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1. Introduction

To date, the HLA system is the most complex and polymorphic human gene system identified.
Although the research history of HLA is not very long, we have made rapid advancements in
our understanding of the HLA system during this short time. Research in the HLA field
involves elucidating the structure and various biological functions of genes and proteins
associated with the HLA system; in addition, it can be directly applied in the study of basic
medicine, clinical medicine, anthroposociology, and other fields. HLA research has led to not
only revolutionary reforms in basic medical disciplines, such as biology, immunology,
heredity, genetics, and anthroposociology, but also unprecedented breakthroughs in many
clinical medicine specialties, including organ transplants, oncology, transfusion science,
forensic medicine, ecsomatics, genesiology, and vaccination, as well as in disease-related fields
of internal medicine. Therefore, it is critical to organize and process HLA study data using
appropriate statistical analysis.

Undoubtedly, the proper use of statistics can directly affect the scientific nature, truth, and
objectivity of HLA-related studies. Moreover, in addition to the principles and methods of
biomedical statistics commonly used in other life sciences, the statistical analysis of HLA study
data has its own specific requirements, which integrate the theories and methods of modern
bioinformatics. Bioinformatics is a significant research frontier in biomedical statistics and an
important field of biomedical research, expanding from macrocosm to microcosm. It integrates
numerous methods of biotechnology, computer technology, mathematics, and statistics and
is gradually becoming a major discipline yielding discoveries of the secrets of biology, thereby
playing an irreplaceable role in organizing and processing relative HLA study data. However,
these methods are not within the scope of basic statistical and analytical strategies used for
evaluating HLA study data. Thus, due to the limited space and contents of this book, this
Chapter will not discuss them. If appropriate, we will describe these methods in a specific
chapter of a new monograph about the progress of HLA basic research in the future.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Basic concepts of HLA genetic statistics

2.1. Genetics basis for statistical analysis of HLA data

Hardy-Weinberg law: The Hardy-Weinberg law is also referred to as the hereditary equilibri‐
um law or genetic equilibrium law. The basis of the Hardy-Weinberg law is as follows: in an
infinite, randomly mating group, when there is no migration, mutation, selection, or genetic
drift, the genotype frequency and gene frequency at a locus in the group will remain un‐
changed generation by generation, achieving a genetic equilibrium state, known as the Hardy-
Weinberg equilibrium. This law was proposed by G.H. Hardy, a British mathematician, and
W. Weinberg, a German medical scientist, in 1908.

The factors that influence the Hardy-Weinberg equilibrium are as follows:

1. Mutation: Under natural conditions, the rate of gene mutation caused by the reparation
effects of DNA replicase is 1×10-6–10-8/gamete/locus/generation in higher animals,
demonstrating that the frequency of natural mutation is very low.

2. Selection: a) Reproductive fitness: This is a measure of the ability of providing genes for
progeny, i.e., the relative capability of a certain genotype to survive and produce progeny
in comparison with other genotypes; in HLA studies, the normal fitness 1 is often used as
a reference. b) Heterozygote dominance: In some recessive hereditary diseases and under
certain conditions, the heterozygote may be more favorable to survival and progeny
reproduction in comparison to homozygous normal individuals.

3. Random genetic drift: The random fluctuation of gene frequency in a small or separated
group is referred to as genetic drift.

4. Migration: Gene frequencies may vary among individuals of different races and nation‐
alities. Migration makes different populations intermate, and foreign genes are mutually
introduced, which leads to gene flow and thus alters the gene frequency of the original
group.

5. Genetic heterogeneity: Individuals with consistent phenotypes or identical clinical
symptoms of a specific type of disease may have different genotypes. If they are not strictly
distinguished, the Hardy-Weinberg equilibrium will likely become complex.

6. Founder effect: This is a form of genetic drift and refers to a new group established by
minor individuals with some alleles of the parent group. The population size of this new
group may increase later; however, its gene variance is very small because there is no
mating or proliferation between this group and other biological groups. This situation
generally occurs in an isolated island or a self-enclosed, newly established village.

Generally, the circumstances meeting the criteria of ideal populations do not exist in practical
applications. However, the Hardy-Weinberg equilibrium is still the basis for studies of gene
distribution because it is impossible to model all of the factors influencing the investigated
group, and various factors can counteract each other (e.g., mutation and selection).

Now we will explain this concept with an example.
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Assume that there is an autosomal locus, in brief, alleles A and A’. If the frequencies of genes
A and A’ are pm and qm in males and pf and qf in females, then sperm frequencies with genes A
and A’ are pm and qm, respectively, and ovum frequencies with genes A and A’ are pf and qf,
respectively. Obviously, pm+qm=1 and pf+qf=1. If mating is completely random, the genotype
frequency of the next generation will be as shown in Table 1.

Sperm

A(pm) A’(qm)

Ovum
A(pf) AA(pm*pf) AA’(qm*pf)

A’(qm) AA’(pm*qf) A’A’(qm*qf)

Table 1. Genotype frequencies of progeny generated by random combinations of sperm and ovum

The investigated genes are in autosomes and are unrelated to genotypes; therefore, the
frequencies of the three genotypes are identical in male and female progeny. Assume that the
frequencies of the three genotypes AA, AA’, and A’A’ are P, Q, and R, respectively. From the
table above, we can obtain:

P = pm × pf

Q =  qm ×  pf +  pm ×  qf

R =  qm ×  qf

If we assume that the frequencies of genes A and A’ in progeny are p and q, respectively, then
p+q=1, p=P+1/2Q=pm* pf+1/2(qm* pf+ pm* qf)=1/2pm+1/2pf; similarly, q=1/2qm+1/2qf.

That is to say, when gene frequencies are different between males and females, they will be
averaged in the next generation and thus become equal in both sexes. Therefore, when mating
is completely random, and selection, mutation, and migration are absent, the gene frequencies
and the frequencies of the three genotypes will maintain unchanged generation by generation.
If the frequency series of genes A and A’ in gamete is expressed as:

(pA + qA’)

then the genotype frequency series in progeny is:

(p 2
AA

+ 2pqAA’ +  q 2
A’A’)

By generalizing the results above, if we assume that the frequencies of n alleles “A1, A2…An”
in a group are p1, p2 …pn, then (∑i=1

n pi =1), and it may be proved that the genotype frequency
series in progeny can be expressed as

(p1A1 +  p1A1 + … … + pnAn)2

This is the presentation formula of the Hardy-Weinberg equilibrium. From this formula, we
can see that the frequency of homozygotes AA or A’A’ is equal to the square of the gene
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frequency, while the heterozygote frequency is twice the product of the corresponding two
gene frequencies. We will explain this concept using ABO blood groups as an example. ABO
blood groups are known to be controlled by three alleles A, B, and O, found at the same locus.
We can assume that the gene frequencies are p, q, and r, respectively. According to the
presentation formula of the Hardy-Weinberg equilibrium, various genotype frequencies of
ABO blood groups are expressed with the expansion equation of (pA+pB+pO)2. See the
following table.

Phenotype Genotype Genotype frequency

A AA p2

AO 2pr

B BB q2

BO 2qr

O OO r2

AB AB 2pq

Table 2. Genotype frequency of ABO blood groups

2.2. Statistical basis of HLA data analysis

2.2.1. Population and sample

The study subjects of HLA statistical data analysis are mostly specific groups, such as indi‐
viduals with a disease, of the same race, or from the same region, etc. However, due to the
limitations of the study method, it is usually impossible to investigate every individual in the
group, and the features of the whole group can only be presumed by analyzing some indi‐
viduals of the group. Thus, two concepts should be defined, i.e., population and sample. The
core issue of statistical data analysis is how to deduce the population from a sample.

