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1. Introduction 

Fungicide resistance is a form of selection that describes a fungus’s ability to survive and 

reproduce in the presence of a fungicide1. Practical resistance (field resistance) results when 

the prevalence of fungicide resistant isolates reaches a critical threshold where disease 

control is no longer observed. The primary factors that select for fungicide resistance in an 

organism are: 

i. the biology of the pathogen,  

ii. the mechanism(s) of action of the fungicide,  

iii. the rate and frequency of fungicide application.  

It is important to note that most fungi show a broad range of sensitivities to the spectrum of 

different fungicides. For example, most fungicides for the control of Chromista (e.g., 

mefenoxam, fluopicolide, dimethomorph) do not control true fungi; some fungicides are 

specific for ascomycete (e.g., thiophanate-methyl) or basidiomycete fungi (flutolanil), and 

species within the same genus of fungi may respond differently to certain fungicides 

(Leroux et al. 2012). Additionally, different genotypes exist within a spectrum of sensitive to 

resistant (Albertini et al. 1999). The relationship between the frequency of fungicide 

application and resistance has been established (King and Griffin, 1985; Suzuki et al. 2010), 

and the role of rate or dose in this process is deserving of further study (Genet et al. 2006; 

van den Bosche et al. 2011).  

In 2006, the world market consumed approximately 520 million pounds of fungicide (Grube 

et al. 2011), a number that is expected to increase as the consumption of other pesticides 

declines (Troy, 2011). The discovery, development, and registration of a new pesticide 

comes at a cost (not including the capital costs or production). In 2006, this price was 

                                                                 
1 Due to issues of length, brevity and complexity, this review will only deal with fungicides that are for the control of 

true fungi, and not fungicides for the management of Chromista. 
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estimated to exceed $180 million (Whitford et al. 2006). With fewer fungicides available 

(particularly with new modes of action) and increasing consumption, risk of fungicide 

resistance is even greater, and failures will more profoundly impact cropping systems. All of 

these factors increase the need for rapid detection of fungicide resistance. Historically, the 

detection of fungicide resistance in the field has been difficult because disease control 

failures can be caused by factors other than resistance, including improper fungicide 

selection, improper timing, reduction of recommended rate, and erroneous sprayer 

calibration (Latin, 2011).  

Rarely, are molecular proofs of fungicide resistance ever fulfilled with plant pathogenic 

fungi, although many of the genes involved in fungicide resistance are studied in model 

systems to elucidate mechanisms (Zhang et al. 2002). Usually, resistant individuals are 

detected using bioassays (sensitivity tests or poison plate assays) and those resistant isolates 

may be correlated with molecular markers, many of which are based upon previous studies 

(Koernraadt et al. 1992; Albertini et al. 1999; Schnabel and Jones, 1991; Lesniak et al. 2011). In 

some instances, segregation analysis between crosses of sensitive and resistance phenotypes 

is often used to strengthen this correlation (Faretra and Pollastro 1993; Orth et al. 1995; Dyer 

et al., 2000); however, the ultimate mechanism of resistance is often lacking. Ultimately, the 

success of molecular detection is only useful if the expected genetic profile that is being 

screened correlates to the phenotype of resistance. Laboratory tests are required to 

determine the level of resistance in numerous suspect isolates of the pathogen before an 

assessment of the status of the orchard, plantation, vineyard or field can be determined. 

Traditionally, this meant direct-plating of single-spore isolates or mycelial plugs on medium 

amended with various concentrations of fungicides under specified growth conditions, and 

then determining inhibition of growth and/or spore germination (Koller et al. 1997). Many 

fungi, including the economically important downy mildews, powdery mildews, and rust, 

cannot be cultured. Other fungi, like Venturia inaequalis, grow slowly in culture, taking at 

least four weeks to obtain results, which, when achieved, are no longer useful for in-season 

disease management recommendations (Chapman et al. 2011, and others). Unfortunately, 

the phenotypic comparison of fungicide resistance can be inconsistent due to media choice 

(Cox et al. 2009; Rampersad 2011), choice of active ingredient (technical grade versus field 

fungicide), degradation of material, stability of resistance (Zhu et al. 2012; Cox et al. 2007), 

and genetic background of isolates. One method of circumventing this inconsistency is 

through the direct testing of genotype, which has resulted in an emerging paradigm of 

nucleic acid-based detection systems for the rapid identification of fungicide resistance. 

Molecular methods have the potential to provide a more rapid and reliable assessment of 

fungicide resistance, and there are many examples of the successful use of these methods in 

applied plant pathology (for a review, see Vincelli and Tisserat, 2008). Genetic testing of 

potentially resistant isolates can be performed directly from disease lesions, obviating the 

need for isolation, and subsequent growth of the fungus in vitro (Quello et al. 2009; others). 

Furthermore, molecular methods characterize genotype, not phenotypic expression under 

laboratory conditions. This is particularly important in the case of recalcitrant fungal 
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pathogens, like V. inaequalisor Mycosphaerella fijiensis and obligate pathogens such as 

Blumeria and Plasmopara. In the case of obligate pathogens in particular, genotype can be 

readily identified long before phenotype can be determined due to the slow growth of the 

organism.  

As a paradigm, nucleic acid-based detection systems offer rapid (within hours) and sensitive 

(to picograms) methods to detect the presence of alleles known to confer resistance. First 

used by Koenraadt et al. (1992b) to detect benomyl resistance in V. inaequalis, a variety of 

sensitive and sophisticated nucleic acid-based detection systems have since been developed 

and promoted to identify resistance.  

However, it is impossible to review the developing paradigm and not question how we 

implement these detection systems to provide the end-user, in this instance, the farmer, with 

the information necessary to make the appropriate management decision. The objective of 

this review is to briefly discuss the current fundamental approaches of nucleic acid based 

systems, and the currently known targets for the molecular detection of fungicide resistance. 

The paper concludes with the limitation of these techniques, the impact detection has had 

on the management of fungicide resistance, and future directions.  

2. Nucleic acid based detection techniques 

The molecular detection of fungicide resistance can be boiled down into three fundamental 

techniques: Hybridization, amplification, and sequencing. It is important to stress though, 

that most amplification technologies used today are also partly based on hybridization 

technology, and that all sequencing technology is based upon amplification. This article is 

not designed to review the preponderance of available techniques; for that information, the 

reader is encouraged to review the current literature, as new application technologies are 

produced every year. Instead, this article focuses on certain paradigms that have developed 

between laboratories for the detection of fungicide resistance, and to provide both structure 

and context as to where we are currently positioned.  

3. Hybridization 

Hybridization is one of the oldest molecular techniques: Sample DNA is denatured into 

single strands and allowed to anneal with a single-stranded probe labeled with some type of 

signal (radioactive isotopes, antibodies, enzymes or chemiluminescent compounds) to 

permit detection. Target DNA is bound to solid support (historically nitrocellulose then 

nylon, although today numerous substrates are available, including magnetic beads and 

polystyrene microspheres). Direct hybridization is the simplest assay for single nucleotide 

discrimination. For 15 to 20-base oligonucleotides, the approximate melting temperature for 

hybridization of a perfectly matched template compared to one with a single base mismatch 

can differ by several degrees (Ikuta et al. 1987)—a fact that can be exploited to create a 

variety of multiplex detection techniques, and discriminate within samples or between 

samples to a single nucleotide polymorphism. 
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4. Amplification  

Briefly, polymerase chain reaction (PCR) is the basis for all amplification-type reactions and 

involves the heating of the sample DNA for denaturing, followed by the annealing of the 

small, oligonucleotides that serve as primers for DNA polymerase, followed by the 

extension of the primers by a thermostable, DNA polymerase. Numerous books and 

laboratory manuals exist as references for PCR operation and optimization (Sambrook et al, 

1989). PCR based detection of fungicide resistance depends upon the ability of the reaction 

to selectively amplify specific regions of DNA, and usually require several post-PCR steps, 

including agarose gel electrophoresis for either confirmation of amplicon presence or size, or 

restriction enzyme analysis (Lesniak et al. 2011; Fontaine et al. 2009; Quello et al. 2009; and 

reviewed by Ma and Michailides 2005). The development of new fluorescent techniques 

