Chapter from the book Effects of Antidepressants
Downloaded from: http://www.intechopen.com/books/effectsof-antidepressants

Interested in publishing with IntechOpen?
Contact us at book.department@intechopen.com
Participation of the Monoaminergic System in the Antidepressant-Like Actions of Estrogens: A Review in Preclinical Studies

Carolina López-Rubalcava¹, Nelly Maritza Vega-Rivera¹², Nayeli Páez-Martínez³ and Erika Estrada-Camarena²*

¹Departamento de Farmacobiología, Cinvestav-IPN, ²Laboratorio de Neuropsicofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente, ³Sección de Graduados, Escuela Superior de Medicina-IPN Mexico

1. Introduction

1.1 Estrogen receptors – Classification and distribution

Estrogens are steroid hormones produced by gonads that bind to different receptor types and mediate numerous actions, like growth, development, cognition, neuroprotection and participate in mood regulation (Margeat et al., 2003; Vasudevan & Pfaff, 2007). The classic estrogen receptors (ER) are: ERα and ERβ. These receptors are ligand-activated transcription factors (Kuiper & Gustafsson, 1997) with nuclear and non-nuclear distribution (Monje & Boland, 2001; Weiser et al., 2008). In ovariectomized rats, ERβ and ERα are co-localized in various brain regions, including the bed nucleus of the stria terminalis, the medial and cortical amygdaloid nuclei, the preoptic area, the lateral habenula, the periacueductal gray, the locus coeruleus, the hippocampus and the brain cortex (Shughrue et al., 1997). In these last two structures, ERβ is more abundant than ERα. Other structures that contain only ERβ are the olfactory bulb, the ventral tegmental area, the zona incerta, the cerebellum, the pineal gland and some hypothalamic nuclei (such as the supraoptic, the paraventricular, the supraquiasmatic and the tuberal nuclei). By contrast, brain areas with solely ERα are the ventromedial hypothalamic nuclei and the subfornical organ (Shughrue et al., 1997).

Several reports have described two membrane estrogen receptors unrelated to ERα and ERβ: an orphan receptor coupled to G proteins called GPR30 (Filardo et al., 2002) and another, named ER-X, that posses characteristics of tyrosine-kynase activity (Toran-Allerand, 2004). GPR30 is a seven transmembrane ER that binds estrogens with high affinity and acts independently of ERα and ERβ to stimulate adeny cyclase and phospholipase C via Gαs proteins, which in turn, generates classic second messengers such as the cyclic

* Corresponding author
adenosine monophosphate (cAMP), inositol trisphosphate and Ca+ and induces the release of the epidermal growth factor (Filardo et al., 2002). On the other hand, the ER-X is a plasma membrane ER enriched in a caveolar-like microdomain that is expressed during development and after ischemic brain injury (Toran-Allerand et al., 2005). ER-X mediates 17α-estradiol and 17 β-estradiol (E2) activation of MAPK/ERK in development neocortical explants, after ischemic injury and in animal models of Alzheimer’s disease and Down’s syndrome. These characteristics could explain estrogen’s rapid actions in the central nervous system.

2. Monoamines and depression

One of the earliest theories in the biology of depression is the monoaminergic hypothesis that proposed a dysfunction of the serotonergic/catecholaminergic function that leads to depression. The neurotransmitters serotonin (5-HT), dopamine (DA) and noradrenaline (NA) are localized in limbic brain regions involved in the regulation of mood, cognition and anxiety, among others. This theory was proposed in the early 50s, with the observation that reserpine, a drug with antihypertensive activity and that inhibits catecholamine vesiculation, induced signs of depression (Lopez-Muñoz & Alamo, 2009). On the other hand, drugs that facilitate monoamine release were found to be antidepressant. At present, serotonin transporters, noradrenaline transporters and the monoamine oxidase enzyme (MAO) are targets of antidepressant therapy, all of which increase the serotonergic and/or noradrenaline tone through an inhibition of monoamine reuptake or inhibition of monoamine catabolism (MAO inhibition) (Kalia, 2005; Lopez-Muñoz & Alamo, 2009; Osterlund, 2009).

Although the pharmacological and biochemical effects of antidepressant drugs occur rapidly (within minutes), in clinical practice the antidepressants drugs produce their therapeutic actions after at least 10 to 14 days after treatment initiation. This suggests that antidepressants act via a delayed postsynaptic receptor-mediated event (Kalia, 2005). It is hypothesized that the delayed time of onset for antidepressant drugs is due to the feedback mechanism of the somatodendritic 5-HT1A receptor. In this case, increased release of serotonin by acute administration of antidepressants such as the selective serotonin reuptake inhibitors (SSRIs) leads to a dose-dependent inhibition of 5-HT neuronal firing rate (Osterlund, 2009) due to the activation of the presynaptic 5-HT1A receptors, followed by inhibition of neuronal firing and terminal serotonin release. Chronic administration of reuptake inhibitors leads to desensitization of the presynaptic 5-HT1A autoreceptors and thereby restores serotonergic firing and terminal serotonin release (Krishnan & Nestler, 2008). The observed desensitization of presynaptic 5-HT1A autoreceptors is in line with the time course for therapeutic onset of reuptake inhibitors (Maletic et al., 2007; Osterlund, 2009).