Population refers to all subjects in a study. The population can also be divided into the infinite
population and the limited population. For example, we want to investigate the distribution
of a certain HLA phenotype in Asian individuals; because it is difficult to estimate the total
number of Asian individuals, we can assume that this population is infinite. Alternatively, if
we want to study the recombination characteristics of the HLA system in a specific family, this
population is limited. In HLA data analysis, most populations are infinite. Every member
constituting the population is referred to as an individual.

A sample is a part of the population, and the number of individuals contained in a sample is
the sample size. The core issue of statistical data analysis is that we presume the characteristics
of a population from a sample. In order to accurately estimate the population parameters, an
appropriate sample size is the foundation of data analysis.

Many factors need to be considered when determining the sample size, such as study objec‐
tives, precision, degree of confidence, reliability of statistical testing, sampling method, basic
information of the population, study protocol, and study funds. Determination of the appro‐
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priate sample size fully reflects the repeatability rule in statistical analysis. Now, we will
discuss how to determine the sample size in several common cases of HLA statistical analysis.

1. Determination of sample size when estimating population parameters

For example, if we want to understand the distribution of HLA-B*27 in healthy residents of a
certain region and the frequency of the HLA-B*27 gene in patients with ankylosing arthritis,
how many individuals should be included in the sample? According to the principle of the
hypothesis test, if the sample size is too small, then the pre-existing differences cannot be
shown; thus, it is hard to obtain correct study results, and the conclusion lacks sufficient basis.
Conversely, an oversized sample can increase the practical difficulties of such analyses and
unnecessarily waste labor, materials, financial resources, and time; in addition, sample excess
may cause inadequate investment and decrease quality control during the scientific research
process, thereby introducing potential interference with the study results.

When determining the sample size, the first thing to do is to define the test level or significance
level “α”, i.e., specifying in advance the allowable probability (α) of false-positive errors in
this test (generally, α=0.05); additionally, you should decide whether a one-sided test or two-
sided test will be used. The smaller α is, the larger the sample size must be.

The test power should also be defined. The higher the test power is, the larger the sample size
must be. The test power is determined by the probability of type-II errors (β). In the design of
scientific studies, the test power should be not lower than 0.75; otherwise, it is possible that
the test results will not reflect true differences in the population, thereby yielding false-
negative results.

In this example, the population represents healthy residents in a certain region, and the
individuals investigated in the study constitute the sample. The frequency of gene HLA-B*27
in the population is presumed from the distribution proportion of HLA-B*27 in the sample. If
we assume that the distribution frequency of gene HLA-B*27 is P, then the minimal sample (n)
meeting the statistical conditions is calculated with the following formula:

When P is close to 0.5:

n = ( u1−α/2
δ )2

P(1−P)

When P is close to 0 or 1:

n =
57.3u1−α/2

sin−1(δ / P(1−P))
2

When P is unknown:

n =0.25( u1−α/2
δ )2

In the formulas above, u indicates “u distribution”, and δ indicates permissible error.

In this example, we want to investigate the frequency of HLA-B*27 in healthy residents of a
certain region. We assume that P in the previous investigation is 10%, the permissible error of

Statistic and Analytical Strategies for HLA Data
http://dx.doi.org/10.5772/57493

7



this investigation is 1%, and α=0.05 (two-sided), and we can attempt to estimate the number
of individuals required for the study. From the critical value form of the u distribution or the
u distribution function, we know that u(1-0.05/2)=1.96, and the calculated n is about 3457 cases.

2. Estimation of the sample size when comparing the ratio of two populations

When comparing a certain ratio between two populations, for example assessing the differ‐
ences in the morbidities of cardiovascular diseases between blue collar and white collar
workers in a city, HLA analysis often involves determining the distribution differences of a
certain gene in diseased and control groups. We can assume that at least two samples with
samples sizes of n1 and n2, respectively, will be sampled from each population, and the
estimated values of the population ratio obtained from the two samples are p1 and p2, respec‐
tively.

If n1 is equal to n2, then:

n1 =n2 =
u1−α/2 2p(1− p) + u1−β p1(1− p1) + p2(1− p2)

2

(p1− p2)2

If n1 is not equal to n2, then n2=k×n1:

n1 =
u1−α/2 2p(1− p)(1 + k ) / k + u1−β p1(1− p1) + p2(1− p2) / k 2

(p1− p2)2 ,

where u = u distribution, β = test power, and p = integrated rate of both groups.

2.2.2. Sampling: The process of obtaining a sample from the population

The purpose of sampling is to determine the characteristics of a population by studying a
sample (subset) of the population. For example, we want to determine the distribution of
genotype HLA-B*07 in a marrow bank from the gene frequencies of 1000 individuals in the
bank. This requires that the sample can maximally represent the population features. There‐
fore, every individual in the population should have the same chance to be sampled, and the
sample should be free from bias. For example, in a study investigating a certain HLA pheno‐
type and disease, we generally hope to determine the relationship between the disease and the
specific HLA phenotype. In order to do this, researchers must be careful not to deliberately
exclude cases without the specific HLA phenotype during sampling. The resulting sample
would then not be representative of the total population; this is a bias sample and would not
represent the total population profile. The sample we use should be a miniature, accurate
representation of the population. In order to achieve this goal, we should use the method of
random sampling to obtain samples.

Many randomization methods are commonly used. Initially, drawing lots, casting coins, and
casting lots were used; later, researchers adopted random number form, random arrangement
form, and the computer-based methods to generate random numbers. For sampling studies
in medical science and the grouping of trial subjects, random number form and random
arrangement form are relatively convenient. They both perform random sampling and work
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out a tool table according to the equal probability principle of mathematical statistics, and the
sampling results are better than those obtained by drawing lots or casting coins. Study subjects
should be randomly and uniformly assigned into each treatment group (all control and trial
groups), thereby preventing various objective factors from intervening with the study results.
The greater the number of study subjects, the higher the randomization level. However, it is
unnecessary to maximize the amount of study subjects; we should select an appropriate
randomization method depending on the trial features. Some common randomization
methods are detailed below.

1. Drawing lots: This method is easy to perform. For example, if we want to divide 12 animals
into two groups, we should number the animals with 1, 2, 3, …, 12 and prepare the 12 lots,
each having a number from 1 to 12. The lots are then mixed, and 6 lots are drawn as per
prior specifications; the animals with these 6 lots are assigned into Group 1, and the
remaining animals are assigned into Group 2.

2. Random number form: The random number form is carried out according to the principle
of random sampling. It can be used for both random assignment and random sampling.
All of the numbers in the form are mutually independent. Regardless of horizontal,
longitudinal, or slant order, the numbers can randomly occur; therefore, random numbers
can be obtained in order by starting from any direction and any location. Some examples
are given below.

a. Dividing into two groups: We planned to observe 20 patients with gastric ulcers (patient
No. 1–20); one group uses an effective drug ranitidine as a control, and the other group
uses a lily decoction. Twenty2-digit random numbers are generated by looking up the
random number form, and the random numbers are arranged from small to large,
allowing us to obtain the grouping order number “R”. If R is between 1 and 10, then the
patient is assigned into Group A; if R is between 11 and 20, then the patient is assigned
into Group B. The grouping results are presented in Table 3 (reference: TianheXu, Jiu
Wang. Design of Medical Experiments: Lecture 2 – Rules of randomization and blinding
method. Chinese Medical Journal, 2005, 40(8): p.54).

