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1. Introduction 

Derived from the base of membrane ruffles in response to growth factor stimulation 

(Haigler, McKanna et al., 1979), the macropinosome is a large (diameters >0.2µm) phase-

bright endocytic organelle that is readily labelled with fluid-phase markers. It is the 

primary means by which macrophages sample their immediate environment for antigens, 

is essential for proper renal function, is intrinsically linked to cellular migration and has a 

major role in the down-regulation of signalling from cell surface receptors (Kerr and 

Teasdale, 2009; Swanson and Watts, 1995). To promote invasion and survival, Salmonella 

subverts the host cell’s normal macropinocytic machinery to gain entry into the non-

phagocytic epithelial cells of the intestinal wall. Upon binding to the host cell surface the 

pathogen utilises a specialised apparatus called the type III secretion system (T3SS) to 

deliver a suite of bacterial virulence proteins directly into the host cell’s cytoplasm. 

Salmonellae encode two distinct T3SSs within Salmonella Pathogenicity islands 1 and 2 

(SPI1 and SPI2) that function at discrete stages of the infection. Whilst SPI1-T3SS is 

predominantly active on contact with the host cell’s surface and serves to translocate 

virulence proteins across the plasma membrane, driving cytoskeletal rearrangements and 

signalling events that promote the uptake of the pathogen, SPI2-T3SS is active within 

intracellular compartments during the later stages of infection to generate a replicative 

niche (Haraga, Ohlson et al., 2008). As the environment of the encompassing 

macropinosome, also called the Salmonella Containing Vacuole (SCV) acidifies and 

matures, losing markers of the early endosomal system like transferrin receptor, EEA1 

and Rab5, Salmonellae undergo extensive bacterial surface remodelling and expression and 

assembly of SPI2-T3SS is induced. The SPI2-T3SS enables the translocation of virulence 

factors across the SCV membrane into the host cell’s cytoplasm. These virulence factors 

initiate a dramatic alteration in the host cell’s vesicular trafficking pathways leading to the 

accumulation of late endosomal markers like Rab7 and LAMP1 and 2 on the SCV and the 

formation of long filamentous membrane structures. These Salmonella-induced filaments 

(SIFs) originate from the SCV, are LAMP1-positive, and function to increase the size of the 

SCV in a specific and directional fashion to accommodate bacterial replication during 

systemic infection as well as provide nutrients to the isolated pathogen (Garcia-del 
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Portillo and Finlay, 1995; Garcia-del Portillo, Zwick et al., 1993a, b; Haraga, Ohlson et al., 

2008). What is clear from the literature is that this entire process reflects a carefully 

choreographed interaction between the bacterial virulence factors and the molecular 

machinery of the host cell. 

2. Phosphoinositides and their effectors, tightly controlled regulators 

Phosphoinositides (PI), the phosphorylated derivatives of the lipid phosphatidylinositol 

(PtdIns), can be singly or multiply phosphorylated on the 3’, 4’, and 5’ position of the 

inositol headgroup to generate 7 distinct PI isoforms (Vicinanza, D'Angelo et al., 2008). 

Reversibly phosphorylated in a tightly regulated fashion by phosphatases and kinases that 

are heterogeneously localised within the cell, the PIs are consequently enriched on the 

cytosolic face of distinct intracellular membranes (Di Paolo and De Camilli, 2006). For 

example, the most abundant PIs, PI(4,5)P2 and PI(4)P, are each constitutively present in the 

cytosolic leaflet of the plasma membrane and Golgi apparatus respectively whilst the 3-

phosphorylated PIs, PI(3)P, PI(3,4)P2 and PI(3,5)P2 are found distributed throughout the 

endolysosomal system. The relative amounts of the PIs also vary dramatically between and 

within cells. Virtually undetectable in quiescent cells, PI(3,4,5)P3 levels rapidly spike upon 

stimulation and during specialised membrane trafficking events through the coordinated 

and regulated activity of class Ia PI3-kinase phosphorylating the 3’ position of PI(4,5)P2 

(Vanhaesebroeck, Leevers et al., 2001). 