Similarly to serotonergic receptors, it has been reported that chronic antidepressant treatments caused subsensitivity of the noradrenergic receptor–coupled adenylate cyclase system in the brain (Vetulani et al., 1976). This work shifted the emphasis from acute presynaptic (α2-adrenergic receptors) to delayed postsynaptic receptor-mediated events in the mode of action of antidepressants. The delayed desensitization of the noradrenergic β-adrenoceptor– coupled adenylate-cyclase system in the brain is an action that is common to almost all antidepressant treatments (Kalia, 2005).
3. Depression in women: Role of estrogens

In women, changes in the incidence of mental illnesses (particularly in major depressive disorder) can be found in three important periods of their reproductive life span. These periods are characterized by drastic hormonal oscillations (Girdler & Klatzkin, 2007; Payne et al., 2007). For example, a correlation was found between the onset of depressive and anxiety symptoms and the rapid decrease of progesterone and allopregnanolone levels during the late luteal phase of the menstrual cycle in vulnerable women (Halbreich & Kahn, 2001; Backstrom et al., 2003); by contrast, when a gradual reduction in progesterone concentrations occurs, a reduction of depression, anxiety, food cravings, mood swings and cramps is observed (Contreras et al., 2006). In addition, a positive correlation between the abrupt fall of hormones levels and post-partum depression has been established (Jensvold, 1996). Hence, some reports indicate that hormones such as estradiol are a useful therapy to relief the postpartum depression symptoms (Soares et al., 2001).

The most characterized endocrine period where hormonal fluctuations influence depressive states is the perimenopause transition. Several reports indicate that follicular stimulating and luteinizing hormones and estradiol oscillations are correlated with the onset or worsening of depression symptoms during early perimenopause (Halbreich & Kahn, 2001; Pae et al., 2009), when major depressive disorder incidence is 3-5 times higher than the male matched population of the same aged (Riecher-Rossler & Geyter, 2007). Several longitudinal studies that followed women across the menopausal transition indicate that the risk for significant depressive symptoms increases during the menopausal transition and then decreases in the early postmenopause (Soares & Zitek, 2008) and in the last years of menopause its incidence is comparable to that shown by men (Payne et al., 2007; Riecher-Rossler & Geyter, 2007). Also, epidemiological studies showed that women vulnerable to hormonal fluctuations, who suffer premenstrual dysphoric disorders, are susceptible to develop post-partum- and perimenopausal-depression (Richards et al., 2006; Payne et al., 2007). The sum of all these depressive episodes results in a long term deficient quality of life due to many years of poor mental health.

Other studies that have shown the participation of estrogens in the etiology of depression are the following: a prospective study showed that women with a lifetime history of depression had high levels of follicle-stimulating and luteinizing hormones levels, but low estradiol concentrations (Harlow et al., 2003). In this case, authors concluded that a lifetime history of major depression may be associated with an early decline of ovarian function, a situation that characterizes menopause transition (Harlow et al., 2003). On the other hand, in a similar study, women with no history of depression, had increased levels of FSH and LH and increased variability of estradiol that were significantly associated with depressive symptoms (Freeman et al., 2006). In fact, it was proposed that the unstable and irregular pattern of hormone production during perimenopausal transition, in susceptible women, may increase vulnerability to mood disorders (Sherwin & Henry, 2008; Rocca et al., 2010).

In addition, it has been reported that in depressive women, high levels of FSH correlate with the severity of depression and the intensity of menopausal symptoms (Rajewska & Rybakowski, 2003). Interestingly, these women presented a transient decreased response to the stimulation of the serotonergic system with D-fenfluramine, suggesting hypoactivity of the serotonergic system during depression (Rajewska & Rybakowski, 2003). Therefore, the
impact of hormone oscillations during perimenopause transition may affect the serotonergic system function and increase vulnerability to develop depression.

4. Antidepressant-like actions of estrogens in clinical and preclinical studies

4.1 Effects of estrogens in clinical studies

The participation of estrogens in the etiology of depression is evident when they are used as part of the pharmacotherapy of depression associated to perimenopause. Clinical research has found clear antidepressant effects of various estrogens when given alone (Schmidt et al., 2000; Soares et al., 2001) or in combination with classic antidepressants (Soares et al., 2001; Morgan et al., 2005). However, an equal amount of reports have failed to find antidepressant effects of estrogens administered alone (Coope, 1975; Saletu et al., 1995; Morrison et al., 2004) or a lack of further benefit from that produced by an antidepressant treatment (Shapira et al., 1985; Amsterdam et al., 1999). The nature of such differences is unknown; however, factors, including age, type of compounds, depression scales, duration of treatment, type of depression, endocrine stage and time after cessation of menses, may be responsible for these differences.