Patient No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Random number 93 22 53 64 39 7 10 63 76 35 87 3 4 79 88 8 13 85 51 34

Grouping order number (R) 20 7 12 14 10 3 5 13 15 9 18 1 2 16 19 4 6 17 11 8

Group B A B B A A A B B A B A A B B A A B B A

Table 3. Randomized grouping results of 20 patients

b. Randomized division of three or more groups: If we want to randomly divide 15 animals
into 3 groups, we should number the animals from 1 to 15.Then, fifteen 2-digit random
numbers are generated by looking up the random number form, and the random numbers
should be arranged from small to large. The order number “R” can then be obtained. If R
is between 1 and 5, then the animal is assigned into Group A. If R is between 6 and 10,
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then the animal is assigned to Group B. If R is between 11 and 15, then the animal is
assigned to Group C. The grouping results are presented in Table 4 (TianheXu, Jiu Wang.
Design of Medical Experiments: Lecture 2 – Rules of randomization and blinding method.
Chinese Medical Journal, 2005, 40(8): p.54).

Animal No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Random number 33 35 72 67 47 77 34 55 45 70 8 18 27 38 90

Grouping order number (R) 4 6 13 11 9 14 5 10 8 12 1 2 3 7 15

Group A B C C B C A B B C A A A B C

Table 4. Randomized grouping of 15 animals

2.3. Definitions of relative terms in HLA statistical data analysis

2.3.1. Definitions of HLA phenotype, haplotype, and genotype

HLA antigens have their own allele code on the chromosome; generally, the HLA antibody-
antigen specificity of an individual can be detected using available typing reagents and
committed cells. The antigen-specific type obtained by this method is referred to as the
phenotype. However, the antigen phenotype does not reflect the individual’s allele combina‐
tion pattern on the chromosome. The combination of HLA alleles on the chromosome is
referred to as the haplotype. If this combination expands from type-I and type-II alleles to type-
III genes or adjacent loci, it is often referred to as an extended haplotype. Two haplotypes form
the HLA genotype of an individual, i.e., the pattern of the HLA allele combination on two
chromosomes in the individual (Table 5). Generally, the haplotype and genotype can only be
determined by performing phenotype analysis of all the members of a family or by using
special experimental methods, such as monospermal analysis. The phenotype of every
individual has many potential combinations that depend on different genotypes. It is therefore
important to understand an individual’s haplotype and genotype in allogeneic organ trans‐
plant, transplantation of hematopoietic stem cells, and forensic identification.

Individual Individual 1 Individual 2 Individual 3

Typing results
A*11:01 A*24:01

B*07:02 B*27:04

A*11:01

B*07:02 B*27:04

A*11:01

B*27:04

Phenotype HLA-A11, A24, B7, B27 HLA-A11, B7, 27 HLA-A11, B27

Genotype
HLA-A*11:01,A*24:01

HLA-B*07:02, B*27:04

HLA-A*11:01, A*11:01

HLA-B*07:02, B*27:04

HLA-A*11:01, A*11:01

HLA-B*27:04, B*27:04

Haplotype

HLA-A*11:01, B*07:02

& HLA-A*24:01, B*27:04

or

HLA- A*11:01, B*27:04

& HLA-A*24:01, B*07:02

HLA- A*11:01, B*07:02

& HLA- A*11:01, B*27:04

HLA- A*11:01, B*27:04

& HLA- A*11:01, B*27:04

Table 5. Differences in HLA phenotypes, haplotypes, and genotypes
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2.3.2. Genetics features of HLA

1. Haplotype genetic mode: An HLA complex is a group of closely linked genes. Crossing-
over between homologous chromosomes rarely occurs in these alleles, which are linked
in the same chromosome, i.e., they form a haplotype. During reproduction, the HLA
haplotype is inherited from parent to progeny as a complete genetic unit. The progeny
can randomly obtain an HLA haplotype from both parents, thereby forming the progeny’s
new genotype. In the siblings of the same family, the probability of having two identical
haplotypes is 25%, the probability of having one identical haplotype is 50%, and the
probability of having two different haplotypes is 25%. Therefore, when seeking an
appropriate donor for allogeneic organ transplant or transplant of hematopoietic stem
cells in clinical practice, it is much easier to find the matched HLA antigen (the matched
HLA haplotype in particular) in the patient’s family than in nonsibling donors. However,
it should be noted that when the haplotype is inherited from parent to progeny, homol‐
ogous crossing-over between both haplotypes may occur (see details in the recombination
section).

2. Codominant inheritance: This means that antigens encoded by each pair of alleles are
expressed on the cell membrane, and there is no recessive gene. Allele rejection does not
exist. If the haplotypes of an individual’s two chromosomes are HLA-A*11:01, B*27:04
and HLA-A*24:01, B*07:02, then four different HLA molecules, A11, A24, B27, and B7,
will be expressed on the cytomembrane surface of the individual.

3. Linkage disequilibrium: Various HLA alleles at different loci occur in the group at a
specific frequency. In a group, if the frequencies of two alleles at different loci occurring
in the same chromosome are higher than the expected random frequencies, i.e.,the
haplotype frequency (observed data) is significantly higher or lower than theoretical value
(the product of allele frequencies at different loci), then this non-free combination
phenomenon is referred to as linkage disequilibrium. For example, A1 and B8 in Cauca‐
sians and A2 and B46 in southern Chinese individuals always occur together, and the
resulting haplotypes A1-B8 and A2-B46, respectively, exhibit linkage disequilibrium.

3. Estimation of HLA population genetic parameters

3.1. Genetic structure

Studies of the genetic parameters of the HLA system actually start from the loci “HLA-A” and
“HLA-B”; these two loci are often used as examples in HLA data analysis. To provide a simple
description, we will expand this model to an autosomal double-loci multiple-alleles genetic
model and use the following symbols.

Assume that there are two linkage loci (I and J) on a human chromosome; each locus has multiple
codominant alleles. The alleles at locus I are labeled as i1, i2, i3, in, and i0. “i0” represents the
undetected blank gene at locus I; therefore, the allele number at locus I is calculated as l = n + 1.
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Similarly, the alleles at locus J are expressed as j1, j2, j3,…jm and j0. “j0” represents the undetect‐
ed blank gene at locus J; therefore, the allele number at locus J is calculated as k = m + 1.

Because the alleles at loci I and J can randomly combine, the number of all the possible
haplotypes is l*k. These haplotypes can form various genotypes, calculated as lk(lk+1)/2.
Considering that the phenotype of genes in a homozygosis state is the same as the phenotype
of a gene hybridized with a blank gene, i.e., the phenotype of genotypes i2i2 and i2i0 is i2 (+), the
number of all possible phenotypes from any allele combination at locus I is [l+(l-1) × (l-2)/2];
similarly, the number of all possible phenotypes from any allele combination at locus J is [k+
(k-1) × (k-2)/2]. Thus, the number of all possible phenotypes at loci I and J is [l+(l-1) × (l-2)/2] ×
[k+(k-1) × (k-2)/2].