(LAMP, etc) has led to novel assay formats that greatly simplify the protocols used for the 

detection of specific nucleic acid sequences (Nurmi et al 2000) and allow for the detection of 

a specific PCR product in a homogeneous solution without the need to open the 

amplification tubes after PCR or gel electrophoresis (Tomlinson et al. 2012). In these 

techniques and their variations, PCR products are monitored as they are generated during 

the course of the reaction via one of two ways:  By fluorescent or chemiluminescent dyes 

that bind to double-stranded DNA in a nonspecific fashion, or by fluorescence-labeled probes 

that bind to specific sequences. As a result, PCR amplification, amplicon detection and analysis 

are all achieved in a single reaction (Figure 1). If this is not enough detection power, multiple, 

sequence-specific probes with unique fluorescent reporters can be added to the reaction, 

allowing for additional, and simultaneous, determination of multiple products. Techniques 

such as this are ideally suited  for the detection of fungicide resistance, particularly if multiple 

alleles are involved. Furthermore, the results can be read in real time as the PCR product 

accumulates or at the end of the thermal cycling protocol directly from the amplification wells. 

Although many scientists believe that the choice between real time or “standard” PCR (and gel 

electrophoresis) depends on whether a quantitative or qualitative assay is desired (Nurmi et al. 

2000), the reality is that equipment expense and laboratory expertise limits most “applied” 

labs, resulting in a preponderance of scientifically dazzling techniques that may be used in a 

human clinical setting, or a plant pathology laboratory focused on basic science, but are rarely, 

if ever, subsequently tested using isolates from a field failure.  

5. Hybrid technologies 

Technologies such as Luminex Xmap powerfully combine hybridization and PCR to create a 

technique that is capable of discriminating and reporting up to 500 different reactions in a 

single reaction vessel in just a few seconds per sample (Dunbar 2005; Luminex 2011). The 

approximate melting temperature for 15 to 20-base oligonucleotides can differ by several 

degrees compared to a “perfectly matched” hybridization (Ikuta et al. 1987). By exploiting 

and combining this discriminatory hybridization temperature with PCR and microarrays 

systems and digital imaging, the user can screen up to several hundred thousands of DNA 

probes (either PCR products or synthetic oligonucleotides) per square centimeter of a solid 

matrix. Multiple readings per beadset provide built-in internal controls (Luminex 2011). For 
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medically relevant human pathogens, whole genome arrays have been developed; it is 

hardly a stretch to imagine development of arrays for a few dozen alleles for important 

genes, or even genes important for fungicide resistance. Although financially out of reach 

for most labs, few could envision the sequencing of entire genomes for a few thousand 

dollars as we do today, and it is hopefully only a matter of time before microarrays to detect 

fungicide resistance in agriculturally important crops are widely available. Today, and 

certainly for the next few years, both cost and accessibility also remain obstacles to the 

development of such arrays. Within reason and immediate reach is a 96-well format that 

provides fast, simple, and highly reproducible analyses of up to 96 PCR products—which 

still translates into an assortment of alleles for a variety of fungicide resistance genes. 

 

Figure 1. LAMP  technologies have been used to detect the presence of invasive species, like 

Phytophthora ramorum. The presence of LAMP product in positive reaction mixtures causes a color 

change from orange to yellow. In time, this technology could be used to detect some type of fungicide 

resistance in the field. Photo from Tomlinson et al. 2007. 

For most, smaller laboratories, a more realistic approach concerns the use of polymerase 

chain reaction coupled with cleaved amplified polymorphic sequences (PCR-CAPS). 

Restriction-fragment length polymorphisms due to small nucleotide polymorphisms (SNP) 

that co-segregate or are caused by fungicide resistance create or abolish restriction sites in 

PCR products, and can be exploited for detection of fungicide resistance through the careful 

selection of locus-specific oligonucleotide primers (Banno et al. 2008; Lesemann et al. 2007, 

Quello et al. 2009, Fontaine et al. 2009; others).  
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Assuming that a SNP is present and can be used, oligonucleotide primers with unique 

sequences are used to amplify a defined locus, followed by the use of a restriction enzyme 

that can discriminate between resistant and sensitive isolates (Figure 2). An alternative to 

PCR-CAPS is allele specific (AS-PCR), in which the mutation that confers resistance is used 

to design primers that specifically amplify the mutated allele, but not the wild-type one 

(Fontaine et al. 2009, Lesniak et al. 2011, others). This approach is more sensitive, and does 

not require a RFLP to detect resistance, but also does not detect any heteroplasmy or 

heterozygosity.  

 

Figure 2. Cleaved Amplified Polymorphic Sequences (CAPS) polymorphisms result from single 

nucleotide polymorphisms (SNPS), insertions or deletions (INDELS) that create or destroy restriction 

enzyme recognition sites in polymerase chain reaction (PCR) amplicons. For example, three isolates 

have different level of fungicide resistance to azoxystrobin: Sensitive S and Resistant R, and shifted 

(moderately resistant) from the isolate with mitochondrial heteroplasmy R/S. The amplified fragments 

from S and R contain two and three RE recognition sites, respectively, which is sufficient discrimination 

in the case of fungi, which are mostly haploid. (Sierotzki et al. 2000; Avenot and Michailides, 2010). This 

can also result in the identification of heteroplasmy in resistance (as seen in Fontaine et al., 2009) with 

restriction patterns that resemble those found in heterozygous diploids, or even incomplete digestions. 

When fractionated by agarose or acrylamide gel electrophoresis, the PCR products digested by the RE 

will give readily distinguishable patterns. Image from 

http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/TechCAPS.shtml   

6. DNA sequencing 

DNA sequencing, as performed for the last 30 years, has been done via the Sanger method 

and is the most commonly used sequencing technique available. Genome-sequencing efforts 

have resulted in technological advances in DNA sequencing and led to the improvement of 

longer sequencing length, done faster and with less expense. It has also permitted the rapid 

sequencing of isolates (in part or into total) that did not conform to expected genotype: 
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phenotype relationships (Lesniak et al. 2011; Quello et al. 2010;Leroux et al. 1999, and many 

others). 

Metzker (2009) provides an excellent review of ‘next generation sequencing’ technology, 

although the rapid pace of technology marches on. One of the newer sequencing 

technologies that have immediate application to the detection of fungicide resistance is 

pyrosequencing. DNA pyrosequencing, a method of sequencing by synthesis, was first 

introduced in 1996, and is faster and less expensive than traditional Sanger (dideoxy 

sequencing) DNA sequencing methodologies. Unlike the Sanger method, DNA 

pyrosequencing utilize a cascade of enzymatic reactions that yield detectable light 

proportional to incorporated nucleotides. As a result, pyrosequencing yields relatively short 

read lengths and limited amounts of sequence data per pathogen or microbe. However, with 

careful target selection and primer placement, DNA pyrosequencing has been used for 

genotyping, SNP detection, and identification of microbes (Petrosino et al. 2009). Most 

importantly, pyrosequencing has been used to detect point mutations in antimicrobial 

resistance genes as a means of molecular resistance testing, including antifungal resistance 

in clinically important fungi (Wiederhold et al. 2008).  

Pyrosequencing offers comparable accuracy to conventional DNA sequencing via the 

Sanger method, but provides greater opportunity for large sample numbers to be processed 

in parallel. The reaction is performed in real-time, obviating the need for electrophoresis, 

labeled nucleotides and primers. This is a technique that can be multiplexed, which 

economically enables rapid and accurate screening of a large number of samples, however, 

the prohibitive cost of equipment [$200,000-$1million per machine (Metzker 2009)], and 

technical expertise limits the use of this technology to research universities and industry.  

Finally, a review of the variety of molecular techniques used for diagnostic applications 

(and the constant development of ‘new’ techniques) demonstrates that no universal 

technique exists which is optimal for detection of nucleic acids. The choice of a particular 

technique is also dependent on the information required, the targets under consideration, 

and obviously, cost. Regardless of any given or “popular” technique, new techniques 

continue to be developed which involve  new approaches to amplification, hybridization, 

formats, imaging, and labels. 