For example, in a double-blind placebo-controlled study of 34 perimenopausal women with major depressive disorder or minor depression, 3 weeks of estradiol monotherapy resulted in significant improvement (Schmidt et al., 2000). Furthermore, in another placebo controlled double-blind study of perimenopausal women, 17β-estradiol delivered transdermally was also efficacious (Soares et al., 2001). An open study also showed that in women with major depressive disorder, estradiol either as monotherapy or added to an SSRI antidepressant was effective after 6 weeks of treatment (Rasgon et al., 2002). However, studies in which menopausal women with or without depression diagnosis were included, estrogens were ineffective to reduce depressive symptoms (Coope, 1975; Strickler et al., 1977).

On the other hand, two out of four studies of varying designs suggest that estrogen may improve responsiveness to antidepressants. A randomized, controlled, multicenter trial of fluoxetine in geriatric depression found that women who were incidentally taking estrogen improved better on fluoxetine than placebo, whereas those who were not taking estrogen showed no difference between fluoxetine and placebo (Schneider et al., 1997). On the negative side, a recent retrospective study found no difference in the proportion of responders to fluoxetine between women who took estrogen replacement therapy and women who did not (Amsterdam et al., 1999). Finally, another study failed to show efficacy for estrogen augmentation of imipramine in either pre- or postmenopausal women with treatment-resistant depression (Shapira et al., 1985). Some examples of estrogens used as therapy for depression alone or in combination with antidepressants or other hormones are illustrated in table 1 and table 2.

4.2 Antidepressant-like effects of estrogens on basic research

In basic research, animal models of experimental depression have been extensively used in the development of novel therapeutic compounds and for the understanding of the neural substrates underlying depressive behavior (Holmes, 2003; Cryan et al., 2005; Markou et al., 2009). Thus, using animal models for the screening of compounds with antidepressant-like properties, estrogens have antidepressant-like effects. For example, it was found that 7 days
of estradiol treatment reduces the immobility behavior in gonadectomized mice in the tail suspension test, suggesting an antidepressant-like action (Bernardi et al., 1989).

Other studies have been performed in rats and mice using the forced swimming test (FST) which has been primarily developed as a test for screening the efficacy of novel antidepressants (López-Rubalcava et al., 2009). It is noticeable that antidepressant-like actions of estrogenic compounds have been detected after acute (1 injection) and chronic treatments (7-14 days) if they are administered close to the time of ovaries elimination, i.e. either immediately or a few weeks after estrogens decline. For example, the administration of estradiol benzoate for 7 or 14 days, induces antidepressant-like effects in the FST (Okada et al., 1997; Rachman et al., 1998). Besides, the antidepressant-like action of estrogenic compounds like 17β-estradiol (E2), 17α-ethinyl-estradiol (EE2) and diarylpropionitrile (DPN, an agonist to estrogen receptors type β) was also observed after an acute treatment (Estrada-Camarena et al., 2003; Walf et al., 2004). Interestingly, a selective estrogen receptor modulator, raloxifene, was only effective after 7 days of treatment; whereas tamoxifen, or the ERα agonist, 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) were ineffective in the FST after an acute or chronic treatment (table 3). Hence, the antidepressant-like effect of compounds with estrogenic activity depends on the type of compound and on the length of the treatment, suggesting that different mechanisms are involved. In addition, the antidepressant-like effect of estrogens also seems to depend on the time of estrogen restitution after the ovariectomy (OVX) as well as on the age of the animals. In this sense, if the restitution with E2 in young animals is initiated after three weeks post-OVX, but not five or more weeks, antidepressant-like effects are observed (Estrada-Camarena et al., 2011). In contrast, if middle age rats (around 12 months old) are ovariectomized, the antidepressant-like effect of E2 is restricted to one week post-OVX (unpublished data).

5. Actions of estrogens on monoaminergic systems

5.1 Evidence of estrogens interactions with the serotonergic system

In vitro and in vivo studies, with non-stressed animals, have analyzed estrogens’ effects on the serotonergic system. For example, in ovariectomized rats, acute and chronic estradiol treatment resulted in increased serotonin levels in specific brain areas such as the dorsal raphe nucleus and hippocampus (Lubbers et al., 2010). Similar results were found in the hypothalamus of guinea pigs (Lu et al., 1999) and in the dorsal raphe nucleus of nonhuman primates (Lu & Bethea, 2002). Furthermore, human studies reported increased serotonin levels in postmenopausal women receiving hormone replacement therapy with estrogens (Blum et al., 1996) and suggest that estradiol enhances 5-HT synthesis in serotonergic neurons (O’Keane et al., 1991).