Loci I and J are linked, so the gene frequency of each locus correlates to the frequency of
haplotypes formed with genes at both loci; the antigen distribution in the population also
correlates at both loci. This relation can be fully shown in a 2 × 2 four-space form. Unless
specified otherwise, all the populations mentioned in this chapter are Mendelian populations
achieving Hardy-Weinberg equilibrium, i.e., this population undergoes completely random
mating, and there are no effects of selection, mutation, or migration.

The population distribution of antigens at both loci is presented in the table below. Symbols
in the table indicate that in a population with a total number of individuals “N”, “a” individuals
have antigens i and j, “b” individuals have antigen i but without antigen j, “c” individuals have
antigen j but without antigen i, and “d” individuals do not have antigens i and j. The marginal
values A, B, C, and D in this table are respectively equal to the sum of the corresponding two
spaces, and N is equal to the sum of four spaces.

Antigen j
Total

+ -

Antigen i
+ a b C=a+b

- c d D=c+d

Total A=a+c B=b+d N=a+b+c+d

Table 6. Population distribution of antigens i and j

Table 6 shows the relation between the frequencies of genes i and j and the haplotype fre‐
quency. The genes at loci I and J can form four haplotypes, ij, j0, i0, and 00; “0” represents the
blank gene. The frequencies of the four genes are expressed as s, t, u, and v respectively. The
frequency of gene i is expressed as “pi”, and the frequency sum of the other alleles at locus I is
expressed as “qi”; obviously, pi+qi=1. Similarly, the frequency of gene j and the frequency sum
of the other alleles at locus J are expressed as “pj” and “qj”, respectively. From the table below,
we can see that the frequency of each gene can be expressed as the frequency sum of the
corresponding haplotypes.
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Gene j
Total

+ -

Gene i
+ s u pi=s+u

- t v qi=t+v

Total pj=s+t qj=u+v 1

Table 7. Relation between the gene frequencies at loci I and J and the haplotype frequencies

3.2. Hardy-Weinberg equilibrium test

According to the gene or haplotype frequency, the expected values of all genotype frequencies
and phenotype frequencies can be obtained by combination as per the Hardy-Weinberg
equilibrium law; the coincidence degree of the expected value and the corresponding actual
observed value is referred to as the Hardy-Weinberg coincidence test. This test is mainly used
in two cases: 1) As a prompt for supporting or excluding a certain genetic mode. For example,
in an assumed Mendelian genetic system, the gene or haplotype frequency is calculated on the
basis of the assumed genetic mode, and recombination is then performed as per the Hardy-
Weinberg equilibrium law to obtain the expected value of the phenotype. If the expected value
coincides with the observed value of this phenotype, the genetic mode may be true; otherwise,
the genetic mode may be excluded. The conclusion obtained by application of the Hardy-
Weinberg equilibrium to test a genetic mode cannot be confirmatory because sometimes
increasing the assumed loci may give better coincidence results. 2) For reliability estimation
of the population survey data. For some genetic systems with well-established genetic modes,
such as the HLA system discussed in this book, if the population can perform fully random
mating, and there are no effects caused by selection, mutation, or migration, the population
distribution should be in good Hardy-Weinberg equilibrium. Poor coincidence of both values
shows that the population survey data are not reliable, which can help us identify the causes
of errors in aspects sampling, typing technology, etc.

3.2.1. Measuring method for determination of the coincidence degree

The coincidence degree of a phenotype’s expected value and observed value is generally
measured with χ2. The χ2 is calculated for every phenotype, and the values are added to obtain
the total χ2. The P value is calculated by looking up the form. The χ2 calculation formula is:

χ 2 =∑
(Expected  value - Observed  value)2

Expected  value

In the Hardy-Weinberg equilibrium test, the expected value of the phenotype is often less than
5. In this case, some authors will incorporate several phenotypes and calculate χ2 again when
the phenotype value is more than 5; however, this method has obvious subjective factors, and
the calculated χ2 value after incorporation will be reduced. In addition, due to variations of
incorporation methods, it is difficult to compare data between studies. Therefore, we think
that it is unnecessary to incorporate items with the phenotype expected values of less than 5,
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and the χ2 should be calculated as in other cases; although this may increase theχ2 value, the
resulting coincidence conclusion is more reliable.

Determination of the degrees of freedom in the χ2 test: Assume that a genetic system consists
of n alleles and Φ phenotypes, and the sample size is N. Because the gene frequencies p1+p2+
……pn=1, the number of parameters estimated from the sample is (n-1); in addition, a degree
of freedom is lost because the sample is too small. Therefore, the degrees of freedom remaining
for other tests are:

df =Φ− (n −1)−1=Φ−n

In the Hardy-Weinberg equilibrium, p ≥ 0.5 is generally used as the criterion to judge whether
there are significant differences between the expected and observed values.

3.2.2. Hardy-Weinberg equilibrium test for separated loci

In a genetic system containing one or more loci, the Hardy-Weinberg equilibrium test can be
performed for every locus. According to the Hardy-Weinberg equilibrium law, the expected
frequency of the homozygous genotype is the product of the corresponding two gene fre‐
quencies, and the expected frequency of the heterozygous genotype is twice the product of the
corresponding gene frequencies. The expected value of each phenotype is equal to the sum of
the expected values of the corresponding genotypes. After multiplying the phenotype
frequency by sample size “N” to calculate the expected value of the phenotype, the coincidence
degree between this expected value and the observed value of the phenotype can be tested.

The table (Table 8) below shows a Hardy-Weinberg coincidence test of the antigen phenotype
at locus HLA-C in Chinese individuals with the Han nationality. The expected values and
observed values coincide well, demonstrating that the distribution of these alleles at locus C
is in the Hardy-Weinberg equilibrium state. In this table, the HLA-Cw1 phenotype includes
two genotypes, “HLA-C*01/HLA-C*01” and “HLA-C*01/blank”; therefore, the expected value
of the phenotype is calculated as

106×(0.1442×  0.1442 + 0.1442 0.3793×2)=13.5779.

The phenotype expected value of HLA-Cw1, 2 is calculated as

106×0.1442×0.0143×2 =  0.4311.

3.2.3. Hardy-Weinberg equilibrium test of haplotypes

The haplotype Hardy-Weinberg equilibrium test can be performed in a multiple-loci, multiple-
alleles genetic system, and the allelic and linkage relationships of all the genes in the system
can also be tested. If not considering recombination, haplotypes and alleles also comply with
the same genetic rules; therefore, according to Hardy-Weinberg equilibrium, the expected
value of the phenotype containing two identical haplotypes should be equal to the square of
the haplotype frequency, and the expected value of the phenotype containing two different
haplotypes should be equal to twice the product of the frequencies of the two haplotypes. the
expected value of the phenotype can be calculated by sorting various haplotype frequencies
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into the corresponding phenotypes, and a coincidence test is then performed with the observed
value of the phenotype. Table 9 shows the calculation method for the expected value of
phenotype “HLA-A2, B15”, where A* is blank, representing the set of all alleles at locus HLA-
A except HLA-A*02, and B* is blank, representing the set of all alleles at locus HLA-B except
HLA-B*15. Haplotype frequencies would be calculated as HLA-A*02 B*15=0.0113; HLA-A*02
B*blank=0.0559; HLA-A*blank B*15=0.0098; HLA-A*blank B*blank=0.0053.