7. Detection of fungicide resistance 

Regardless of the techniques used, the primary targets of fungicide activity (and thus 

fungicide resistance) have remained remarkably constant, and include mitosis and cell 

division; sterol biosynthesis; respiration; nucleic acid synthesis; and signal transduction. The 

widespread use of fungicides has also resulted in resistance in non-target genes, namely 

drug transporters, which are included in this review due to the role they play in fungicide 

resistance. The mechanisms of fungicide resistance that have been identified to date, 

include: i) a mutation in the target site of the antimicrobial agent that reduces the binding of 

the fungicide; ii) overproduction of the gene that is the target of the fungicide; (iii) reduced 

uptake of the antimicrobial agent, and (iv) active efflux of the fungicide. Other mechanisms 
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that may have roles in fungicide resistance (based upon host-pathogen interactions, or basic 

fungal and other microbe biology) include, the possible presence of an enzyme that 

inactivates the antimicrobial agent (e.g., pisatin-pisatin demethylase) or even mutations that 

result in the posttranscriptional or posttranslational modification of the target enzyme or 

other regulatory factor (Mann and Jenson, 2003), resulting in reduced binding of the 

antimicrobial. Resistance may also be caused by unrecognized mechanisms—a problem for 

scientists trying to understand mefenoxam, phosphorous acid, or dodine resistance, to name 

a few of the fungicides where resistance is known, but the primary mechanism of resistance 

has not yet been identified.  

7.1. Mitosis and cell division: Beta-tubulin assembly inhibitors 

Introduced in the 1960s, benzimidazoles were the first penetrant fungicides. Compared to 

their predecessors, the carbamates, dithiocarbarmates and pthalimides, they were a 

revolutionary change in fungicides, in that they were noncontact, and extremely effective at 

low rates. First introduced as benomyl (other MBC fungicides include thiabendazole, and 

thiophanate-methyl, to name a few), once inside the plant it is metabolized to form methyl 

benidimidazole carbamate (MBC), which inhibits fungal mitosis via binding to tubulin, the 

subunit of microtubules essential to forming the mitotic spindle (Ma and Michailides, 2005).  

As one of the first noncontact fungicides, it is not surprising that it was one of the first 

instances of resistance reported, to powdery mildew in greenhouse cucumbers (Schroeder et 

al. 1969). Since that time, resistance to the benzimidazole class of fungicides has been 

detected in many fungal species (Ma and Michelides, 2005). Resistance is correlated with 

point mutations in the β -tubulin gene, with different mutations resulting in altered amino 

acid changes at the benzimidazole-binding site. These various mutations at different codon 

sites also result in different levels of resistance: In V. inaequalis, mutations at codon 198 

resulted in medium resistance, at codon 200 it resulted in very high resistance (Koenraadt et 

al. 1992a), and at 240 it resulted in low resistance (Quello et al. 2010). In Monilinia, only low 

and high resistance to benomyl and thiophanate-methyl has been observed for field isolates 

of M. fructicola (Ma and Michelides, 2005). Sequence analysis of the β-tubulin gene showed 

that a single base pair mutation at codon 6 was responsible for the low resistance level to 

benzimidazoles in all the LR isolates of M. fructicola examined. Curiously, different 

substitutions at the same codon resulted in different degrees of resistance in the cereal 

eyespot fungus, Tapesia yallundae (Pseudocercosporella herpotrichoides): codon changes 

from Glu to Ala, Gly, Lys, and Gln at position 198 had 50% effective concentration (EC50) 

values to carbendazim ranging from 0.5 to more than 25 m g/ml in some isolates (Albertini 

et al., 1999), one of the first instances that demonstrates that differences in genetic 

background may play a role in expression of specific fungicide resistance genes.  

PCR-CAPS was used to determine thiophanate-methyl resistance Helminthosporium solani 

(Cunha and Rizzo, 2005). In V. inaequalis, a screen using this approach resulted in the 

identification of previously unidentified alleles conferring resistance in this fungus, and 

would have under-reported MBC resistance in 31% of the isolates (Quello et al. 2009) if PCR 
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alone was used for detection. Although the authors continue that a PCR-RFLP based assay 

may be the best option to screen for fungicide resistance from late-season scab lesions 

because V. inaequalis cannot be reliably cultured due to the application of protectant 

fungicides for other diseases and competing leaf microflora later in the season, it still leaves 

open the possibility of new alleles for resistance not being identified, and resistance being 

under-reported. At this point in time, most apple growers have abandoned thiophanate-

methyl for the control of apple scab in the field, although it continues to be used for other 

diseases. However, these studies are a cautionary tale regarding the sole use of a PCR-based 

detection to identify fungicide resistance, particularly when no in vitro screening is 

performed in parallel. This is particularly important as Kawchuk et al. (2002) found that 

mechanisms other than point mutations in the β -tubulin gene play a role in resistance on 

Gibberella pulicaris; work in the human pathogen, Candida albicans, identified the role of a multi-

drug resistant transporter (MDR) as responsible for benomyl resistance (Ben-Yaacov et al. 

1994). Later work by Sanglard et al. (1995), identified the BENR gene that confers resistance to β 

-tubulin as an ATP-binding cassette (ABC) transporter (Sanglard et al. 1999). 

Detection of specific types of benzimidazole resistance also identifies any negative cross-

resistance with diethofencarb (Leroux et al. 1999). The phenylcarbamate diethofencarb was 

introduced in 1984, and has a similar mode of action to the MBC class of fungicides. In fact, 

single base pair mutations in codons 198 and 200 result in a readily detectable, negative 

cross-resistance to diethofencarb (Faretra and Pollastro, 1991; Yarden and Katan, 1993). 

Negative cross-resistance (NCR) occurs when a novel allele that confers resistance to one 

toxic chemical results in hyper-sensitivity to another. This mutation therefore results in 

efficacy to benzimidazole-resistant isolates that possess that allele, but not wild-type 

isolates. In B. cinerea, high levels to resistance carbendazim and thiabendazole, conferred 

hypersensitivity to diethofencarb, even more so than the benzimidazole sensitive type 

(Leroux et al. 1999). Furthermore, this negative cross-resistance involved other N-

phenylcarbamates and other herbicides that target microtubule assembly (Leroux and 

Gredt, 1989). Negative cross-resistance was also observed between benzimidazoles and 

several aromatic hydrocarbon fungicides (e.g., dicloran, OPP (o-phenylphenol)); the 

phenomenon was first described in cereal eyespot fungus, T. yallundae, as well (Leroux and 

Gredt, 1989), but is more likely due to multi-drug resistance (MDR) mutations than a single 

structural gene.  

8. Signal transduction: Dicarboximides and phenylpyrroles 

The dicarboximides are composed of three major products: Iprodione, vinclozolin, and 

procymidone. The introduction of this class of fungicides coincided with the failure of the 

benzimidazoles in control of Botrytis in grape. As with benzimidizoles, resistance developed 

rapidly, due to a combination of concurrent applications of this class without rotation or 

tank-mixing with other products, coupled with a limited understanding of the process of 

fungicide resistance. This class of fungicides was primarily used for the control Botrytis, 

Alternaria, Sclerotinia diseases, although they are effective on other pathogens like 



 

Fungicides – Showcases of Integrated Plant Disease Management from Around the World 290 

Rhizoctonia spp., and Fusarium spp., as well. Not surprisingly, field resistance was first 

observed in B. cinerea (Pommer and Lorenz, 1982), M. fructicola (Ritchie, 1983), and Sclerotinia 

spp. (Detweiler et al., 1983). 