Remarkably complex, PI metabolism represents a delicate equilibrium balancing the relative 

abundance and position of these lipids within the cell. Briefly, PtdIns is converted to PI(3)P 

or PI(4)P on endosomes or the Golgi through the actions of vacuolar protein sorting (Vps) 

34-p150 and PI(4)KII respectively. Additionally, conversion of PI(3,4,5)P3 to PI(3)P on 

nascent endocytic compartments may be the consequence of the sequential 

dephosphorylation of PI(3,4,5)P3 as catalysed by 4- and 5-phosphatases. Src homology 2 

domain-containing inositol 5-phosphatase (SHIP) 1 and 2 are potential 5-phosphatase 

candidates, dephosphorylating PI(3,4,5)P3 to PI(3,4)P2 at the cell surface or on newly formed 

endocytic structures. Type I and II 4-phosphatases may then catalyse the conversion 

between PI(3,4)P2 and PI(3)P (Krauss and Haucke, 2007). Alternatively PI(3,4,5)P3 may 

simply be lost from the endocytic membrane and VPS34-p150, an effector of early 

endosomal Rab5, could drive the de novo synthesis of PI(3)P from PtdIns (see Figure 1) 

(Zerial and McBride, 2001). 

Relatively high concentrations of PI(4,5)P2 are constitutively maintained at the plasma 

membrane primarily through the actions of a diverse family of PI(4)P 5-kinases and the 3-

phosphatases. In addition to being intrinsic to numerous signalling, cytoskeletal and 

endocytic events PI(4,5)P2 also serves as a precursor to PI(4)P contributing to the pool found 

predominantly within the Golgi Apparatus and in secretory granules (Levine and Munro, 

2002; Panaretou, Domin et al., 1997; Wang, Wang et al., 2003). The accumulation of PI(4)P 

within the Golgi reflects the presence of multiple PI(4)Ks and PI(4,5)P2 phosphatases in 

conjunction with relatively low levels PI(4)P 5-kinase activity. 

The most recently identified of the PIs, PI(3,5)P2, is synthesised from PI(3)P by the PI(5) 

kinase, PIKfyve (Shisheva, 2008). Whilst the precise role PI(3,5)P2 plays in the mammalian  
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Fig. 1. PI metabolism and subcellular distribution. The phosphoinositides are 
phosphorylated derivatives of phosphatidylinositol. Their metabolism is regulated by 
kinases and phosphatases that are distributed heterogenously throughout the cell 
contributing to the accumulation of specific PIs in discrete intracellular membranes. 
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system is currently emergent, disruption of the yeast PIKfyve equivalent, Fab1p, results in a 

highly complex phenotype. The observation that a ∆FAB1 strain entirely devoid of PI(3,5)P2 

displays a dramatically enlarged vacuole that fails to acidify, partial defects in 

prevacuolar compartment (PVC; mammalian endosome equivalent) sorting, defective 

inheritance of vacuoles in daughter cells and a reduction in the number of intravacuolar 

vesicles seen by electron microscopy all suggest that PI(3,5)P2 is integral to a number of 

processes essential for the maintenance of vacuolar/lysosomal system (Cooke, 2002; 

Cooke, Dove et al., 1998; Dove, McEwen et al., 1999; Dove, McEwen et al., 2002; Dove, 

Piper et al., 2004; Gary, Wurmser et al., 1998; Odorizzi, Babst et al., 1998; Yamamoto, 

DeWald et al., 1995). In agreement, we utilised time-lapse videomicroscopy to 

demonstrate that PIKfyve activity is essential for the fusion of macropinosomes with late 

endosomal/lysosomal membranes (Kerr, Wang et al., 2010). 

The unique spatial and temporal distribution of the PIs provides the mechanism for the 

exquisite control with which this protein-lipid network regulates membrane trafficking 

and signalling events. Specifically, they serve as membrane anchors to recruit a suite of 

PI-binding molecules of diverse function through a variety of domains with differing PI-

affinities and -specificities. The most thoroughly investigated of these, the plekstrin 

homology (PH) domain, is a ~120 residue motif found in 275 human proteins (DiNitto and 

Lambright, 2006; Lemmon and Ferguson, 2000). The relatively low sequence conservation 

between PH domains is reflected in the significant variation in specificity and affinity for 

individual PIs. For example, the PH domains of Grp1 and PLC1 each bind PI(3,4,5)P3 and 

PI(4,5)P2 respectively, whilst those of DAPP1, PDK1 and PKB bind both PI(3,4)P2 and 

PI(3,4,5)P3 (Cronin, DiNitto et al., 2004; DiNitto and Lambright, 2006; Lemmon and 

Ferguson, 2000).  