Haplotype combination mode Phenotype frequency

A*02 B*blank /A*blank B*15 2 × 0.0559 × 0.0098=0.001096

A*02 B*15 /A*blank B*blank 2 × 0.0113 × 0.0053=0.000120

A*02 B*15 /A*blank B*15 2 × 0.0113 × 0.0098=0.000221

A*02 B*15 /A*02 B*blank 2 × 0.0113 × 0.0059=0.000133

A*02 B*15 /A*02 B*15 0.0113 × 0.0113 × 0.000128

Table 9. The haplotype composition and expected frequency of phenotype “HLA-A2, B15”

Phenotype Genotype Observed value Expected value Gene frequency

HLA Cw1
HLA-C*01/HLA-C*01 or

HLA-C*01/blank
10 13.5779 HLA-C*01=0.1422

HLA Cw1,2 HLA-C*01/HLA-C*02 0 0.4311 HLA-C*02=0.0143

HLA Cw1,3 HLA-C*01/HLA-C*03 17 11.6275 HLA-C*03=0.3857

HLA Cw1,4 HLA-C*01/HLA-C*04 1 2.3665 HLA-C*04=0.0785

HLA Cw1,5 HLA-C*01/HLA-C*05 0 0 HLA-C*05=0

HLA Cw2
HLA-C*02/HLA-C*02 or

HLA-C*02/blank
1 1.1716 HLA-C*blank=0.3793

HLA Cw2,3 HLA-C*02/HLA-C*03 1 1.1693

HLA Cw2,4 HLA-C*02/HLA-C*04 1 0.2380 df=16-6=10

HLA Cw2,5 HLA-C*02/HLA-C*05 0 0 P>0.5

HLA Cw3
HLA-C*03/HLA-C*03 or

HLA-C*03/blank
43 46.788

HLA Cw3,4 HLA-C*03/HLA-C*04 5 6.4188

HLA Cw3,5 HLA-C*03/HLA-C*05 0 0

HLA Cw4
HLA-C*04/HLA-C*04 or

HLA-C*04/blank
9 6.9655

HLA Cw4,5 HLA-C*04/HLA-C*05 0 0

HLA Cw5
HLA-C*05/HLA-C*05 or

HLA-C*05/blank
0 0

Blank Blank/blank 18 15.2501

Total 106 106.004

Table 8. Hardy-Weinberg equilibrium test of the antigen phenotype at locus HLA-C in Chinese individuals with the
Han nationality
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3.3. Estimation of genetic parameters

Genetic parameters are estimated by assessing a quantity-limited sample, and thus, sampling
error must exist. The size of sampling error is expressed with the standard error σ, where σ is
equal to the root extraction of variance “V”.

3.4. Antigen frequency

Antigen frequency is defined as the ratio or percentage of individuals with the antigen
phenotype in the population. If N = total individuals and C = individuals with the antigen
phenotype i, then the frequency of antigen i is calculated as:

f i =C / N

The frequencies of antigens i and j can be easily obtained from the four-space form above:

f i =(a + b) / N =C / N

f j =(a + c) / N = A / N

and the standard error is calculated as: σfi = 1
N

CD
N = fi*(1 - fi)

N

When the antigen frequency fi is fixed, the greater the sample size N, the lower the standard
error.

3.5. Gene frequency

Assuming that i1 is an allele at locus I, the ratio or percentage of gene i1 in all the genes of this
locus is referred to as the gene or genotype frequency of i1. The frequency sum of all alleles at
a single locus is 1. Gene frequency can be obtained from family or population surveys.

3.5.1. Calculation of gene frequency by direct genotype count

If the genotyping results of N individuals are known, then the frequency of gene i in the
population can be obtained by a simple counting method. Assuming that this value is X, the
frequency of gene i is:

pi = X / 2N

Assume that there are two alleles at autosomal locus I, i1 and i2. For diploids, it is possible to
form three genotypes: i1i1, i1i2, and i2i2. After surveying 100 individuals, possible count results
are presented per genotype in the following table (Table 10). In total, there are 200 genes at
locus I: 36 individuals have i1i1, and the count of gene i1 is 72; 48 individuals have i1i2, and the
count of genes i1 and i2 is 48; 16 individuals have i2i2, and the count of gene i2 is 32. Therefore,
the gene frequency of i1 is calculated as (72+48)/200=0.6; similarly, the gene frequency of i2 is
calculated as (32+48)/200=0.4; the sum of both frequencies is 1.

In the HLA system, each locus usually has several alleles. If we want to calculate the frequency
of a certain allele at the locus, which can be expressed as i1, then the meaning of i2 is non-i1
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genes. For example, if we want to calculate the gene frequency of HLA-B*27 at locus HLA-B,
which is expressed as i1, then the frequency sum of all the alleles except HLA-B*27 is expressed
as i2.

Genotype i1i1 i1i2 i2i2

Observed individuals 36 48 16

Amount of gene i1 72 48 0

Amount of gene i2 0 48 32

Table 10. Distribution of genotype I in 100 random individuals

3.5.2. Estimation of gene frequency according to phenotype frequency

Currently, HLA typing technology is developing rapidly. With the popularization of high-
throughput sequencing technology, the calculation of HLA gene frequency can be mostly
completed using the counting method. However, due to limited technical conditions in some
population surveys, we can only obtain the corresponding phenotypes. Therefore, how should
be best analyze gene frequency? There are two main methods used in practical work: one is
the root method, which involved simple arithmetic and easy to perform; the other is the
maximal likelihood algorithm, which is highly efficient in estimating gene frequencies, but
required specialized computer software (see details in the next section). A description of how
to use the root method for estimation of gene frequency according to phenotype results is given
below.

If the frequency of the dominant gene i is pi, then the frequency sum of all the other alleles at
this locus is

qi =1− pi;

The relationship between the phenotype frequency and the corresponding genotype frequency
can be obtained according to the Hardy-Weinberg law (see the table below).

Phenotype
Phenotype

frequency
Corresponding genotype Frequency of corresponding genotype

I (+) fi i homozygote “ii”, i heterozygote “i-” pi
2+2piqi

I (-) 1-fi Non-i combination “-/-” qi
2

Table 11. Relationship between phenotype and genotype frequencies

We can deduce from the table

pi =1 - 1 - fi
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where pi is the gene frequency of gene I, and fi is the frequency of the phenotype or antigen
containing gene i. This formula is often used for estimation of HLA gene frequency, and its
form can be changed.

pi =1 - 1 - C / N

Or pi =1 - D / N

The definitions of C, D, and N in the formula are the same as above, and the standard error of
pi is:

σpi = 1
2

f i

N = N - D
2N  

It should be noted that when the pi value is small, it can be calculated by the following formula:

pi ≈
f i

2

3.6. Haplotype frequency

For double-loci multiple-allele genetic systems, each chromosome has two alleles belonging
to two different loci, and the combination of these different alleles forms variant haplotypes.
The ratio or percentage of each haplotype in the population is referred to as the frequency of
this haplotype. The sum of all haplotype frequencies is 1.