The molecular mechanisms of dicarboximide resistance involve two separate signal 

transduction pathways: The two-component histidine kinase and mitogen-activated protein 

(MAP) kinase cascades. Both MAP kinase and two-component histidine kinase are involved 

with regulating a diversity of cellular responses including differentiation, cell division, gene 

expression, heat shock and osmotic response. The first molecular mechanism of 

dicarboximide resistance was identified in U. maydis (Orth et al. 1994), and is one of the few 

instances where the gene was found to be sufficient for conferring resistance to a wild-type 

isolate via transformation (Orth et al. 1995). The gene, termed adr1, is a 1,218 bp open 

reading frame with homology to serine/threonine protein kinases that was later identified as 

the major cAMP dependent protein kinase; However, later studies by Ramesh et al. (2001), 

found that the adr1-encoded enzyme was not the direct target of vinclozolin inhibition but 

that mutants with a defect in the regulatory subunit of cAMP-dependent protein kinase 

(ubc1) exhibited resistance to vinclozolin and the aromatic hydrocarbon, chloroneb. Mutants 

with a defect in the ubc1 gene also display interesting changes in morphology, including a 

reduction in multiple budding in the presence of the fungicides and osmotic sensitivity, 

suggesting a connection between fungicide mode of action and morphogenesis and glycerol 

accumulation (which would also be related to osmotic, turgor regulation and osmotic 

shock), which may explain why this mutation has never been reported from field isolates 

with fungicide resistance phenotypes (Ramesh et al. 2001).  

Studies by Leroux et al. (1999) in B. cinerea in French vineyards found strains resistant to 

multi-site fungicides, and multiple combinations of fungicide resistant phenotypes in 

vineyards in France: two types of benzimidazole (e.g. carbendazim, thiabendazole)-resistant 

strains were detected, with negative cross-resistance towards the n-phenylcarbamates 

(diethofencarb, diphenylamine and dicloran) found only in one type of resistant strain, as 

previously stated above. However, this study also found that most dicarboximide (e.g. 

iprodione, procymidone, vinclozolin)-resistant strains were also weakly resistant to 

aromatic hydrocarbon fungicides (e.g. chloroneb, dicloran, tolclofos-methyl) but remained 

sensitive to phenylpyrroles (e.g. fenpiclonil, fludioxonil). However, in some other 

dicarboximide-resistant strains, resistance was observed either as being restricted to 

dicarboximides or as extending weakly to phenylpyrroles. Dicarboximides, phenylpyrroles 

and the aromatic hydrocarbon fungicides (e.g. chloroneb (PCNB), dicloran, quintozene, 

tolclofos-methyl) are not chemically related, but obvious structural similarities can be observed 

(Fig. 3), and in laboratory studies, mutants of B. fuckeliana and several other fungi, have a 

positive cross-resistance between them (Leroux et al., 1992; Faretra and Pollastro, 1993). 

Similar observations regarding the complexity of resistance profiles were observed in B. 

cinerea in the laboratory (Oshima et al. 2002). Dicarboximide- resistant laboratory mutants 

selected for high resistance to dicarboximides, aromatic hydrocarbons, and phenylpyrroles, 

were hypersensitive to osmotic stress, and were rarely obtained from the field (Leroux et al.,  
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Figure 3. Comparison of members of the aromatic hydrocarbons (PCNB), phenylpyrrole fungicide 

fludioxonil and three dicarboximides, iprodione, vinclozolin and procymidone. All five structures share 

low molecular weight and aromatic hydrocarbon moieties that may explain why some cross resistance 

between these distinct classes of fungicides is observed. 

1992; Faretra and Pollastro, 1993; Lyr, 1995). Instead, only moderately resistant, osmotically-

stable strains were recovered from the field, and these field isolates of B. cinerea showed 

cross-resistance to aromatic hydrocarbons but not to phenylpyrroles (Oshima et al. 2002). In 

fact, phenylpyrrole- resistant mutants from B. cinerea that were first isolated and 

characterized in the laboratory were due to mutations at a different locus (Daf1—later 

identified as BcOS1) locus responsible for dicarboximide resistance (Faretra and Pollastro, 

1993) and were only later found in the field, and were only described as “weakly 

resistant”(Leroux et al. 1999). These early studies found that mutations of the DafI gene are 

highly variable, with at least five classes of alleles identified and associated with differing 

levels of resistance (sensitive (S), low resistance (LR), moderate resistance (MR) or highly-

resistant (HR)) to dicarboximides and phenylpyrroles, respectively: S/S, LR/S, HR/LR, 

HR/MR, HR/HR (Faretra and Pollastro, 1993). Field resistance was due to a single amino 

acid substitution, from Ile to Ser, which occurred at codon 365 in BcOS1 gene (Oshima et al. 

2002), and at two other amino acid substitutions at the same position, 365 Ile to Asn or Arg, 

in field-resistant isolates. Work done by Oshima et al. (2006) used PCR-CAPS, exploiting a 

Taq1 restriction site that results in the mutant allele that confers resistance. Approximately 

41 percent of the isolates had the type I mutation that could be detected by PCR-CAPS. 

However, other types of dicarboximide resistance were detected and sequence analysis of 

these mutants classified them into type II isolates that have three amino acid substitutions 
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within BcOS1p (V368F, Q369H, and T447S) or type III isolates that have two amino acid 

substitutions within BcOS1p (Q369P and N373S) (Oshima et al. 2006). 

Many fungi accumulate glycerol to increase osmotic pressure to contend with osmotic 

stress, or for pathogenicity. Studies done by Fujimura et al., (2000) in Neurospora crassa with 

osmotic-sensitive (os) mutants with os-1, os-2, os-4 and os-5 mutations (similar to the 

previously described resistances in B. cinerea) showed cross-resistance to dicarboximides 

(iprodione and vinclozolin), but also the aromatic hydrocarbons (PCNB). All of the os 

mutants except for some os-1 mutant alleles were resistant to the phenylpyrrole fungicide, 

fludioxonil (Ochiai et al. 2002). Previous work by Grindle (1982) found other osmotic 

sensitive mutants (cut) that were not resistant to these fungicides, suggesting that osmotic 

sensitivity alone was not the mechanism. However, the original report by Grindle (1982) on 

dicarboximide resistance in N. crassa shows that multiple alleles that segregate 

independently were involved with this os-1 resistance, suggesting that other genes may still 

be involved in resistance (See section on MDR for further information). Work by Zhang et al. 

(2002), identified a mitogen activated protein (MAP) kinase (HOG1) that was resistant to 

phenylpyrrole, and were caused by a frame shift from tryptophan to a stop codon or 

nonsense point mutations, allowing for a screenable genotype. However, field resistance of 

phenylpyrrole has not been reported to date, and the complex phenotype involved in this 

type of resistance makes it biologically interesting, but hardly defining in the diagnosis of 

fungicide resistance. 

8.1. Sterol biosynthesis inhibitors 

This group of fungicides exploits one of, if not the most important mode of action for both 

antifungals in medicine and fungicides in agriculture. The sterol biosynthesis inhibitor (SBI) 

fungicides inhibit a precursor of ergosterol that is essential for the development of the 

fungal membrane (Brent, 1995). These fungicides can be classified based upon their target 

sites in sterol biosynthesis, with inhibitors of squalene epoxidase (e.g. naftifine, terbinafine, 

tolnaftate) primarily used for mammalian mycoses. The remaining classes are used for 

agricultural purposes. ‘Amines’ or ‘morpholines’ (e.g. fenpropidine, piperalin, spiroxamine, 

tridemorph) act as inhibitors of sterol ∆14-reductase or ∆8->∆7-isomerase, and target the 

products from the Erg24 and Erg2 genes; hydroxyanilides, represented by fenhexamid, act 

on the 3-keto reductase, C4- demethylation encoded by Erg27 and is specifically used for the 

control of Botrytis; inhibitors of sterol 14-alpha-demethylase (e.g. bitertanol, triazoles, 

imidazoles, in addition to imazalil, prochloraz, pyrifenox, triadimenol) are referred to as 

demethylase inhibitors (DMIs) and primarily target Erg 11/CYP51(FRAC 2012), and are 

effective against a wide variety of phytopathogens.  

