speed using codebook, it can be universal by means of character’s nature
(language, writing mode) as well as character’s image size. We used 40x40 8-pexil color
image as input image. The result was considerably high in terms of accuracy and
recognition rate. We used JPEG approximation MATLAB code . Future work could be done
using in advanced on line OCR system, also could be implemented by using fast
programming languages such as C++ and it is highly recommended to be used for different
Biometrics applications.

8. Appendix: MATLAB code

% This function appeared in [R.C. Gonzalez, R. E. Woods, & S.L.Eddins (2003)]
function y=mat2huff(x)

www.intechopen.com

 Advances in Robotics, Automation and Control

30

if ndims(x)~= 2|~isreal(x) | (~isnumeric(x) & ~islogical(x))
 error('X must be a 2-d real numeric or logical matrix');
end
% store the size of input x
y.size = uint32(size(x));
% find the range of x values and store its minimum value biased
% by +32768 as a UINT16
x=round(double(x));
xmin=min(x(:));
xmax=max(x(:));
pmin=double(int16(xmin));
pmin= uint16(pmin+32768); y.min=pmin;
%compute the input histogram between xmin and xmax with uint
%width bins, scale to UINT16, and store
x=x(:)';
h=histc(x,xmin:xmax);
if max(h) > 65535
 h=65535*h/max(h);
end
h=uint16(h); y.hist=h;
%code the input matrix and store the result.
map = huffman(double(h)); % Make a Huffman code map
hx=map(x(:)-xmin+1); % Map image
hx=char(hx)'; % Convert to char array
hx=hx(:)';
hx(hx==' ')=[]; % Remove the blanks
ysize=ceil(length(hx)/16); % Compute encoded size
hx16=repmat('0',1,ysize*16); % Pre-allocate modulo-16 vector
hx16(1:length(hx))=hx; % Make hx modulo-16 in length
hx16=reshape(hx16,16,ysize); % Reshape to 16-character words
hx16=hx16'-'0'; % Convert binary string to decimal
twos=pow2(15:-1:0);
y.code=uint16(sum(hx16.*twos(ones(ysize,1),:),2))';

List 8.1 MATLAB code (mat2huff)

9. Acknowledgements

All images of handwritten Arabic letters were provided by Prof. Zaki Kheder, University of
Jordan. Authors would like also to thank Dr Rafael C. Gonzales for giving permission to use
his MATLAB codes published in [R. C. Gonzalez et al (2003)]

10. References

A. Amin. (2003). Recognition of Hand-Printed Characters Based on Structural Description
and Inductive Logic Programming” Pattern Recognition Letters, vol. 24, pp. 3187-
3196.

www.intechopen.com

JPEG for Arabic Handwritten Character Recognition: Add a Dimension of Application

31

Abdelmalek Z. (2004). ORAN: A Basis for Arabic OCR system, Proceeding of 2004
International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong
Kong, pp. 703-706.

Amir M., Karim F. & Abolfazl T. (2002). Feature Extraction with Wavelet Transform for
Recognition of Isolated Handwritten Farsi/Arabic Characters and Numerals.
IEEE, DSP, pp. 923- 926.

G. Olivier, H. Miled, K. Romeo, and Y. Lecourtier. (1996). Segmentation and Coding of
Arabic Handwritten Words,” Proc. 13th Int’l Conf.Pattern Recognition, vol. 3, pp. 264-
268, 1996.

H. Al-Yousefi and S.S. Udpa. (1992). Recognition of Arabic Characters. IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.14,pp.853-857.

I.S.I. Abuhaiba, M.J.J. Holt, and S. Datta. (1998). Recognition of Off-Line Cursive
Handwriting. Computer Vision and Image Understanding, vol. 71, pp. 19-38.

L. Souici-Meslati and M. Sellami. (2004). A Hybrid Approach for Arabic Literal Amounts
Recognition. The Arabian J. Science and Eng.,vol. 29, pp. 177-194, 2004.

Liana M & Venu G. (2006). Offline Arabic Handwriting Recognition: A Survey. IEEE,
Transactions On Pattern Analysis and Machine Intelligence, vol. 28, No. 5, pp. 712-724.