3.6.1. Calculation of haplotype frequency by direct haplotype count

When an individual’s haplotype is known, the haplotype frequency can be calculated by a
simple counting method, and the calculation method and technology are the same as those for
calculation of gene frequency. However, haplotypes can often only be obtained by family
surveys, and HLA haplotypes cannot be fully determined in some families. During data
analysis, rejection of these individuals may cause error. In this case, the relative haplotype
frequency can be estimated by referring to the population survey results. For example, in Table
12 below, whether the mother’s haplotype is A9-B13/A2-B13 or A9-B13/A2-B- cannot be fully
determined by family analysis. The haplotype can only be determined by estimation of relative
frequency. Assume we know that the frequency of haplotype A2-B13 is 0.0356 and that of
haplotype A2-B- is 0.0559 from population survey data. Because the mother can only have
these two haplotypes, the relative frequency of A2-B13 is 0.0356/(0.0356+ 0.0559)=0.39 and that
of A2-B- is 0.0559/(0.0356+ 0.0559)=0.61. During counting, these haplotypes should be counted
as 0.39 A2-B13 and 0.61 A2-B-, respectively.

In practical applications, due to advances in HLA genotyping methods, especially the wide‐
spread use of sequencing-based typing methods, high-resolution HLA results are compre‐
hensively adopted; when there is only one allele that is detected at the locus of a certain gene,
it is often considered a homozygous allele.
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Phenotype Haplotype combination mode

Father A10,11; B5,15 A11-B5 & A10-B15

Mother A2,9; B13

A9-B13 % A2-B13

or

A9-B13 % A2-B-

Child 1 A9,11; B5,13 A11-B5 & A9-B13

Child 2 A9,10; B13,15 A10-B15 & A9-B13

Child 3 A9,11; B5,13 A11-B5 & A9-B13

Table 12. A family’s HLA typing results

3.6.2. Estimation of haplotype frequency according to phenotype frequency

Assume that codominant genes i and j are located at two different loci, and other blank genes
at these two loci are expressed as 0. Therefore, it is possible to have four haplotypes (ij, j0, i0,
and 00) in the population, and the frequencies of these four haplotypes are expressed as s, t,
u, and v, respectively. The relationship between haplotype frequency and gene frequency is
illustrated in Table 7. The actual observed value of the distribution of antigen ij in the popu‐
lation is presented in Table 6.

The expected distribution of antigens i and j in the population can be expressed with the pattern
in Table 13, and the expected values in the table are obtained according to Hardy-Weinberg
equilibrium. Thus, we can expand (s+t+u+v)2 and then incorporate items with identical
phenotypes. N is the sample size.

Antigen j Total

+ -

Antigen i
+ (2s-s2+2tu)N (u2+2uv)N N[1-(t+v)]2

- (t2+2tv)N v2N N(t+v)2

Total N[1-(u+v)2] N(u+v)2 N

Table 13. Expected values related to the distribution of antigen ij

After changing the formula, the gene frequency is expressed as:

Frequency of haplotype ij, s = p j - qi + d / N

Frequency of haplotype j0, t =qi - d / N

Frequency of haplotype i0, u =q j - d / N

Frequency of haplotype 00, v = d / N
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If expressing as antigen frequency,

s = d / N + 1 - 1 - f j - 1 - f i

t = 1 - f i - d / N

u = 1 - f j - d / N

v = d / N

If expressing as phenotype amount,

s = d / N + 1 - B / N - D / N

t = D / N - d / N

u = B / N - d / N

v = d / N

The standard error for this equation can be calculated as:

σs = (1 - d / B)(1 - d / D) + s - s 2 / 2 / 2N

σt = (1 - d / D) - t 2 / 2 / 2N

σu = (1 - d / B) - u 2 / 2 / 2N

σv = 1
2 (1 - v2) / N

and the standard error of “s” can be expressed as:

σs = (1 - v / (t + v))(1 - v / (u + v)) + s - s 2 / 2 / 2= ( pi - s
1 - p j

)( p j - s
1 - pi

) + s - s 2 / 2 / 2

If a haplotype contains a blank gene, such as A1-B-, then the frequency is equal to the sum of
the gene frequency of A1 and the haplotype frequencies of the other alleles at locus B. The
haplotype frequency calculated according to the above calculation formula for phenotype data
may be a negative value sometimes; this is caused by inadequate sample size and sampling
error.

3.7. Linkage disequilibrium parameter

3.7.1. Linkage disequilibrium

Linkage disequilibrium is controlled by inconsistency of the observed and expected values
about the appearance of antigens at two linked loci in the same haplotype. Assuming that the
genes at two linked loci are i and j, the linkage disequilibrium parameter is defined as the
difference between the actual observed haplotype frequency of ij and the product of gene
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frequencies of i and j, which is expressed as Δ. If the observed frequency of haplotype ij is “s”,
then Δij=s-pipj.

When the genotypes and haplotypes of every individual in the population are known, the Δ
value can be easily obtained by the counting method. However, it is generally necessary to
estimate the Δ value from population survey data, i.e., Δij=s-pipj=sv-tu.

The following formulas are commonly used:

Δij = d / N - qiq j

Δij = d / N - (1 - f j)(1 - f i)

Δij = d / N - BD / N

The standard error of Δ can be calculated as:

σ(Δ)= α
4N 2 - Δ

N ( B + D

2 BD
- BD

N )
or as:

σ(Δ)= 1
4N + 1

4N 2 (B + D + d) - d

2N N
( D

B + B
D

) - BD
N 3 + BDd

N 2 N

Δ / σ(Δ) ≥ 1.96 is generally considered to be of significant linkage disequilibrium.

3.7.2. Relative Δ value

There is no comparability among absolute Δ values, so relative Δ values, i.e., “Δ(r)”, are
generally calculated for comparison.

Δij(r ) =Δij(r ) / Δij(Max)

From the calculation formula of

Δij = s − pi pj = sv − tu

we can see:

If tu=0, Δij has the maximal value; if t or u is 0, Δij is equal to pjqi or piqj, and the lower value
between pi and pj is used to calculate Δij(Max), i.e.:

pi<qj :Δij(Max) = pi(1− pj);

pi>qj:Δij(Max)=pj(1-pi);

If s = 0, the negative Δij has the maximal value, and

Δij(Max) = − pj pi.
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3.8. Genetic distance

In order to quantitatively describe the process of generating genetic differences between two
populations due to selection, mutation, migration, and random drift, the concept of genetic
distance has been introduced.genetic distance is a measure of the gene frequency differences
between populations, and it is used to describe interpopulation variance.

In 1977, Cavalli-Sforza and Bodmerthe defined the genetic distance (d) as:

d = 1 - ∑
i

pi1pi2

where pi1 and pi2 are the frequencies of gene i in populations 1 and 2, respectively.

4. Software analysis of HLA data

To conveniently implement haplotype frequency estimation, linkage disequilibrium, Hardy-
Weinberg equilibrium, pairwise genetic distances, etc., of HLA data, computer software is
usually required. There are severalprofessional statistical software and genetic analysis
software programs.This chapter will introduce some common problems encountered when
using software for HLA data analysis.

4.1. The processing method of HLA data analysis using Arlequin software

Arlequin is the French translation of “Arlecchino,” a famous Italian character from “Commedia
dell'Arte.” Arlecchinois a multi-faceted character, but he has the ability to switch among his
various character assets very easily according to his needs and necessities. This polymorphic
ability is symbolized by his colorful costume, from which the Arlequin icon was designed
(Figure 1).

The goal of Arlequin is to provide the average user in population genetics with a large set of
basic methods and statistical tests to extract information on genetic and demographic features
of a collection of population samples.