Estrogens effects on serotonin levels could be related with an increase on tryptophan hydroxylase activity (Donner & Handa, 2009). Thus, in rat’s dorsal raphe nucleus, it has been shown that the tryptophan hydroxylase enzyme expression is directly modulated by estrogens (McEwen, 1999; Donner & Handa, 2009). Furthermore, immunohistochemical studies revealed the existence of ER-β mRNA in neurons of the dorsal raphe nucleus (McEwen, 1999). Therefore, it is suggested that estrogens might modulate the enzyme’s activity or synthesis through ER-β, and consequently have an impact on serotonin levels (McEwen, 1999; Donner & Handa, 2009).
Another site of action through which estrogens can influence serotonin levels is the serotonin transporter (SERT). Studies in monkeys showed that E2 and the selective modulators of estrogen receptors, raloxifene and arzoxifene, increased tryptophan hydroxylase mRNA expression and decreased SERT’s mRNA expression (Bethea et al., 2002; Smith et al., 2004). Interestingly, in the FST, raloxifene induced antidepressant-like effects similar to SSRIs such as fluoxetine (Estrada-Camarena et al., 2003; Estrada-Camarena et al., 2010). Studies in rats, analyzing different brain areas, indicate that acute or chronic treatment with estradiol benzoate decreased the number of 3H paroxetine binding sites (Mendelson et al., 1993). These results are in agreement with in vitro studies that reported that some estrogenic compounds interact with the serotonin transporter in membranes obtained from cerebral cortex, hippocampus, hypothalamus and striatum (Chang & Chang, 1999).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Estrogenic compound</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lopez-Jaramillo et al., 1996)</td>
<td>Post-menopausal women</td>
<td>Conjugate equine estrogens, oral</td>
<td>E>placebo Beck scale</td>
</tr>
<tr>
<td>(Soares et al., 2001)</td>
<td>Perimenopausal women with depression (40-45 years old)</td>
<td>17 β-estradiol path</td>
<td>E>placebo MADRS y BKMI scales</td>
</tr>
<tr>
<td>(Montgomery et al., 1987)</td>
<td>Peri, postmenopausal and hysterectomized women without depression (44-50 years old)</td>
<td>17 β-estradiol with or without testosterone</td>
<td>E o E+T > placebo in perimenopausal interview and SRD30</td>
</tr>
<tr>
<td>(Strickler et al., 1977)</td>
<td>Perimenopausal and hysterectomized women with unipolar and bipolar depression or healthy (35-66 years old)</td>
<td>Conjugate equine estrogens, oral</td>
<td>E=placebo MMPI y 16PF scales</td>
</tr>
<tr>
<td>(Coope, 1975)</td>
<td>Menopausal, hysterectomized and oophorectomized women with depression (40-61 years old)</td>
<td>Conjugate equine estrogens, oral</td>
<td>E=placebo</td>
</tr>
<tr>
<td>(Bukulmez et al., 2001)</td>
<td>Postmenopausal women without depression (45-60 years old)</td>
<td>Equine estrogens + medroxyprogesterone or Tibolone, oral</td>
<td>E+MHP o E+tibolone>placebo Beck scale</td>
</tr>
<tr>
<td>(Schmidt et al., 2000)</td>
<td>Perimenopausal women with depression</td>
<td>17 β-estradiol patch</td>
<td>E>placebo</td>
</tr>
</tbody>
</table>

Table 1. Effect of estrogens as antidepressants in clinical practice
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study population</th>
<th>Antidepressant</th>
<th>Type of estrogen</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Shapira et al., 1985)</td>
<td>Pre and postmenopausal women with depression treatment resistant (26-74 years old)</td>
<td>Imipramine 200 mg/day/3 months</td>
<td>Conjugate equine estrogens, oral 1.25-3.75 mg/day/month</td>
<td>E+imipramine = placebo+imipramine Hamilton and Becker scales</td>
</tr>
<tr>
<td>(Amsterdam et al., 1999)</td>
<td>Pre and postmenopausal women with depression with or without treatment with estrogens alone or in combination with progesterone (<45 or >45)</td>
<td>Fluoxetine 20 mg/day/3 months</td>
<td>Conjugate equine estrogens, oral 0.625 mg/day/3 months with or without progesterone</td>
<td>E+fluoxetine= placebo+fluoxetine Hamilton scale</td>
</tr>
<tr>
<td>(Schneider et al., 1997)</td>
<td>Postmenopausal women with depression</td>
<td>Fluoxetine</td>
<td>ERT Estrogens 1.5 month</td>
<td>E+FLX >E+placebo, placebo+FLX y placebo+placebo</td>
</tr>
<tr>
<td>(Schneider et al., 2001)</td>
<td>Postmenopausal women with depression > 60 years old</td>
<td>Sertraline</td>
<td>Conjugate equine estrogens oral (0.625 mg/day) /3 months</td>
<td>E+SERT improves of quality of life</td>
</tr>
<tr>
<td>(Soares et al., 2001)</td>
<td>Peri and postmenopausal women with depression</td>
<td>Citalopram 20-40 mg/day/2 months</td>
<td>17β-estradiol (100 µg/day/1 month + CIT/2 months</td>
<td>E+CIT> E+placebo ↓ MADRS scale</td>
</tr>
<tr>
<td>(Joffe et al., 2001)</td>
<td>Peri and postmenopausal women with depression</td>
<td>Mirtazepine 30-45 mg/day 2 months</td>
<td>Estrogens+MIRT</td>
<td>E+MIRT ↓ Hamilton scale</td>
</tr>
</tbody>
</table>