DMIs were introduced for plant disease management in the 1970s, with resistance and 

reduced efficacy reported soon after (Brent, 1995). Due to both agricultural and medical 

importance, the molecular mechanisms of SBI resistance have been highly studied and 

include (i) mutations in 14-alpha-demethylase (CYP51) structural gene (Delye et al. 1997; 

1998; Canas-Gutierrez et al. 2009, and others) and ERG27 gene (Albertini and Leroux, 2004; 



 
Detection of Fungicide Resistance 293 

Fraaije et al. 2007); (ii) overexpression of the CYP51 gene, leading to increased production of 

the target enzyme (Cools et al. 2012; Luo et al. 2008; Ma et al. 2006; Schnabel and Jones, 2001; 

Hamamoto et al. 2000), and (iii) overexpression of the ATP-binding cassette (ABC) 

transporters (Zwiers et al. 2002; Hamamoto et al. 2000; Nakaune et al. 1998) which will be 

addressed later in the chapter. Several studies, at least in the laboratory, have demonstrated 

that multiple mechanisms contribute to the variation in azole susceptibility (Stergiopoulis et 

al. 2003; Zwiers et al. 2002), and genetic analysis of progeny from a cross between M. 

graminicola isolates with differing sensitivities to DMI fungicides revealed a continuous 

distribution of resistance, leading the researchers to conclude on the polygenic nature of 

inheritance (Stergiopoulis et al. 2003), leaving open the possibility that other mechanisms 

may also be at work. 

Mutations in the 14-alpha-demethylase (ERG11/CYP51) structural gene that lead to a 

decreased affinity of the target protein to DMI fungicides have been found in powdery 

mildews (Delye et al. 1998; Delye et al. 1997); two Mycosphaerella pathogens—M. graminicola 

(Leroux et al. 2007; Cools et al. 2006) and the black Sigatoka fungus, M. fijiensis, (Gutierrez-

Canas et al. 2009); and the cereal leaf spot pathogens--Tapesia spp. (Albertini et al. 2003), 

although work by Wood et al. (2001) did not find a correlation between resistance and the 

presence of known mutations in the structural gene. In M. graminola, reduced sensitivity to 

DMIs could be correlated with an alteration in the CYP51 structural gene at codons 459–461 

(Cools et al. 2005; Leroux et al. 2007). In the barley powdery mildew, Blumeria graminis, 

amino acid substitutions in CYP51 at Y136F and K147Q, were detected and a very high level 

of resistance was associated with the allele containing K147Q mutation. Sequence analysis of 

the CYP51 gene from the progeny of a cross between DMI-sensitive and resistant isolates 

demonstrated co-segregation between the mutant alleles and resistance. Consistent with 

other studies, the authors found that genetic analysis of resistance to the triadimenol 

indicates that mutation of the CYP51 gene is not the only mechanism of resistance operating 

in B. graminis: Two moderately resistant isolates had no mutations in the CYP51 gene, and 

had identical sequences to that of the sensitive isolate, suggesting that resistance in at least 

these two isolates must be due to a mutation in an entirely different gene (Wyand and 

Brown 2005). The identification of isolates such as these should serve as adequate warning 

that molecular detection of mutations in the structural gene may result in an under-

reporting of actual incidence of resistance in the field. Finally, mutations in the structural 

gene of ERG27 in B. cinerea were detected and correlated with mutations (F412I and R496H) 

that would lead to a decreased affinity of fungicide to the target protein, but it was regarded 

as low resistance or moderate resistance (Albertini and Leroux, 2004; Leroux et al. 2007).  

A second mechanism of DMI resistance involves overexpression of the CYP51 gene. 

Overexpression of CYP51 has been associated with DMI resistance in P. digitatum 

(Hamamoto et al. 2000), V. inaequalis (Schnabel and Jones, 2001), M. fructicola (Luo et al. 

2008), B. jaapii (Ma et al. 2006), C. beticola (Bolton et al. 2012) and M. graminicola (Cools et al. 

2012). In all but C. beticola, overexpression of CYP51 has been associated with insertions in 

the upstream promoter: A tandemly repeated 126 bp fragment was found in the promoter of 

P. digitatum; Ma et al. (2006) identified a variably-sized retrotransposon-like element in B. 
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jaapi; Schnabel and Jones (2001) reported on a 533-bp fragment found in some (but not all) 

DMI-resistant isolates of V. inaequalis; and Luo et al. (2008) found a 65 bp ‘Mona’ element in 

the promoter of CYP51 in M. fructicola that was strongly linked to the DMI resistance 

phenotype. However, subsequent work by Villani and Cox (2011), found that the ‘Mona’ 

element was present in a range of sensitivities, and not always present in resistant isolates, 

suggesting it is just one of many possible mechanisms of resistance. Overexpression of 

ERG27 has not yet been identified as having a role in resistance to the hydroxyanilide class 

(FRAC 17) of fungicides.  

A final mechanism of DMI resistance relies upon “drug” transporters, trans-membrane 

proteins located in the plasma membranes that utilize ATP to translocate compounds, 

including toxins, out of the cell, preventing the accumulation of these products to toxic 

levels, as has been shown for B. cinerea (Leroux and Walker 2011; Leroux et al. 2002), M. 

graminicola (Cools et al. 2007) Penicillium digitatum (Nakaune et al. 1998), and possibly V. 

inaequalis (Koller and Wilcox, 2001). This will be discussed in a later section. Some moderate 

resistance to DMI fungicides in B. cinerea (termed Ani R2 and Ani R3 by Leroux et al., 1999) 

was previously described (Stehmann and DeWaard, 1995; Del Sorbo et al. 1997). Later 

studies found isolates with this similar phenotype demonstrated pronounced increases in 

expression level of the ABC transporter genes (Kretschmer et al. 2009) and not the structural 

genes themselves, creating greater complexity and less certainty in molecular detection of 

fungicide resistance. As a result, DMI resistance in numerous species has been identified, 

but only 10 species have had the molecular mechanism of resistance studied in depth. 

Although fungicide resistance baselines and thresholds have been previously established in 

many agricultural systems, the primary stumbling block to the rapid identification of DMI 

fungicide resistance for most fungi is the nature of its quantitative resistance (Koller et al. 

1991; Schnabel and Jones, 2001; Ishii, 2009). Unlike qualitative resistance that results from a 

single gene mutation (e.g., TUB1R conferring resistance to benzimidazoles), DMI resistance 

is much more complex. Due to the diversity of mechanisms of DMI resistance in different 

pathogens (and even the variation in response by pathogens to different DMIs), it is unlikely 

that any one approach, with the exception of phenotypic analysis, will provide the screening 

necessary to detect fungicide resistance in a diversity of pathosystems, although the 

possibility exists that the monogenic DMI resistance observed in powdery mildew 

pathogens may be amenable to this approach. In V. inaequalis, examples of DMI resistance to 

date are associated with an insertion in the promoter of the CYP51 target gene that has been 

correlated with overexpression of CYP51. The authors of this work (Schnabel and Jones, 

2001) noted that the correlation was strong, but not absolute. Subsequent work to utilize this 

knowledge to develop PCR based screening of resistant isolates can detect the insertion, but 

not predict the degree of resistance that results (Villani, Cox and Beckerman, in preparation 

and Fig 4.), preventing the rapid detection of resistance in the field. Ultimately, in vitro 

screening of radial growth in the presence of fungicide (a 4-week process after a single-spore 

isolate in pure culture is established) is needed to determine the degree of resistance in the 

isolate, and at least in V. inaequalis, it does not seem to be currently possible to rapidly detect 

fungicide resistance in the field, and certainly not to a degree that thresholds could be 
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identified to warn when a fungicide failure will occur. This situation is quite different than 

the detection of fungicides that impact respiration.  

 

Figure 4. Amplicon size is not related to overexpression of CYP51 in V. inaequalis. Primers flanking the 

promoter region of CYP51 were used to examine the relationship between the 533 bp insertion, size of 

promoter insertion and resistance to myclobutanil. Many of the highly resistant isolates did not yield an 

amplicon, and those that did did not have the expected 533 bp insertion. From Villani, Cox, and 

Beckerman, unpublished.  