Arlequin can handle several types of data either in haplotypic or genotypic form.

• DNA sequences

• RFLP data

• Microsatellite data

• Standard data

• Allele frequency data

HLA data belong to “Standard data” in which the molecular basis of a polymorphism is not
defined specifically, or when different alleles are considered mutationally equidistant from
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each other. Therefore, standard data haplotypes are compared for their content at each locus,
without regarding the nature of the alleles, which can either be similar or different.

4.1.1. Structure of an Arlequin input file

4.1.1.1. Input data file

The first step for the analysis of your data isto prepare an input data file (project file) for
Arlequin. Because Arlequin is a versatile program that is able to analyze several data types, you
must include information about the property of your data together with the raw data into the
project file. A text editor can be used to define your data using reserved keywords.

Arlequin project files contain a description of the data properties as well as the raw data
themselves. The project file may also refer to one or more external data files.

Input files are structured into two main sections with additional subsections that must appear
in the following order (Figure 2):

1) Profile section (mandatory)

2) Data section (mandatory)

2a) Haplotype list (optional)

2b) Distance matrices (optional)

2c) Samples (mandatory)

2d) Genetic structure (optional)

Figure 1. Arlequin software
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2e) Mantel tests (optional)

4.1.1.2. Profile section

The data properties must be described in the profile section. The beginning of the profile section
is indicated by the keyword [Profile] (within brackets).

The user must specify the following parameters:

• The title of the current project (used to describe the current analysis)

◦ Notation: Title=

◦ Possible value: Any string of characters within double quotation marks

◦ Example: Title="An analysis of haplotype frequencies in two populations"

• The number of samples or populations present in the current project

◦ Notation: NbSamples =

◦ Example: NbSamples =3

◦ The type of data to be analyzed. Only one type of data isallowed per project.

◦ Notation: DataType =

◦ Possible values: DNA, RFLP, MICROSAT, STANDARD, and FREQUENCY

◦ Example: DataType = DNA

◦ The parameter of “STANDARD” is used here when dealing with HLA Data.

• Thetype of data that the project addresses

◦ Notation: GenotypicData =

◦ Possible values: 0 (haplotypic data), 1 (genotypic data)

◦ Example: GenotypicData = 0

This parameter is used to demonstrate whether haplotypic or genotypicdata are being used
for the HLA data analysis.Unless specified, the parameter used here is usually “1.”

Additionally, the user has the option to specify the following parameters:

• The character used to separate the alleles at different loci (the locus separator)

◦ Notation: LocusSeparator =

◦ Possible values: WHITESPACE, TAB, NONE, any character other than "#", or a character

◦ specifying missing data

◦ Example: LocusSeparator = TAB

◦ Default value: WHITESPACE
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• Thegametic phase of the genotype

◦ Notation: GameticPhase =

◦ Possible values: 0 (unknown gametic phase), 1 (known gametic phase)

◦ Example: GameticPhase = 1

◦ Default value: 1

◦ For general HLA data analysis, the parameter is “0.” If approaches such as pedigree
analysis are used, and the HLA haplotype of each individual sample are given, “1” is
used as the parameter.In the data input, one haplotype should be entered in the same
row.

• Indication of a recessive allele

◦ Notation: RecessiveData =

◦ Possible values: 0 (co-dominant data), 1 (recessive data)

◦ Example: RecessiveData =1

◦ Default value: 0

Because the HLA loci are codominant, “1” is used as the parameter when dealing with HLA
Data

• The code for the recessive allele

◦ Notation: RecessiveAllele =

◦ Possible values: Any string of characters within double quotation marks. This character
string can be used explicitly in the input file to indicate the occurrence of a recessive
homozygote at one orseveral loci.

◦ Example: RecessiveAllele ="xxx"

◦ Default value: "null"

• The character used to code for missing data

◦ Notation: MissingData =

◦ Possible values: A character used to specify the code for missing data, which can be

◦ entered between single or double quotes.

◦ Example: MissingData ='$'

◦ Default value: '?'

• The absolute or relative values of haplotype or phenotype frequencies

◦ Notation: Frequency =
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◦ Possible values: ABS (absolute values), REL (relative values: absolute values will be found
by multiplying the relative frequencies by the sample sizes)

◦ Example: Frequency = ABS

◦ Default value: ABS

• The number of significant digits for haplotype frequency outputs

◦ Notation: FrequencyThreshold =

◦ Possible values: A real number between 1e-2 and 1e-7

◦ Example: FrequencyThreshold = 0.00001

◦ Default value: 1e-5

• The convergence criterion for the EM algorithm used to estimate haplotype frequencies and
linkage disequilibrium from genotypic data

◦ Notation: EpsilonValue =

◦ Possible values: A real number between 1e-7 and 1e-12.

◦ Example: EpsilonValue = 1e-10

◦ Default value: 1e-7

4.1.1.3. Data section

In this obligatory subsection, the user defines the haplotypic or genotypic content of the
different samples to be analyzed. Each sample definition begins with the keyword Sample‐
Name and ends after the SampleData have been defined.

The user must specify the following parameters:

• A name for each sample

◦ Notation: SampleName =

◦ Possible values: Any string of characters within quotation marks

◦ Example: SampleName= "A first example of a sample name"

• Thesample size

◦ Notation: SampleSize =

◦ Possible values: Any integer value

◦ Example: SampleSize=732.

Note: For haplotypic data, the sample size is equal to the haploid sample size. For
genotypic data, the sample size should be equal to the number of diploid individuals
present in the sample.
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• The data

◦ Notation: SampleData =

◦ Possible values: A list of haplotypes or genotypes and their frequencies contained in the
sample, which is entered within braces.

◦ Example:

    SampleData={

                   MAN0102   1   A33  Cw10  B70    #pseudo-haplotypes

                                 A33  Cw10  B7801  #the second pseudo-haplotype

}

If the gametic phase is known, the pseudo-haplotypes are treated as truly defined haplotypes.
If the gametic phase is unknown, then only the allelic content of each locus is known.

4.1.1.4. Examples of input files

(1) Example of standard data (genotypic data, unknown gametic phase, recessive alleles)

In this example, the individual genotypes for 5 HLA loci are entered on two separate lines. In
this example, the gametic phase between loci is unknown, and the data contains a recessive
allele, which has been defined specifically as "xxx". Notably, with recessive data, all of the
single locus homozygotes are considered potential heterozygotes with a null allele.

[Profile]

Title="Genotypic Data, Phase Unknown, 5 HLA loci"

NbSamples=1

GenotypicData=1

DataType=STANDARD

LocusSeparator=WHITESPACE

MissingData='?'

GameticPhase=0

RecessiveData=1

RecessiveAllele="xxx"

[Data]

[[Samples]]

SampleName="Population 1" 

SampleSize=63

SampleData={

MAN0102  12 A33  Cw10  B70  DR1304  DQ0301

            A33  Cw10  B7801  DR1304  DQ0302

MAN0103  22 A33  Cw10  B70  DR1301  DQ0301

            A33  Cw10  B7801  DR1302  DQ0501

MAN0108  23 A23  Cw6  B35  DR1102  DQ0301
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            A29  Cw7  B57  DR1104  DQ0602

MAN0109  6  A30  Cw4  B35  DR0801  xxx

            A68  Cw4  B35  DR0801  xxx

    ｝

(2) Example of standard data (genotypic data, known gametic phase)

In this example, three samples that consist of standard multi-loci data with known gametic
phase have been defined. Therefore, the alleles listed on the same line constitute a haplotype
on a given chromosome. For example, the genotype G1 consists of the following two haplo‐
types: A23-Cw6 on one chromosome and A29-Cw7 on the second.