Table 2. Effect of estrogens combination with antidepressant drugs in the treatment of depression
Table 3. Effect of different types of estrogenic compounds in ovariectomized female rodents tested in different animal models for the screening of antidepressant-drugs.

<table>
<thead>
<tr>
<th>Estrogenic compound</th>
<th>Behavioral effect</th>
<th>Test</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonist with more activity on ERα</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propyl-pyrazol-triol (PPT)</td>
<td>-</td>
<td>FST</td>
<td>(Estrada-Camarena et al., 2003; Walf et al., 2004; Walf & Frye, 2007)</td>
</tr>
<tr>
<td>17α-estradiol</td>
<td>-</td>
<td>FST</td>
<td></td>
</tr>
<tr>
<td>17α-Ethynyl-estradiol</td>
<td>+ Low doses</td>
<td>FST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- High doses</td>
<td>FST</td>
<td></td>
</tr>
<tr>
<td>Agonist with more activity on ERβ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaryl-propionitrile (DPN)</td>
<td>+</td>
<td>FST</td>
<td>(Walf et al., 2004; Walf & Frye, 2007)</td>
</tr>
<tr>
<td>Cumestrol</td>
<td>+</td>
<td>FST</td>
<td></td>
</tr>
<tr>
<td>Agonist of GPR30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>+</td>
<td>TST</td>
<td>(Dennis et al., 2009)</td>
</tr>
<tr>
<td>Agonist of ERα and ERβ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 β-Estradiol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estradiol benzoate *</td>
<td>+</td>
<td>FST</td>
<td>(Bernardi et al., 1989; Okada et al., 1997; Rachman et al., 1998; Galea et al., 2002; Estrada-Camarena et al., 2003; Dalla et al., 2005; Romano-Torres & Fernandez-Guasti, 2010)</td>
</tr>
<tr>
<td>Diethyl-stilbestrol</td>
<td>+/-</td>
<td>FST, TST</td>
<td>(Estrada-Camarena et al., 2003; Dalla et al., 2005; Romano-Torres & Fernandez-Guasti, 2010)</td>
</tr>
<tr>
<td>Estradiol valerate</td>
<td>-</td>
<td>FST</td>
<td></td>
</tr>
<tr>
<td>Selective estrogen receptor modulators of ERα and ERβ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raloxifene</td>
<td>+</td>
<td>FST</td>
<td>(Estrada-Camarena et al., 2010; Walf & Frye, 2010)</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>-</td>
<td>FST</td>
<td></td>
</tr>
<tr>
<td>Antagonist of ERα and ERβ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU 58668</td>
<td>-</td>
<td>FST</td>
<td>(Estrada-Camarena et al., 2006b; López-Rubalcava et al., 2007)</td>
</tr>
<tr>
<td>ICI 182780</td>
<td>-</td>
<td>FST</td>
<td></td>
</tr>
<tr>
<td>Phytoestrogens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomegranate (Estradiol, estrone, estriol, cumestrol, genistien)</td>
<td>+</td>
<td>FST</td>
<td>(Mori-Okamoto et al., 2004)</td>
</tr>
</tbody>
</table>

FST=Forced swimming test; TST= tail suspension test; CMS = chronic mild stress. +: decrease of anhedonia or immobility behavior; - : no change of anhedonia or immobility behavior.
As for the action of estrogens on serotonergic receptors, an interaction with 5-HT1A, 5-HT1B, 5-HT2A/2C and 5-HT3 receptors has been demonstrated (Osterlund & Hurd, 1998; Raap et al., 2000; Hiroi & Neumaier, 2009). In general, it is proposed that estrogens produce a desensitization of 5-HT1A receptors (Lu & Bethea, 2002) which is associated with decreased Gi protein coupled receptors (Mize & Alper, 2000; Raap et al., 2000; Lu & Bethea, 2002). Moreover, another mechanism of action involves the phosphorylation of 5-HT1A receptor via activation of protein kinase-A; this effect is proposed to be mediated through the activation of an estrogen membrane receptor (Mize & Alper, 2002).