8.2. The respiration inhibitors 

Respiration is an obvious target for fungicides. The oldest synthetic fungicides still used 

today include dithiocarbamates (e.g., mancozeb, thiram, ziram) or pthalimide derivatives 

(e.g., captan), and prevent plant disease by the inhibition of spore germination, and 

subsequent germ tube elongation. To date, there have been no credible reports of resistance 

to these older fungicides. Furthermore, older synthetic multi-site fungicides are effective 

against a wide range of plant-pathogenic fungi, and Chromista. These multisite inhibitors 

are thio-reactant with those enzymes involved in respiration (Lyr, 1977); Other inhibitors of 

respiration work at complex II at the succinate dehydrogenase gene, complex III, the 

cytochrome bc1 (ubiquinol oxidase) at Qo site, or cytochrome bc1 (ubiquinol oxidase) at Qo 

site; or complex V, where fungicides like fluazinam actually work by uncoupling electron 

transport and ADP phosphorylation of oxidative phosphorylation (FRAC, 2009). As such, 

this target is essential to aerobic eukaryotes, and present targets for disruption. The most 

recently developed group of respiration inhibitors targets mitochondrial complex III (the 

cytochrome bc1 complex), and targets the outer quinol-oxidizing pocket (Qo site), and 

complex II at the succinate dehydrogenase gene, which are the areas of most recent and 

active interest due to their recent release, the nature of fungicide resistance, and potential 

ease of detection.  

8.3. QoI—The quinone outside inhibitors 

Fungicides that inhibit the cytochrome bc1 enzyme complex (complex III) at the Qo site (Qo 

inhibitors, QoIs) were first introduced to the market in 1996. QoI resistance has now been 
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reported in more than 20 pathogens, including the Chromista pathogens, downy mildew of 

grape and cucurbit, and the fungi that cause apple scab, wheat powdery mildew and 

Septoria leaf blotch, to name but a few. Resistance has been reported in all major continents: 

Asia, Australia, Europe, North America, and South America (FRAC 2006; Wilson and Wicks, 

2011). The majority of the reports associate the point mutation that results in a change from 

glutamate to alanine at codon 143 (G143A), followed by the resistance that results from a 

transition from phenylalanine to leucine at position 129 (F129L) (Pasche et al. 2005; Sierotzki 

et al. 2007); the least commonly observed mutation involves a change from glycine to 

arginine at position 137 (G137R) (Sierotzki et al. 2007), and of course, unknown causes 

(Lesniak et al. 2011). These easily identified mutations allow for the rapid detection for the 

potential of QoI-resistance in a variety of fungi and Chromista. Furthermore, the degree of 

resistance is much greater in the G143A allele (referred to as high resistance), and has 

consistently resulted in a significant reduction in disease control, as compared to resistance 

associated by F129L and G137R which results in more moderate or partial resistance, and 

some degree of control at highest rates of fungicide. 

A more recent study by Lesniak et al. (2011), found ninety-eight percent of QoI-

resistant/shifted isolates screened in Michigan were associated with G143A, consistent with 

other phytopathogenic fungi resistant to this class of fungicides (Ishii et al., 2009; Ishii et al. 

2007). Sequencing the entire CYTb gene of resistant isolates that did not test positive for the 

G143A transition did not reveal other mutations in the structural gene, and suggests other 

mechanisms of resistance (Lesniak et al. 2011). Regardless of mutation present, functional 

analysis of the CYTb gene is confounded by the complexity of fungal mitochondrial genetics. 

A fungal cell may contain >250 mitochondria and an equal copy number of mitochondrial 

DNA (mtDNA). A single point mutation in a single copy of a mitochondrial gene could be 

detected, but would not be sufficient to confer resistance, unless multiple copies of the allele 

were present. However, over time, and under increasing selection pressure, the allele would 

become fixed, and the mitochondria population within the cell would shift from sensitive to 

increasing numbers bearing the resistant allele, shifting resistance and becoming 

homeoplasmic over time. Thus, early detection of this shift could preserve long-term 

fungicide efficacy by short-term use of alternative fungicides until the allele shifts back to 

the previous susceptible homeoplasmy. Early detection with quantitative PCR (qPCR) could 

theoretically enable the assessment of either gene expression or copy number that is 

required for QoI resistance to develop the field. However, to date, this work has not been 

attempted with any field populations. Preliminary data suggests that the populations in 

New York, Michigan and Indiana are not yet fixed (heteroplasmy). Laboratory analysis of 

QoI resistant mutants found that serial passage of trifloxystrobin-resistant isolates in vitro 

has resulted in a loss of resistance In V. inaequalis,after only two rounds of propagation 

allowed a significant majority of mitochondria containing the wild-type cytochrome b 

sequence to re-appear; This was not observed when the fungus was under continued 

selection (Zheng et al. 2000) . The conversion of heteroplasmic isolates back to wild type in 

the absence of QoI fungicides would imply that a G143A mutation is associated with a 

fitness penalty, although Chapman et al. (2011) found no evidence of this. Early detection of 

the resistance allele, and prophylactic switching to non-QoI fungicides may return the 
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population of a sensitive level in a few years, and with proper monitoring, allow the use of 

QoI fungicides for scab control again. Similar findings on M. graminicola also showed 

conversion of mutated CytB gene back to wild-type in M. graminicola (Fraaije et al. 2002).  

With QoI resistance, allele specific PCR (Lesniak et al. 2011 and many others) and restriction 

enzyme digest of the amplicon (Leroux et al. 2010 and many others) are both used to detect 

the presence of the allele. Work by Fontaine et al. (2009), found that the QoI-resistant allele 

could not be detected after Fnu4HI digestion for R : S ratios equal to or below 1:9 (w:w). 

When compared to the allele specific (AS-PCR) PCR, the mutant allele was amplified at the 

lowest ratio tested, much more sensitive than the PCR-CAPS technique (Fontaine et al. 

2009). However, work by Chapman et al. (2011), suggests an over prediction of resistance, if 

the mutation is used as a sole criterion for identification of resistance. Similar finding 

occurred in work done by Lesemann et al. (2007), on apple powdery mildew, with PCR of 

cleaved amplified polymorphic sequences (CAPS) analyses suggest that the proportion of 

mitochondria carrying the G143A exchange determines the degree of strobilurin resistance. 

Lesemann et al. (2007) also found a high variability in the cytB gene of P.leucotricha and 

discusses the role that mitochondrial heteroplasmy may play in conferring a selective 

advantage under changing conditions, as does Avila-Adame et al. (2003). Many papers on 

QoI-resistance in phytopathogens fail to discuss mitochondrial heteroplasmy (Patel et al. 

2011). This is important as for P. leucotricha (Lesemann et al. 2007) and V. inaequalis in the 

laboratory (Zheng et al.2000) and in the field (Lesniak et al. 2011), clearly demonstrated that 

all isolates of the apple powdery mildew and scab pathogens tested were heteroplasmic for 

the G143A mutation. Lastly, a study by Miguez et al. (2003), examined the role of alternative 

oxidase in reducing the sensitivity of M. graminicola to the QoI azoxystrobin. Although the 

level of resistance was lower than the more commonly identified, G143A, sufficient 

resistance was incurred despite the absence of this mutation, suggesting yet another 

mechanisms of resistance.  

8.4. SDHI 

Succinate dehydrogenase inhibitor (SDHI) fungicides include “first generation” SDHIs, like 

flutolanil, carboxin, followed by later (and improved) “second generation” compounds, 

including boscalid, and even “third generation” products like penthiopyrad, and fluopyram. 