[Profile]

Title="An example of genotypic data with known gametic phase"

NbSamples=3

GenotypicData=1

GameticPhase=1

RecessiveData=0

DataType=STANDARD

LocusSeparator=WHITESPACE

[Data]

[[Samples]]

SampleName="standard_pop1"

SampleSize=20

SampleData= {

G1  4  A23  Cw6

       A29  Cw7

G2  5  A30  Cw4 

       A68  Cw4

｝

4.1.2. The calculation of Hardy-Weinberg equilibrium and genetic parameters

4.1.2.1. The calculation of Hardy-Weinberg equilibrium

Performing an exact test of Hardy-Weinberg equilibrium (HWE) tests the hypothesis that the
observed diploid genotypes are the product of a random union of gametes. This test is only
possible for genotypic data, and separate tests are carried out at each locus. This test is
analogous to Fisher’s exact test on a two-by-two contingency table but extended to a contin‐
gency table of arbitrary size. If the gametic phase is unknown, then the test is only possible
locus by locus. For data with a known gametic phase, the association at the haplotypic level
within individuals can be tested.

The settings for the Hardy-Weinberg equilibrium test are displayed in Figure 2, and the output
results are provided in Figure 3:
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Locus by locus: Perform a separate HWE test for each locus.

Whole haplotype: Perform an HWE test at the haplotype level (if the gametic phase is
available).

Locus by locus and whole haplotype: Perform both types of tests (if the gametic phase is
available)

Figure 2. Settings for the Hardy-Weinberg equilibrium test

4.1.2.2. The calculation of genetic parameters

(1) Allele frequency, genotype frequency, and haplotype frequency

When genotypic data with an unknown gametic phase is being processed, two methods can
be employed to infer haplotypes: the Expectation-Maximization (EM) algorithm (maximum-
likelihood (ML)), which is the most commonly used, or the ELB algorithm (Bayesian).

When the gametic phase is not known or when recessive alleles are present, the ML haplotype
frequencies are estimated from the observed data using an EM algorithm for multi-locus
genotypic data. The settings are provided in Figure 4, and the results are shown in Figure 5.1,
5.2, and 5.3.

EM algorithms can be performed at the following levels:

Haplotype level: Estimate haplotype frequencies for haplotypes defined by alleles at all loci.
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Locus level: Estimate allele frequencies for each locus.

Haplotype and locus levels: The previous two options are performed in succession.

Figure 4. Settings for EM algorithmwith unknown gametic phase

Figure 3. Results of the Hardy-Weinberg equilibrium test
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Figure 5. Results of allele frequency, genotype frequencyand haplotype frequency
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The settings when process in haplotypic data or genotypic (diploid) data with a known gametic
phase are displayed in Figure 6, and the contents of the output results are provided in Figures
5.1, 5.2, and 5.3. The following parameters can be used in the process.

Use original definition: Haplotypes are identified according to their original identifier
without considering that haplotype molecular definitions could be identical.

Infer from distance matrix: Similar haplotypes will be identified by computing a molecular
distance matrix between haplotypes.

Haplotype frequency estimation:

Estimate haplotype frequencies by mere counting: Estimate the ML haplotype frequencies
from the observed data using a mere gene counting procedure.

Estimate allele frequencies at all loci: Estimate allele frequencies at all loci separately.

Figure 6. Settings for Haplotype inferencewith a known gametic phase
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(2) The estimation of linkage disequilibrium parameters

The settings when processing data where the gametic phase is known are provided in Figure
7, and results of the calculation are shown in Figures 8.1 and 8.2.

Linkage disequilibrium between all pairs of loci: The user can test for the presence of a
significant association between pairs of loci based on an exact test of linkage disequilibrium.
The number of loci can be arbitrary, but if there are less than two polymorphic loci, this test is
not applicable. The test procedure is analogous to Fisher’s exact test on a two-by-two contin‐
gency table but extended to a contingency table of arbitrary size.

LD coefficients between pairs of alleles at different loci: Using this parameter, the D, D', and
r2 coefficients between all pairs can be calculated. D' is the most commonly used coefficientand
represents the above section mentioned relative Δ value.

Figure 7. Settings for linkage disequilibrium
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Figure 8. Results oflinkage disequilibrium

When the gametic phase is unknown, a different procedure for testing the significance of the
association between pairs of loci is used. The procedure is based on a likelihood ratio test,
where the likelihood of the sample evaluated under the hypothesis of no association between
loci (linkage equilibrium) is compared with the likelihood of the sample when association is
allowed. The significance of the observed likelihood ratio is found by computing the null
distribution of this ratio under the hypothesis of linkage equilibrium, using a permutation
procedure. The settings for this procedure are shown in Figure 9, and the output results are
provided in Figure 10.
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Figure 9. Settings for linkage disequilibrium with unkown phase

Figure 10. Results oflinkage disequilibrium with unkown phase

(3) The calculation of genetic distance

Arlequin provides several calculation methods to determine genetic distance, including
Reynolds’ distance, Slatkin’s linearized coefficient, Nei’s genetic distance, etc. Nei’s genetic
distance and the Cavalli-Sforza genetic distance calculating methods are the most commonly
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used and produce the most similar results. The settings for calculating genetic distance are
shown in Figure 11, and the output results are provided in Figure 12.

The calculation parameters are as follows:

Compute pairwise differences: Computes Nei’s average number of pairwise differences
within and between populations.

Figure 11. Settings for genetic distance

Figure 12. Results of genetic distance

HLA and Associated Important Diseases36



4.2. The requirements of data analysis on new-generation HLA typing techniques

HLA data analysis methods have always been closely related to the development of HLA
genotyping techniques. In the 1980s and 1990s, HLA serotyping was the preferred technique.
HLA phenotypes were determined first, and the square-root method was used commonly to
predict HLA genotype frequencies. Currently, HLA genotyping techniques are more preva‐
lent. Researchers tend to use the direct counting method to calculate the genotype. In previous
HLA haplotype analyses, the haplotype was predicted using group analysis, and then the
individual haplotype frequency was estimated. However, with the considerable cost decrease
of genotyping techniques, more pedigree data are available for studies, such as the Haplomap
program, where haplotypes can be studied directly using pedigree analysis. Moreover, with
the development of new-generation gene sequencing techniques and the optimization of large-
fragment high-throughput sequencing and fragment (reads) assembly algorithms, individual
haplotypes would be distinguished directly. These methods contribute greatly to simplifying
the data analyses process.

Currently, HLA data types are no longer limited to allele data. Other types of data, such as
SNPs, microsatellite markers, short sequence repeats, etc., could be used for conjoint analysis
with HLA data. This chapter has only introduced the application of Arlequin software in classic
HLA data analysis. However, many other outstanding tools, such as Phase are more commonly
used in studies of haplotype establishment using group genotype data and hot spot model
recombination. HapView is more prominent in graphic linkage disequilibrium (LD) and
haplotype studies, and the professional statistical software SAS is also used commonly for
HLA data analysis. With the development of HLA typing techniques and analysis techniques,
data processing methods will also become more in-depth and detailed.
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