Recently, our laboratory found that E2 requires the presence of 5-HT since its depletion or the selective destruction of the presynaptic terminal, partially blocked E2’s antidepressant-like effects (López-Rubalcava et al., 2005). Furthermore, the antidepressant-like actions of E2 and EE2, alone or in combination with fluoxetine require the activation of 5-HT1A receptors, since the selective 5-HT1A antagonist, WAY100635 blocked the antidepressant-like effect induced by these estrogens (Estrada-Camarena et al., 2006a; Estrada-Camarena et al., 2006b). In support of this proposal, the administration of the specific 5-HT1A post-synaptic receptor antagonist MM-77, canceled E2 antidepressant-like effects in the FST (López-Rubalcava et al., 2005).

Results suggest that estrogenic actions on the serotonergic system require estrogen receptor activation. For example, our research group found that RU58688, an estrogen receptor antagonist, blocks E2 antidepressant-like effects in the FST (Estrada-Camarena et al., 2006b); while the desensitization of postsynaptic 5-HT1A receptors located in the hippocampus of the rat requires the participation of a membrane estrogen receptor (Mize et al., 2001).

Recently, it was demonstrated that the membrane estrogen receptor GPR30, is involved in 5-HT1A receptor desensitization in the hypothalamus of the rat (Rossi et al., 2010). Taken together, these data may explain why the blockade of ER and 5-HT1A receptor cancels E2 antidepressant-like effects.

In conclusion, it can be proposed that the antidepressant-like effects of E2 are due to its effects on the serotonergic system at both, a pre-and post-synaptic terminals. Thus, in the presynaptic neuron, estrogens are likely to stimulate the activity of the enzyme tryptophan hydroxylase and at the same time inhibit the SERT, this would lead to an increased in the availability of 5-HT in the synaptic cleft. On the postsynaptic site, 5-HT1A and possibly 5-HT2A receptors contribute to trigger signaling cascades that would allowed the modulation of other neurotransmitter systems and processes as complex as the modulation of neuronal plasticity (Fig. 1).

5.2 Evidence of the interaction of estrogens with the noradrenergic system

Several reports, including electrophysiological records (Wagner et al., 2001) and ligand binding studies (Wilkinson & Herdon, 1982) have shown that estrogens can also modulate noradrenergic neurotransmission in the central nervous system (CNS). Several studies reported that estrogenic compounds can influence noradrenergic neurotransmission through an interaction with the noradrenergic transporter and the MAO or tyrosine hydroxylase enzymes. For example, in vitro studies have shown that E2, EE2, DES and some catechol-estrogens such as 2-hydroxy-EE2 (2-OH-EE2) and 2-hydroxy-E1 (2-OHE) inhibit NA reuptake sites in synaptosomes from the cerebral cortex and hypothalamus of rats that resulted in increased levels of NA in the synaptic cleft (Ghraf et al., 1983). In line with these
findings, acute E2 administration to ovariectomized rats decreased NA reuptake rate in the hypothalamus (Hiemke et al., 1985) and increases mRNA levels of tyrosine hydroxylase in the locus coeruleus (Serova et al., 2002). Finally, it has been reported that estrogens increased NA concentration by inhibiting MAO-A activity (Holschneider et al., 1998). These data collectively suggest that estrogens interact with the noradrenergic system through the modulation of NA release, as well as in processes of synthesis and elimination of the neurotransmitter. Thus, E2 given to ovariectomized female rats increased the firing rate of noradrenergic neurons that project to the preoptic area and to the anterior hypothalamus (Kaba et al., 1983). Similarly to some antidepressant drugs, such as desipramine (noradrenergic reuptake inhibitor), E2 decreased mRNA expression and density of α2 receptors (Karkanias et al., 1997); it has been reported that chronic treatment with E2 reduces β adrenergic receptors response (Carlberg & Fregly, 1986).

Fig. 1. Esquematic representation of proposed mechanism of action of estradiol’s antidepressant-like actions on the serotonergic system in the forced swimming test (an animal model of depression). First, estradiol increases the activity of tryptophan hydroxylase and inhibits the serotonin transporter to induce an increase in serotonin levels in the synaptic clef. Second, estradiol could also induce a desensitization of 5-HT1A and 5-HT1B presynaptic receptors and modulate serotonin release and firing of serotonergic neurons; as a consequence, the increase of serotonin in the synaptic clef may activate 5-HT1A and 5-HT2A postsynaptic receptors and promote the activation of signal transduction pathways. SERT= serotonin transporter.
On the same research line, it has been suggested that EE2 interaction with the noradrenergic system may be mediated through α2 adrenergic receptors, since idazoxan, a selective antagonist of these receptors, is able to block the antidepressant-like effect of EE2 (López-Rubalcava et al., 2007). In addition to these studies, recently we have found that the DSP4, a neurotoxin that selectively destroys noradrenergic nerve terminals in the locus coeruleus was able to block the antidepressant-like effects induced by EE2 in the FST (López-Rubalcava et al., 2007). Together, these findings suggest that estrogen may facilitate the noradrenergic transmission by: 1) increasing NA synthesis, 2) by reducing NA reuptake, and by improving NA availability, or 3) through a mechanism involving both proposals.