In contrast, the FYVE domain, named after the four cysteine-rich proteins in which it was 

first identified (Fab1, YOTB, Vac1, and EEA1) after, is a ~70 residue zinc-binding finger 

found in 28 human proteins that displays remarkably high affinity and specificity for PI(3)P. 

It serves to localise proteins with this domain predominantly to PI(3)P-enriched early 

endosomes, multivesicular bodies, phagosomes and macropinosomes (Cronin, DiNitto et 

al., 2004; DiNitto and Lambright, 2006; Lemmon and Ferguson, 2000). The afore-mentioned 

PI(5) kinase, PIKfyve, binds its substrate through this domain facilitating the turnover of 

PI(3)P to PI(3,5)P2 on maturing endocytic organelles (Ikonomov, Sbrissa et al., 2006; 

Rutherford, Traer et al., 2006; Shisheva, 2008). 

The PX domain is a ~130 residue motif named after the two phagocyte NADPH oxidase 

(phox) subunits in which it was first described (Ponting, 1996). Whilst PI(3)P appears to be 

the preferred target of most PX domain containing proteins (Seet and Hong, 2006), a variety 

of other specificities have been reported. Sorting Nexins (SNX) 9 and 18 both bind PI(4,5)P2 

where they appear to function in endocytic trafficking events at the plasma membrane and 

AP1-positive endosomal membranes respectively, whilst SNX1 is reported to bind both 

PI(3)P and PI(3,5)2 and is involved in retrograde trafficking events from early endosomes to 

the Golgi (Carlton, Bujny et al., 2004; Haberg, Lundmark et al., 2008; Shin, Ahn et al., 2008; 

Soulet, Yarar et al., 2005; Yarar, Waterman-Storer et al., 2007). Interestingly, the PX domain 

in isolation is often not sufficient to recruit these molecules to PI-enriched membranes. 
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Removal of the membrane curvature sensing and bending Bin Amphiphysin Rvs (BAR) 

from sorting nexin 1 (SNX1) renders it cytosolic demonstrating the necessity for the 

coincident detection of both the specific PIs and the appropriately curved membranes for 

recruitment to endosomes (Carlton, Bujny et al., 2005). 

3. Phosphoinositides in Salmonella Infection 

Early in the Salmonella invasion process cellular PI levels are reported to undergo rapid and 

dynamic shifts. HPLC analysis of lipids extracted from Salmonella-infected cells revealed 

remarkable elevation in the relative amounts of PI(4,5)P2, PI(3,4)P2 and PI(3,4,5)P3 as well as 

more moderate elevation in PI(3)P when compared to control cells (Bakowski, Braun et al., 

2010). Modulation of PI(4,5)P2 and PI(3,4,5)P2 serves to destabilise the cortical cytoskeleton 

leading to membrane ruffling, macropinosome formation and promoting bacterial uptake 

whilst the accumulation of PI(3)P on membrane ruffles and the nascent SCV promotes 

recruitment of the PI(3)P-binding r-SNARE VAMP8 which facilitates fusion events within 

the endosomal network (Dai, Zhang et al., 2007). 

Shortly after formation, the enveloping macropinosome shrinks to form an adherent SCV 

around one or more Salmonella. This process is mediated, at least in part, by a suite of PI-

binding effector molecules known as the sorting nexins (SNX). The SNXs represent a 

collection of approximately 50 human proteins with diverse domain architectures that are 

recruited to intracellular membranes via a common PX domain (Cullen, 2008). It was 

revealed that SNXs 1 and 5 form heterodimers upon the surface of maturing PI(3)P-rich 

macropinosomes via a conserved BAR domain within their carboxyl-terminus. This 

dimerisation leads to the formation of tubular carriers that retrieve large quantities of 

membrane from and the consequent condensation of the macropinosome as the organelle 

matures (Kerr, Lindsay et al., 2006). The transient nature of the SNX’s recruitment to the 

SCV was demonstrated to reflect the subsequent phosphorylation of PI(3)P within the 

membrane of the macropinosome to PI(3,5)P2 by the phosphatidylinositol 5-kinase, PIKfyve. 

This final PI transition is necessary for the ultimate fusion of macropinosomes with the late 

endosomal/lysosomal system (Kerr, Wang et al., 2010).  

While the SCV appears to share properties in common with constitutive macropinosomes, 

including SNX-recruitment, the maturation process is significantly perturbed so that the 

SCV persists for hours. Hernandez et al. (2004) observed that unlike constitutive 

macropinosomes, SCVs containing wild-type Salmonella rapidly accumulate and maintain 

elevated levels of PI(3)P for up to 90mins (Hernandez, Hueffer et al., 2004). Bujney et al. 

demonstrated that one consequence of this was the elevated and sustained accumulation of 

SNX1 to the newly formed SCV. This in turn results in a grossly exaggerated tubulation 

event that leads to the rapid contraction of the enveloping SCV to form a tightly-wrapped 

adherent membrane around the bacterium (Bujny, Ewels et al., 2008). Time-lapse 

videomicroscopy elegantly demonstrates the precision with which the pathogen is able to 

manipulate its local environment as the tubulation and condensation of the SCV is not 

observed on the surrounding constitutive macropinosomes (see Figure 2). One might 

speculate that this embellished contraction may facilitate the eventual engagement of the 

SPI2-T3SS with the membrane of the SCV.  
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(A) A-431 cells transiently transfected with a mammalian expression construct encoding the high-
affinity PI(3)P-probe 2xFYVEHrs fused with eGFP were infected with late-log phase wild-type Salmonella 
expressing RFP (RFP-SL1344) and imaged live using a Zeiss LSM 510 confocal scanning microscope. 
Initially spacious, the PI(3)P-rich SCV (arrows) is observed to undergo significant tubulation and in 
doing so condenses to form an adherent membrane around the bacteria (red). In contrast, surrounding 
constitutive macropinosomes (arrow heads) present limited tubulation and no condensation in the same 
time period. (B) This tubulation is mediated by SopB as evidenced by the more moderate tubulation 

observed in SopB strain-infected cells when compared to those infected with wild-type Salmonella. 

Fig. 2. SNX-mediated tubulation leads to dramatic condensation of the SCV. 

3.1 SopB, a pleitropic phosphoinositide phosphatase 

This striking impact upon PI metabolism and SNX recruitment is achieved, at least in part, by 
directly modulating the PI-composition of the SCV through the delivery of virulence factors 
with PI-phosphatase activity. SopB (also called SigD) is a SPI-T3SS phosphoinositide 
phosphatase that has diverse influence upon the pathogenesis of S. typhimurium. It contributes 
to membrane sealing at the plasma membrane and actin-rearrangement through activation of 
SGEF (a guanine nucleotide exchange factor for RhoG), during bacterial invasion (Patel and 
Galan, 2006; Terebiznik, Vieira et al., 2002). It also inhibits induction of apoptosis through 
activation of Akt and promotes the early recruitment of Rab5 and its effector Vps34 to the SCV 
(Knodler, Finlay et al., 2005; Mallo, Espina et al., 2008; Steele-Mortimer, Knodler et al., 2000).  

Sharing similarity with mammalian PI 4- and 5-phosphatases, SopB is reported to hydrolyse 
a variety of PIs in vitro, including PI(3,4)P2, PI(3,5)P2 and PI3,4,5P2, and more recently, 
PI(4,5)P2 in vivo (Bakowski, Braun et al., 2010; Marcus, Wenk et al., 2001; Norris, Wilson et 
al., 1998). Given this apparent broad specificity and the capacity to promote Vps34 
recruitment to, and presumably therefore de novo synthesis of PI(3)P on, the SCV, the wide 
ranging impact SopB has upon the infectious cycle of Salmonella is perhaps not surprising. 
Indeed, SopB was recently demonstrated to have profound affects upon the biophysical 
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properties of the SCV itself. Bakowski et al. (2010) The authors used an mRFP-tagged 
derivative of the K-ras tail with all the serine and threonine residues mutated to alanine and 
the lysine residues mutated to arginine so that its recruitment to intracellular membranes 
was only governed by surface potential and not phosphorylation or ubiquitination. They 
demonstrated that by reducing the levels of negatively-charged lipids like PI(4,5)P2 and 
phosphatidylserine on the nascent SCV, SopB activity orchestrates the dissociation of a 
number of endocytic Rab proteins and inhibits fusion of the SCV with bactericidal lysosomal 
compartments (Bakowski, Braun et al., 2010).  

In addition to its lipid phosphatase activity, SopB was also recently revealed to interact with 

CDC42 suggesting an additional aspect to its contribution to the infectious process. 

Rodríguez-Escudero et al. (2011) demonstrated that a catalytically inactive SopB mutant can 

inhibit CDC42 but not Rac1 in a yeast model system. This interaction occurs independent of 

the activation state of CDC42. Interestingly, Salmonella strains harbouring SopB-mutations 

that render it unable to bind CDC42 presented similar invasion efficiencies when compared 

to the wild-type but reduced intracellular replication (Rodriguez-Escudero, Ferrer et al., 

2011; Rodriguez-Escudero, Rotger et al., 2006). This indicates that the SopB-CDC42 

association is pertinent to the intracellular adaptation of the pathogen rather than the actin-

remodeling that occurs upon invasion as one might expect.  

3.2 The sorting nexins coordinate Salmonella pathogenesis 

By manipulating cellular PI metabolism, Salmonella effectively exaggerates and alters the 

function of the PI-effector molecules thereby creating a niche within the cell that supports 

replication and infection. In the context of SNX1, this is manifest in SopB-dependent over-

recruitment and tubulation events leading to the accelerated condensation of the organelle 

and formation of the adherent SCV (See Figure 2). siRNA-mediated suppression of SNX1 is 

sufficient to inhibit SCV progression into the cell and had a moderate impact upon the 

intracellular replication of Salmonella (Bujny, Ewels et al., 2008). Similarly, knockdown of 

SNX3, which constitutes little more than a PX domain and is found on tubular extensions of 

the SCV distinct from those of SNX1, inhibits SCV maturation and intracellular replication 

of Salmonella (Braun, Wong et al., 2010). But what of the other PX proteins?  

Wang et al. (2010) employed an ectopic screening strategy to demonstrate that a specific 
cohort of the SNXs, namely SNXs 1, 5, 9, 18 and 33, could significantly elevate the rate of 
macropinocytosis in cultured monolayers suggesting specific roles beyond the tubulation 
events described earlier (Wang, Kerr et al., 2010). Perhaps these SNXs have unique roles to 
play in Salmonella pathogenicity? Towards this we have initiated a detailed examination of 
the recruitment of the SNXs to the nascent SCV. Immunofluorescent-labelling of infected 
cells transiently transfected with mammalian expression constructs encoding epitope-
tagged SNXs and co-labelled with endogenous SNX1 revealed 19 SNXs recruited to the SCV 
within the first 30mins of infection (see Figure 3). 

Interestingly, significant variation in the precise distribution of these SNXs on the early SCV 
was observed. Those most related to SNX1, and those previous demonstrated to have a role 
in endosomal trafficking, namely SNXs 2, 4, 5, 6, 7 and 8, were found on the afore-
mentioned SNX1-labelled tubular extensions of the SCV. mPLD2, SNX12, SNX16, SNX21, 
SNX23 and SNX28 were found evenly associated with the tubules and the body of the SCV 
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proper whilst hPLD1, SNX10, SNX11, SNX15, SNX27 and p40phox were restricted to the 
body of the SCV only. The notable absence of SNX3 on the SCV perhaps reflects a difference 
in the temporal nature of the SNXs recruitment. Unlike SNX1, which is most evident on the 
SCV very early in the infection, SNX3 is recruited ~60mins into the infection indicating 
additional levels of complexity in the mechanism of recruitment within this PI-effector 
family (Braun, Wong et al., 2010). Indeed the PX-containing subunits of the NADPH oxidase 
complex represent a significant threat to intracellular Salmonella, providing the means to 
deliver a bactericidal oxidative burst to the SCV in macrophages. Virulent Salmonella strains 
avoid this through a SPI2-dependent mechanism that inhibits trafficking or targeting of 
NADPH oxidase-containing vesicles to the vicinity of the SCV (Vazquez-Torres, Xu et al., 
2000). It will be interesting to see the likely diverse roles played by the SNXs during 
Salmonella pathogenicity emerge in the near future. 