This class of compounds targets and binds to the ubiquinone-binding site (Q-site) of the 

mitochondrial complex II, specifically the succinate dehydrogenase (SDH) complex in the 

respiratory chain also referred to as complex II or succinate:ubiquinone oxidoreductase 

(SQR),  inhibiting fungal respiration by blocking electron transport [Kuhn, 1984; reviewed 

by Avenot and Michailides (2010), including a recent list of resistant organisms and 

corresponding mutations]. There is no evidence of cross-resistance with other similarly acting 

chemical classes such as QoI fungicides (which also affect energy production and electron 

transport) due to their unique mode of action and target site. The primary target of the SDHI 

fungicides is the SDH complex that consists of four subunits: a flavoprotein (Fp) subunit 

(SdhA), an iron-sulfur protein (Ip) subunit (SdhB), and two membrane-anchored protein 

subunits (SdhC and SdhD). Mutations conferring resistance have been found in the SDHB 

(Avenot et al 2008) and SDHC (Ito et al. 2004) and SDHD subunits (Avenot et al. 2009).  
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The first widely used SDHI fungicide, carboxin, was used in the late 1960s, and its 

applications were limited due to its primary activity against basidiomycete pathogens, 

namely rusts, Rhizoctonia spp., and corn smut (Ustilago maydis), and limited activity against 

other pathogens (Sisler 1988). In contrast to old SDHIs, newer active ingredients of SDHIs 

comprise compounds such as boscalid, penthiopyrad or fluopyram, and are characterized 

by a broad spectrum of fungal activity on various crops (Stammler et al., 2007; Stammler 

et al., 2006) particularly Botrytis and Alternaria species. Carboxin is less efficient than 

boscalid in controlling the wild-type sensitive isolates (Avenot et al. 2008). Unlike carboxin, 

boscalid prevented B. cinerea spore germination completely at high concentrations, and 

inhibited germ-tube elongation at low concentrations. This phenomenon was particularly 

noticeable if biological tests were conducted in media containing succinate rather than 

glucose as the carbon source (Lyr, 1977). This is an important point when performing in 

vitro screens of fungicide resistance phenotypes. 

Field and laboratory mutants resistant to carboxin and boscalid have been reported in a 

variety of fungi and cropping systems (For a recent review see Avenot and Michailides 

2010). Carboxin and other SDHI fungicide resistances are described as monogenic, and have 

been identified in both field and laboratory. Sequence analysis of the gene encoding the 

target protein, the succinate dehydrogenase enzyme (SDHB), revealed that single or double 

point mutations in the highly conserved regions of gene were associated with resistance. 

Different levels of resistance are associated with mutations in different alleles: In B. cinerea, 

mutations resulted in P225L or P225F transitions that confer high resistance, and in a 

histidine to tyrosine replacement at position 272 (H272Y) or Arg (H272R) (Avenot et al. 

2008), although Angelini et al. (2010) found these two mutations resulted in a lower level of 

resistance. In A. alternata, sequence analysis of the SDHB gene from sensitive and resistant 

isolates identified a H277Y and H277R transitions, as well. (Avenot et al. 2008). It is 

important to note that in some boscalid-resistant strains of A. alternata, there were no 

identifiable mutations in the AaSdhB gene as compared to the wild type, suggesting that 

mutation(s) in other loci are involved in the boscalid resistance phenotype. This is not 

surprising since the boscalid mode of action involves at least two other genes of the Sdh 

complex (SdhC or SdhD) (Avenot et al. 2009).  

Despite the elucidation of the molecular mechanisms of resistance, mycelial growth assay in 

liquid medium in microtiter plates were developed to monitor fungicide resistance, in A. 

alternata (Avenot and Michailides 2007) and a variety of other fungi, eventually resulting in 

the development of rapid in vitro monitoring procedures with a single discriminatory dose 

of boscalid (Avenot and Michailides, 2010), despite the eventual elucidation of many of the 

molecular mechanisms of resistance. 

8.5. MDR-efflux pumps and resistance 

All living organisms, eukaryote and prokaryotic, are exposed to both food and toxins in 

their natural environments. To quote Pao (1998), “Transport systems allow the uptake of 

essential nutrients and ions, excretion of end products of metabolism and deleterious 
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substances, and communication between cells and the environment.” Some of these 

deleterious substances may be antibiotics produced by bacteria and actinomycetes, 

antifungals [e.g., strobilurin A produced by Strobiluris tenecellus, killer yeast strains, plant 

defense compounds (phytoalexins, alkaloids, small molecular weight peptides)], and heavy 

metals. There are two protein families that are key players in this type of transport process: 

The ATP-binding cassette (ABC) and the major facilitator superfamily (MFS) of transporters. 

ABC transporters are able to bind and hydrolyze nucleotide triphosphates (mainly ATP) 

due to a conserved cytosolic, nucleotide-binding fold (NBF or ATP-binding domain) and use 

this energy to transport solutes across cell membranes (Higgins, 1992). MFS transporters 

work as a “secondary” active transport system that does not require ATP for functionality, 

and are capable only of transporting small solutes in response to chemiosmotic ion gradients 

(Pao 1998). These two families of transporter proteins can mediate a quantitative multidrug 

resistance (MDR) to multiple classes of fungicides, however, the resistance levels conferred 

against individual fungicides are greatly reduced as compared to fungicide resistance 

conferred by target site mutations (de Waard et al. 2006; Mernke et al. 2011). 

In the human pathogen C. albicans, the role of MDR transporters and resistance is fairly 

straightforward: The ABC transporter, CDR1, plays a major role in resistance (in a majority 

of isolates) to fluconazole and miconazole due to upregulation of the gene (Sanglard et al., 

1995) resulting in increased efflux of the antifungal and its decreased accumulation in the 

cell, thereby reducing inhibition of the ERG11/CYP51 gene in most isolates resistant to 

fluconazole. In addition to its role in resistance to azoles, CDR1 also confers resistance to 

other sterol biosynthesis  inhibitors, including allylamines and morpholines, in addition to 

several other drugs. A separate transporter, referred to BENR, was highly overexpressed 

and conferred resistance to azoles and benomyl (Sanglard et al., 1999; Sanglard et al., 1995).  

Detection of this type of fungicide resistance has proven to be more difficult, or at least less 

published, in plant pathogens. Numerous reports exist about multiple fungicide resistances 

in plant pathogens (Leroux et al. 1997, Nakaune et al. 1998; Leroux et al. 1999; Kretchmer et 

al. 2011; Chapman et al. 2011). It is important to stress that not all of these multiple fungicide 

resistances are due to MDR, but in fact, are due to other mechanisms (see the section on 

Dicarboximides for elucidation of one such mechanism) including segregation of separate, 

multiple resistances (Chapman et al. 2011). One of the first studies (Leroux et al. 1999) that 

screened multiple fungicide resistances in B. cinerea found resistance to anilopyrimidines 

(AP, e.g. cyprodinil, mepanipyrim, pyrimethanil) and identified two distinct resistance 

phenotypes: The most AP-resistant isolates were resistant to only anilinopyrimidines, 

suggesting action on the hitherto unidentified, single target gene (Hilber and Hilber-Bodmer 

1998) and a second phenotype that included resistance to distinctly different classes of 

fungicides including dicarboximides, phenylpyrroles, sterol biosynthesis inhibitors (e.g. 

tolfanate, prochloraz, tebuconazole) and the hydroxyanilide derivative, fenhexamid, 

consistent with an MDR phenotype.  

The role of MDR in fungicide resistance was further strengthened by work by Kretschmer et 

al. (2011) who found that fungicide resistant field isolates from France and Germany 
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exhibited three distinct MDR phenotypes of increased fungicide efflux activity and 

overexpression of efflux transporter genes. In this study, MDR1 strains were found to 

possess mutations in the transcription factor, Mrr1, that controls the ABC transporter gene 

AtrB; the MDR2 strains possessed insertions of a retrotransposon-derived sequence in the 

promoter region of the major facilitator superfamily (MFS) transporter gene mfsM2 (more 

thoroughly described by Mernke et al. 2011), and the MDR3 strains which showed the 

highest levels and broadest spectrum of resistance against most fungicides tested, and was 

identified as recombinants carrying both MDR1-specific mutations in mrr1 and MDR2-

specific mutations in mfsM2 (Kretschmer et al. 2011). All MDR strains showed strong 

constitutive overexpression of either one (MDR1, MDR2) or two (MDR3) drug efflux 

transporter genes. MDR1 and MDR3-described isolates had an increased efflux for 

fludioxonil whereas MDR2 strains did not, while bitertanol efflux was observed for all MDR 

phenotypes, although MDR1 possessed a less resistant phenotype. Prior to this, Hayashi et 

al. (2001) found in laboratory isolates, overexpression of the ABC Transporter Gene BcatrD 

involved in resistance to two azoles, in addition to the dicarboximide fungicide iprodione, 

the benzimidazole fungicide carbendazim, and the antibiotic cycloheximide. 

In M. graminicola, laboratory isolates were selected with decreased azole susceptibilities and 

cross-resistance to chemically unrelated of low molecular weight compounds (Zwiers et al. 

2002). Later studies found field isolates showed differences in both basal and induced levels 

of ABC transporter gene transcript, although no correlation between increased expression 

and azole sensitivity was evident (Stergiopoulos et al., 2003); Cools et al. (2007) were unable 

to establish a direct relationship between over-expression of the ABC transporters and 

decreased azole sensitivity, and later studies, using cDNA microarrays to profile the 

transcriptional response of M. graminicola to epoxiconazole, and compared the expression 

profiles of an azole-sensitive and less sensitive M. gramincola isolates did not find a 

relationship. They found upregulation of ten genes that provided different constitutive 

expression profiles between the two strains, including drug transporters, a cell surface 

glycoprotein, stress response protein rds1, and an unknown gene encoding a homologue of 

the antibiotic response protein in addition to differential expression between components of 

the sterol biosynthesis pathway between sensitive and less sensitive isolates, and 

components of the mitochondrial respiratory chain. (Cools et al. 2007). Thus, at least in M. 

graminicola, studies have not demonstrated a relationship between expression (or 

overexpression) of ABC transporter genes directly (Stergiopoulos et al. 2003) or by 

microarray (Cools et al. 2007), despite its demonstrated role in field resistance in B. cinerea. 

Although the role of MDR genes in fungicide resistance is clear in some pathogens, rapid 

detection of fungicide resistance due to MDR is not. Some of these difficulties reside in the 

unclear and multiple mechanisms of DMI and other fungicide resistances discussed above, 

others in the role and regulation of MDR. To date, most differences identified in fungicide 

resistance where MDR is implicated have been found to be due to overexpression of ABC 

transporter genes. Most important to stress is the lack of correlation between expression level 

specific ABC transporter gene with fungicide resistance, suggesting that multiple transporters 
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may be involved (at least in DMI resistance) or that other mechanisms in addition to upstream 

transcription factors, have not yet been identified (Cools et al. 2007; Leroux et al. 2011). 

9. Conclusions 

Fungicide resistance can be conferred by a variety of mechanisms, and plant pathologists 

need to recognize that multiple genes may be necessary for this resistance, and that single 

genes, although easily scored or detected by molecular means, may not be sufficient for 

determination of resistance. Central to these studies is the recognition of the strengths and 

the limitations of molecular detection, and the importance of phenotypic versus genotypic 

resistance. This requires that we recognize that the phenotype of fungicide resistance 

consists (in many instances) of “major” genes, “minor” genes, the interactions between these 

genes (epistasis) and the interactions between genes and the environment, and that many of 

the known mechanisms conferring quantitative fungicide resistance utilize alternative 

metabolic pathways, exclusion or efflux of fungicides, and hitherto unknown mechanisms 

(Brent and Holleman 1998; Leroux et al. 1999; Lesniak et al. 2011). 

The detection of single gene targets is only the beginning, and understanding the 

mechanism of resistance does not provide a blueprint as to how to manage the crop in the 

absence of the fungicide lost. Previous studies labored under an assumption that “a timely 

detection of resistance levels in populations of phytopathogenic fungi in a field would help 

growers make proper decisions on resistance management programs to control plant 

diseases” (Ma and Micheilides 2005). It certainly doesn’t hurt, but few instances are 

available where this knowledge has been translated for use to growers and resulted in in-

season changes of management beyond cessation of use of the fungicide in question. To 

date, most resistance management consists of abandoning the fungicide that has failed, to 

use others (Chapman et al. (2011); Lesniak et al. (2011), Avenot et al., others); Chapman et al. 

(2011) is one of the few instances where fungicide resistance detection was used many years 

later to confirm that a fungicide could be used with some degree of successful certainty. This 

was determined by mycelial growth assay as no molecular detection methods currently exist 

to screen for dodine resistance. 

Fungicide sensitivity testing using mycelial growth or germination inhibition (in petri dishes 

or microtitre plates) lacks the excitement and appeal of the many different molecular 

approaches to detect fungicide resistance. It is certainly not as fast as any molecular test, 

although microtiter-based assays combined with Alamar blue (AB), or resazurin provide 

quantifiable and early detection within days, for fast growing pathogens like Monilinia (Cox 

et al. 2009) or Verticillium (Rampersad 2011). AB is an oxidation-reduction indicator dye 

used to detect microbial respiration. In the presence of actively growing cells, the resazurin 

indicator is changed from an oxidized, nonfluorescent blue form to a reduced, fluorescent 

pink form. Inhibition of growth maintains an oxidized environment, leaving the indicator 

blue. Results can be easily discerned with the naked eye due to the colorimetric nature of the 

test, or more rapid and sensitive measurements can be taken with spectroscopy equipment. 

In these studies, the AB assay provided a rapid and reproducible method of testing 
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fungicide efficacy and provide an option of deriving quantitative data in the form of degree 

of resistance versus the qualitative data associated with molecular detection. Use of AB in 

fungicide resistance requires aseptic techniques that are essential for any microbial assay 

(Cox et al. 2009). This prerequisite proved to be insurmountable for use of this technique for 

fungicide resistance screening in V. inaequalis, and possibly other fungi. Finally, the 

calculated the cost of 96 reactions, excluding labor and plate reader, was found to be under 

$4 per isolate for AB assays and over $15 per isolate for mycelial growth assays (Cox et al. 

2009) making this affordable for multiple labs and diagnostic clinics to screen for fungicide 

resistance as a service. Despite the lack of intellectual appeal, there are other significant 

advantages of fungicide resistance phenotype screening, chief amongst which is the low 

cost, accuracy and reliability of the screening for the fungicide resistant phenotype over the 

genotype, because, unless all known genes and alleles are screened are known and screened, 

the risk of under-reporting actual resistances exists (Quello et al. 2010), and is rarely 

discussed.  

This is not to say that molecular detection of fungicide resistance is without merit. One of, if 

not the most critical challenges facing applied plant pathologists is the need for the early 

detection of fungicide resistance in a population. Molecular methods can be used to 

powerfully detect and monitor the emergence of resistance in those instances where 

detection is possible, to a degree that phenotypic assays cannot achieve. Unfortunately, 

there are few studies where this has been done, and most research ends with a proof of 

concept, and not the implementation of the developed technique to better manage fungicide 

resistance. Currently, there are few studies monitoring sensitivity and early detection 

through the use of sentinel plants coupled with molecular detection in those instances 

where the mechanism can be detected, which could provide powerful information in an 

early warning system to anticipate the emergence of fungicide resistance in a population 

and prevent its occurrence. One problem with this approach is that most models for the 

detection of fungicide resistance emergence should assume an initial resistance mutation 

frequency from anywhere from as high as 10-4 (Zwiers et al. 2002) to as low as 10-8 (Zheng et 

al. 2000) based upon laboratory studies.  

The developing paradigm that has emerged has been the generation of mutants in the 

laboratory, followed by their isolation from the field in some instances (but not all), followed 

by phenotypic screen, and identification of mechanism (Albertini et al. 1999 to Zwiers 2002, 

and others.) Genotypic screens have been developed, but are rarely evaluated for efficacy 

and accuracy over time, let alone predictive ability or utility. Furthermore, these 

developments have still not helped the farmer, nor provided him or her with the 

information necessary to make the appropriate in-season management decision. The 

question that remains is if we should be willing to shift the paradigm and use the best 

technique to adequately address the problem of fungicide failure in the field. As we enter a 

post-genome period, the technology is available for the detection of even single nucleotide 

polymorphisms. Whether it is available to rapidly detect fungicide resistance in plant 

pathogens in a way that is useful for growers remains to be seen. 
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