5.3 Evidence of estrogens interactions with the dopaminergic system

The finding that some estrogens increase the activity of tyrosine-hydroxylase enzymes and inhibit the MAO-A activity may lead to the speculation that an increase in dopaminergic activity could mediate the antidepressant-like effect of estrogens. To our knowledge, there is no direct correlation between brain levels of dopamine or its metabolites and the antidepressant-like effect of these steroids. However, some preclinical reports indicates that agonist to ERα increase dopamine and DOPAC (dopamine metabolite) levels in the hippocampus and the frontal cortex (Lubbers et al., 2010), areas involved in the effect of several antidepressant drugs. In fact, bupropion, a catecholamine enhancer, produces antidepressant-like actions in preclinical models (Reneric & Lucki, 1998; Dhir & Kulkarni, 2008; Bourin et al., 2009).

Evidences in non-stressed animals also support the effect of estrogens on the dopaminergic system. For example, ovariectomy induces a decrease in D1 and D2 receptors density (Bosse & DiPaolo, 1996) which is reverse by 17β-estradiol chronic treatment (Bosse & DiPaolo, 1996; Landry et al., 2002). In acute treatment, estradiol does not alter D2 receptors density but induces changes in the proportion of high to low affinity sites (Levesque & Di Paolo, 1993). In relation to the dopamine transporter (DAT), it has been shown that ovariectomy increases the DAT in the striatum, and this increase was reverted by estradiol chronic treatment (Attali et al., 1997).

It has been reported that D1 and D2 receptor blockade may contribute to reduce negative effects derived from the Hypothalamus-Pituitary-adrenal axis (HPA) activation during stress response (Sullivan & Dufresne, 2006; Belda & Armario, 2009). For example, the administration of dopamine agonists in different brain areas resulted in the increase of plasma corticosterone levels (Ikemoto & Goeders, 1998), whereas the administration of antagonists to D1 and D2 receptors reduces the increase in plasma ACTH and corticosterone concentrations induced by stress (Belda & Armario, 2009). Thus, it is suggested that dopamine receptors are involved in the regulation of the stress response (Belda & Armario, 2009).

In addition, in transgenic mice with functional alterations of the HPA axis, the antidepressant treatment with FLX or amitryptiline corrected the increased binding on D1 and D2 receptors in the striatum and decreased dopamine transporter levels (Cyr et al., 2001). Therefore, if estrogens are able to modulate dopamine receptors and DAT, it is possible that these effects contribute to explain their antidepressant-like effect. Supporting this assumption, a recent report in ovariectomized rats shows that chronic administration of SCH 23390 (D1 antagonist) plus E2 induces robust antidepressant-like actions in the FST (Fedotova & Ordyan, 2011). Additionally, in an experiment performed in male mice it was found that the blockage of D1 or
D2 receptors cancelled the antidepressant-like action of the acute administration of E2 (Dhir & Kulkarni, 2008). Consequently, the information about the specific participation of dopaminergic receptors in the antidepressant-like action of estrogens is yet controversial and need further exploration in order to establish any conclusion.

6. Proposed mechanism of action in the antidepressant-like effects of estrogens

As mentioned earlier, estrogens increases the activity of enzymes involved in the synthesis of 5-HT (tryptophan hydroxylase) and catecholamines (tyrosine hydroxylase and dopamine β-hydroxylase) at the same time that posses the ability to inhibit or decrease the activity of the serotonin and noradrenaline transporters in several brain areas. Interestingly, at the presynaptic terminal, estrogens can also activate the 5-HT1A/5-HT1B and α2-adrenoceptor that regulates the discharge and release of both NA and 5-HT. Together, these effects may contribute to increase the levels of monoamines in the synaptic cleft and promote the activation of post-synaptic receptors such as 5-HT2A and β-adrenergic receptors as well as the activation or deactivation of several signal transduction pathways such as cAMP-PKA and IP3-PKC, among others. These signal transduction pathways may contribute to the activation of transcription factors like CREB and promote neuroplastic remodeling and/or neuroprotection processes (Bethea et al., 2009) that could be effective in the development of strategies to cope with stress. Additionally, it has been reported that E2 administration decreases the activity of monoamine oxidase enzymes activity (type A and B) (involved in the degradation monoamines) in several areas of brain (Gundlah et al., 2002).