 

Fig. 3. Salmonella specifically and directly manipulates SNX recruitment to the nascent SCV. A-

431 cells transiently transfected with mammalian expression constructs encoding myc-epitope 

tagged SNXs were infected with late-log phase Salmonella (SL1344) for 30mins, fixed with 4% 

PFA and labelled with an -myc polyclonal antibody, a monoclonal antibody specific for 

SNX1, DAPI and appropriate secondary antibodies. Images were captured using a Zeiss LSM 

510 confocal scanning microscope. Images were examined and the recruitment of the 

overexpressed SNX construct (green) was compared with that of endogenous SNX1 (red). 
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3.3 Targeting the phosphoinositides for therapeutic intervention 

With the development of antibiotic resistance, new strategies to combat intracellular 
pathogens, like Salmonella, need to be developed. One emergent approach is to manipulate 
non-essential host cellular pathways required by the pathogen during its infectious cycle 
(Schwegmann and Brombacher, 2008). Given the frequent connections between the PIs, their 
effectors, and those of Salmonella, this protein-lipid network represents a potential 
opportunity for novel modes of intervention.  

We recently demonstrated that disruption of PI(3,5)P2-synthesis through perturbation of 
PIKfyve activity, be it by interfering mutant, siRNA-mediated knockdown or 
pharmacological means (YM201636), was led to a profound inhibition in the fusion of 
maturing macropinosomes with the late endosomal/lysosomal network. As mentioned 
earlier, these directed fusion events are necessary for the formation of SIFs during an 
infection with S. typhimurium. Remarkably, inhibition of PIKfyve was sufficient to halt SIF 
formation, SCV acidification, induction of the SPI2 Operon and ultimately intracellular 
replication of Salmonella whilst still maintaining the pathogen within an intracellular 
compartment (Kerr, Wang et al., 2010).  

Of course a thorough understanding of the potential consequence of targeting PIs is required 
for such host-directed therapeutics to be effective. Inhibition of PI(3)P accumulation on the 
SCV with wortmannin is sufficient to halt recruitment of FYVE-domain containing molecules 
like EEA1 and even the SIF-marker LAMP1 but does not perturb intracellular replication of 
Salmonella (Scott, Cuellar-Mata et al., 2002). In fact, some have observed elevated rates of 
replication in host treated with wortmannin (Brumell, Tang et al., 2002). This is because, unlike 
those cultured in the presence of YM201626, the integrity of the SCV itself is disrupted 
releasing the bacteria into the cytosol, where they may freely replicate.  

Aside from counteracting the evolution of bacterial antibiotic resistance, these host-directed 
therapeutics may provide broad-spectrum solutions to a variety of pathogens. Indeed, 
Salmonella is not unique in its partiality for targeting the PIs and associated molecules. 
Yersinia species activate PI(5) kinase to stimulate PtdIns(4,5)P2 production at sites of 
bacterial invasion whilst Listeria monocytogenes and uropathogenic E. coli stimulate class I 
PI(3) kinase generating PtdIns(3,4,5)P3 to promote uptake (Gavicherla, Ritchey et al., 2010; 
Ireton, 2007; Ireton, Payrastre et al., 1999; Martinez, Mulvey et al., 2000). Mycobacterium 
tuberculosis inhibits class III PI(3) kinase, Vps34, involved in the formation of PI(3)P 
effectively arresting phagosome maturation (Chua and Deretic, 2004). Thus by targeting 
the PIs, we may be able to specifically interfere with a variety of infections at different 
stages of there pathogenic cycle. 

4. Conclusion 

Despite comprising less than 1% of cellular lipids, the PIs and their effectors are key regulators 
of intra- and inter-cellular signalling, cell growth and survival, cytoskeletal dynamics and 
membrane trafficking pathways. It is perhaps not surprising that intracellular pathogens that 
exploit these processes directly target this remarkably complex protein-lipid network during 
the infectious process. Whilst the roles the PIs play directly and through their effectors like the 
sorting nexins during a Salmonella infection are only now coming to light, there is already 
strong evidence to consider them as viable therapeutic targets for intervention.  
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