M. Dehghan, K. Faez, M. Ahmadi, and M.Shridhar. (2001). Handwritten Farsi (Arabic) Word
Recognition: A Holistic Approach Using Discrete HMM. Pattern Recognition, vol.
34, pp. 1057- 1065.

N. Farah, L. Souici, L. Farah, and M. Sellami. (2004). Arabic Words Recognition With
Classifiers Combination: An Application to Literal Amounts. Proc. Artificial
Intelligence: Methodology, Systems and Applications, pp. 420-429.

R. C. Gonzalez, R. E. Woods, S. L. Eddins. (2003). Digital Image Processing Using MATLAB.
Prentice Hall; 1st edition, September 5, 2003

R. Safabakhsh and P. Adibi. (2005). Nastaaligh Handwritten Word Recognition Using a
Continuous-Density variable-Duration HMM. The Arabian J. Science and Eng., vol.
30, pp. 95-118.

S. Alma’adeed, C. Higgens, and D. Elliman. (2002). Recognition of Off-Line Handwritten
Arabic Words Using Hidden Markov Model Approach. Proc. 16th Int’l Conf. Pattern
Recognition, vol. 3, pp. 481-484.

S. Alma’adeed, C. Higgens, and D. Elliman. (2004). Off-Line Recognition of Handwritten
Arabic Words Using Multiple Hidden Markov Models. Knowledge-Based Systems,
vol. 17, pp. 75-79.

S. Mozaffari, K. Faez, and M. Ziaratban. (2005). Structural Decomposition and Statistical
Description of Farsi/Arabic Handwritten Numeric Characters. Proc. Int’lConf.
Document Analysis and Recognition,pp. 237- 241.

Saeed M., Karim F, & Hamidreza R. (2004 a). Feature Comparison between Fractal Codes
and Wavelet Transform in Handwritten Alphanumeric Recognition Using SVM
Classifier. IEEE, Proceedings of the 17th International Conference on Pattern Recognition
(ICPR’04).

Saeed M., Karim F., and Hamidreza R. (2004 b). Recognition of Isolated Handwritten
Farsi/Arabic Alphanumeric Using Fractal Codes. IEEE, 0-7803-83387- 7/04, pp. 104-
108.

Sherif K. and Mostafa M. (1996). A Parallel Design and Implementation for Backpropagation
Neural Network Using MIMD Architecture. IEEE, pp. 1361-1366.

www.intechopen.com

 Advances in Robotics, Automation and Control

32

Sunji Mori, H. Nishida & H. Yamada. (1999). Optical Character Recognition. John Wiley &
Sons

W.B Pennebaker and J.L. Mitchell. (1993). The JPEG Still Image Data Compression Standard.
New York: Van Nostrand Reinhold.

W.F. Clocksin and P.P.J. Fernando. (2003). Towards Automatic Transcription of Syriac
Handwriting. Proc.Int’l Conf. Image Analysis and Processing, pp. 664- 669.

www.intechopen.com

Advances in Robotics, Automation and Control

Edited by Jesus Aramburo and Antonio Ramirez Trevino

ISBN 978-953-7619-16-9

Hard cover, 472 pages

Publisher InTech

Published online 01, October, 2008

Published in print edition October, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book presents an excellent overview of the recent developments in the different areas of Robotics,

Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design;

it also introduces new mathematical tools and techniques devoted to improve the system modeling and

control. An important point is the use of rational agents and heuristic techniques to cope with the

computational complexity required for controlling complex systems. Through this book, we also find navigation

and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be

included in the next generation of productive systems developed by man.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Abdurazzag Ali Aburas and Salem Ali Rehiel (2008). JPEG for Arabic Handwritten Character Recognition: Add

a Dimension of Application, Advances in Robotics, Automation and Control, Jesus Aramburo and Antonio

Ramirez Trevino (Ed.), ISBN: 978-953-7619-16-9, InTech, Available from:

http://www.intechopen.com/books/advances_in_robotics_automation_and_control/jpeg_for_arabic_handwritte

n__character_recognition__add_a_dimension_of_application

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