Recently, it was shown that the monoaminergic neurotransmission is sensitive to modulation of estrogenic compounds, in this sense, the effects of estrogens on monoamine levels may be dependent of the type of estrogen receptor used; thus, ERα or ERβ agonists increases the levels of NA in the frontal cortex and hippocampus; similarly, ERα agonist increase the levels of the metabolites of NA and dopamine, 3-methoxy-4-hydroxyphenylglycol (MHPG) and DOPAC in hippocampus or frontal cortex; and ERβ agonist increase the levels of 5-HIIA in amygdala, hippocampus and ventral tegmental area (Lubbers et al., 2010). It was shown that that the effects of estrogens on catecholaminergic biosynthetic enzymes are due to the activation of estrogens receptors α and the serotonergic enzyme stimulation has been related with the activation of ER β (Donner & Handa, 2009; Serova et al., 2010). Therefore, it is possible to consider that the modulation of serotonergic and noradrenergic activity depends in part of the activation of ER. Based on this evidence, it seems possible that ERα are more related with the modulation of the catecholaminergic system, while ERβ with the serotonergic one; notwithstanding future studies are needed to confirm this hypothesis.

It is important to mention that participation of estrogens’ membrane receptors in the modulation of monoamines activity needs to be further investigated. For example, it has been shown that the desensitization of 5-HT1A receptor induced by 17 β-estradiol in oxytocin cells of hypothalamus is independent of the activation of ERβ and may involve only the membrane estrogen receptor GPR30 (Rossi et al., 2010); while the desensitization of the same receptors in the ACTH cells are depend of both GPR30 and ERβ (Rossi et al., 2010). This evidence shows the complexity in the relationship between estrogens and monoamines.
The modulation of noradrenergic and serotonergic systems by estrogens could have important physiological implications in the regulation of stress response. It has been reported that corticotrophin releasing factor (CRF) stimulates locus coeruleus activity under stressful situations and this is associated with a heightened arousal (Valentino & Van Bockstaele, 2008; Bangasser et al., 2010). In this case, there is direct evidence that CRF genes expression is regulated by estrogens and that estradiol reduces plasma ACTH and blood pressure increases induced by restrain stress (Bangasser et al., 2010). These responses occurred simultaneously to a differential modulation of cathecolamine biosynthetic enzymes gene expression in the nucleus of the solitary tract and the locus coeruleus (Serova et al., 2005).

Recently, it was reported that an animal model of depression, the FST, increased corticosterone and estrogen plasma concentrations in adult females rats (Martinez-Mota et al., 2011), suggesting that estrogens function as a compensatory mechanism against stress-response. Furthermore, estradiol administration prevented the increase in the percentage of discharge of the locus coeruleus induced by the FST in ovariectomized rats. As a result, it is
possible to considerer that estrogens modulation of the noradrenergic system results in an increase expression of coping behaviors in the FST and in the regulation of HPA function. In addition, it has been reported that stress induced by the FST reduces 5-HT levels in the amygdala and lateral septum in male rats (Kirby et al., 1995), while in females, 5-HT is reduced in the prefrontal cortex and in the hypothalamus, but not in the amygdala (Dalla et al., 2005). Interestingly, unpublished results from our laboratory showed that E2 administration, previous to the FST, prevented the decline of 5-HT concentration in some brain areas during the FST and at the same time E2 induces an antidepressant-like effect.

Therefore it could be suggested that estrogenic compounds contribute to increase the serotonergic activity and simultaneously decrease noradrenergic activity, improving the behavioral strategies to cope with acute stressful situations. Also these protective actions of estrogens have been shown using animal models of chronic stress; in this case, estradiol administration reversed chronic stress-induced sensitization in the paraventricular nucleus and central amygdala of female rats (Gerrits et al., 2006).

8. Acknowledgments
Authors wish to thank Mr. Raúl Cardoso for figure elaboration and Isabel Beltrán Villalobos and José Juan Cruz Martínez for technical assistance. The present work was partially supported by the following Grants: Conacyt-104654 for E E-C and Conacyt-155255 for C L-R.

9. References

Effects of Antidepressants

Participation of the Monoaminergic System in the Antidepressant-Like Actions of Estrogens: A Review in Preclinical Studies

Participation of the Monoaminergic System in the Antidepressant-Like Actions of Estrogens: A Review in Preclinical Studies

Over the last fifty years, many studies of psychiatric medication have been carried out on the basis of psychopharmacology. At the beginning, researchers and clinicians found the unexpected effectiveness of some medications with therapeutic effects in anti-mood without knowing the reason. Next, researchers and clinicians started to explore the mechanism of neurotransmitters and started to gain an understanding of how mental illness can be. Antidepressants are one of the most investigated medications. Having greater knowledge of psychopharmacology could help us to gain more understanding of treatments. In total ten chapters on various aspects of antidepressants were integrated into this book to help beginners interested in this field to understand depression.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following: