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1. Introduction 

The recent development of small animal models for experimental hepatotropic infection has 
opened new perspectives for the evaluation of novel therapeutic and/or prophylactic 
compounds against hepatitis B virus (HBV), hepatitis C virus (HCV) and Plasmodium 
falciparum, three major hepatic pathogens responsible for millions of deaths each year. 
Indeed, till now in vitro and in vivo models have their limitations. As example, primary 
human hepatocytes (PHH) are susceptible to infection by HBV (Gripon et al 1988), HCV 
(Fournier et al 1998) and by sporozoites (the hepatic stage of Plasmodium falciparum) 
(Mazier et al 1985), but are hampered by a rapid dedifferentiation of the PHH (the loss of 
differentiation leads to a loss of susceptibility to infection) and the difficulties of obtaining 
fresh cells. In vivo, the chimpanzee constitutes the best non-human primate which can be 
used for studies of HBV, HCV and Plasmodium falciparum (Dandri et al 2005b; Kremsdorf 
& Brezillon 2007; Moreno et al 2007), but multiple drawbacks, including ethical issues, the 
inability to produce numerous progeny in a short time (long gestation periods) and 
exorbitant housing and breeding costs render difficult the accessibility. 

For a long time, liver cell transplantation was just a dream; fortunately, experimental 
biology as led researchers to create new challenging mouse models. Indeed, generation of 
new mouse models for human hepatocyte transplantation have permitted, for the first time, 
experimental manipulations of human hepatotropic pathogens of man which are immediate 
problems of human health, as well as the study of cell transplantation in a regenerative 
medicine perspective. Here, we will focus on the development of humanized mice models 
using hepatocyte transplantation to study the three major hepatic pathogens. 

2. Transplanted hepatic cells can replace a diseased liver in mice 

Few papers laid the foundations for the entire field of liver cell transplantation in mouse. 
They described and applied a genetic-based animal model for competitive liver regeneration 
where exogenous transplanted hepatocytes have a selective advantage and can replace the 
diseased tissue. Two mice models were described: transgenic mice expressing high levels of 
uPA (urokinase-Plasminogen Activator) (Rhim et al 1994) and mice deficient for the fumaryl 
acetoacetate hydrolase (FAH) (Grompe et al 1993) (Fig. 1). 
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Fig. 1. Steps in the creation mouse models for liver cell transplantation and for infection by 
liver pathogens. The arrow represents a timeline. Each box represents an independent and 
initial study describing a mouse model to study liver cell transplantation and the infection of a 
humanized model by a hepatotropic pathogen. If a group of boxes are connected through the 
same line to the timeline this means that these studies were published the same year. 

2.1 uPA mouse model 

The initial observation that opened up the field of liver cell transplantation was 
serendipitous. With the goal of establishing an in vivo system to analyze the coagulation and 
fibrinolytic systems, Heckel et al. produced transgenic mice expressing high levels of uPA 
(urokinase-Plasminogen Activator) under control of the albumin enhancer/promoter for 
liver specific expression (Heckel et al 1990) (Fig.2). 

As expected, the transgenic animals showed elevated plasma uPA levels, which often 
provoked a lethal syndrome of neonatal bleeding, causing the death of numerous transgenic 
founders. Sandgren et al. observed that some transgenic animals were characterized by a 
gradual normalization of the liver function over the first weeks (Sandgren et al 1991). The 
authors concluded that transgene expression was toxic to hepatocytes, and that the 
surviving animals were viable because deletion of the transgene was occurring, followed by 
clonal expansion of the rare cells that had lost the deleterious gene. Indeed, even in animals 
with only a few red spots, the existence of only a few “cured” cells was sufficient to ensure 
replacement of the diseased liver, providing an in vivo demonstration of the unexpectedly 
high proliferative potential of adult liver cells. 

The same team then demonstrated the ability of a small number of “normal” hepatocytes to 

repopulate ad-integrum the liver of transgenic uPA mice (Sandgren et al 1991). Indeed, the 

overexpression of uPA protein in hepatocytes is cytotoxic, giving rise to a continuous liver 

regeneration process. Under these conditions, hepatocytes which lose the transgene by 

somatic reversion, as well as healthy transplanted hepatocytes, have a strong survival 

advantage over resident cells (Rhim et al 1994; Sandgren et al 1991). Throughout the 

regenerative process, the liver size remained normal, and blood chemistry analyses were 

used to demonstrate that the engrafted cells were functionally competent. Finally, the 

authors included an important control to demonstrate that the transplanted liver cells 
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underwent expansion only in the Alb-uPA transgenic and not in normal livers, leading to the 

critical deduction that a regenerative stimulus, that persists in the transgenic mice from birth 

until 6 to 8 weeks, when the transgene expressing liver has been replaced by donor cells, or 

endogenous hepatocytes deleted for the transgene, was necessary to obtain clonal expansion of 

the transplanted cells. To complete the picture, Rhim et al. introduced the nude gene into the 

Alb-uPA mice, and used homozygous as well as hemizygous transgenics to demonstrate that 

xenogenic hepatocytes from rats could reconstitute the diseased livers (Rhim et al 1995). 

 

Fig. 2. The Alb-uPA model. Urokinase-type Plasminogen Activator overexpression induces 
continuous liver cytolysis and regeneration. Gross appearance of liver of Alb-uPA 
transgenic mice at different time after birth demonstrating somatic reversion of the 
transgene. Left, homozygous transgenic liver displaying a uniformly white color; center, 
hemizygous transgenic liver with regeneration nodules, right, non transgenic control. 

Based on their proven utility as hosts for liver repopulation, Alb-uPA transgenic mice were 

backcrossed onto an immunodeficient background (SCID, Rag2-/- or Rag2-/-/Pfp-/-) to obtain 

a mouse model which tolerated the xenotransplantation of Human, Woodchuck and Tupaia 

hepatocytes (Dandri et al 2001a; Dandri et al 2001b; Dandri et al 2005a; Meuleman et al 2005; 

Petersen et al 1998; Rhim et al 1994; Tateno et al 2004). Because of the reversion process 

occurring in heterozygous mice for the Alb-uPA transgene, optimum liver repopulation 

requires intrasplenic transplantation of high quality adult hepatocytes into mice that are 

homozygous for both the SCID trait and the Alb-uPA transgene, and within one or four 

weeks of birth. In these conditions, human hepatocytes engrafted and repopulated the 

mouse parenchyma. Resulting chimeric liver showed satisfactory hepatic architecture and 
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intermingling of the mouse and human subcellular structures, indicating a physiological 

integration of transplanted cells (Meuleman et al 2005; Tateno et al 2004). 

2.2 FAH mouse model 

Fumaryl acetoacetate hydrolase (FAH) deficiency causes the human disease hereditary 

tyrosinaemia type I, an enzyme implicated in the degradation pathway of tyrosine, leading 

to the accumulation in the liver of toxic metabolites. The inhibitor 2-(2-nitro-4-trifluoro-

methylbenzyol)-1,3 cyclohexanedione (NTBC) blocks this pathway at the beginning 

preventing the generation of these metabolites (Lindstedt et al 1992). Grompe et al. constructed 

mice with FAH deficiency and described that the NTBC, with treatment begun in utero and 

maintained thereafter, permitted not only survival of the animal, but also normalized the liver 

function of the deficient mice (Grompe et al 1993; Grompe et al 1995) (Fig. 3). 

 

Fig. 3. The FAH model. Fumaryl acetoacetate hydrolase deficiency induces liver toxicity 
which is blocked by NTBC administration. Mice are submitted to intrasplenic injection of 
hepatocytes and NTBC drug is withdrawn.  

The FAH model was then used for liver transplantation freshly isolated hepatocytes from 

wild type congenic animals; as in the experiments using the Alb-uPA model, data reported 

by Overturf et al. demonstrate that a selective advantage of transplanted cells is necessary to 

obtain repopulation (Overturf et al 1996).  

Until recently the transplantation of human hepatocytes into this mouse was not successful: 

FAH/nude, FAH/NOD/SCID or FAH/Rag1-/- mice appeared to be unable to allow 

persistence and repopulation by human hepatocytes (Azuma et al 2007). Recently, two 

different groups have used nearly the same strategy to create a novel mouse model to study 
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human liver cell transplantation. They backcrossed the Rag2-/-/il2-/- mouse with an FAH-/- 

mouse to give rise to a new mouse model which could be effectively transplanted and 

repopulated by human hepatocytes, presumably because they lacked not only B and T but 

also NK cells (Azuma et al 2007; Bissig et al 2007). Differences in methods to obtain 

satisfactory repopulation have emerged. One group specified the necessity of treating the 

mice by pre-injection of an adenovirus encoding the uPA protein (Azuma et al 2007) to 

allow engraftment of human cells, and they found that treatment with an anti human 

complement agent (Futan) to control the bleeding associated with uPA was not necessary. 

The second group did not need to use adenovirus encoding the uPA expression, but found 

that the Futan treatment was necessary (Bissig et al 2007). In both cases, the FAH/Rag2-/-

/il2-/- mouse model was successfully transplanted and repopulated (up to 90% of the mouse 

liver was repopulated by human hepatocytes 3 months post transplantation). Interestingly, 

it was shown by histological staining that human hepatocytes were interspersed among 

mouse hepatocytes and did not form individualized clones. Moreover, highly humanized 

mice permitted long term expansion and maintenance of human cells, and could be used to 

perform serial transplantation of human hepatocytes from one humanized mouse to a 

second generation without requiring a new batch of human cells. Finally the humanized 

livers of the mice expressed a broad range of human markers, including detoxification 

enzymes (Azuma et al 2007; He et al 2010), and thus, should be useful for pharmacological 

studies. 

3. Mice with chimeric liver: An efficient tool to study hepatotropic pathogens 

It was subsequently shown that both humanized mouse models could be infected by HBV 
and HCV (Fig.1). The uPA/SCID model has already allowed studying HBV or HCV viral 
life cycle and direct pathogenesis independently to an immune response. In both models, 
human hepatocytes, maintain their ability to express numerous enzymes implicated in the 
metabolism and detoxification (p450 family) pathways (Katoh et al 2007; Strom et al 2010) 
and are suitable to evaluate both the antiviral potential of drugs and the potential toxicity of 
antiviral compounds. Moreover, the uPA/SCID mice were used to study hepatic stage of 
Plasmodium falciparum infection. 

It is known that distinct HBV genotypes could participate to the severity of liver disease. In 
order to improve the definition of virological differences among HBV genotypes, Sugiyama 
and colleagues used the Alb-uPA/SCID mice as a tool to evaluate HBV replication 
according to viral genotype and confirmed their in vitro previous results, showing a higher 
replication of genotype C compared to genotype A (Sugiyama et al 2006). Moreover, in a 
more recent study they have shown that genotype G, which is not detectable in mono-
infection, has a higher level of replication in co-infection with HBV genotype H; and that co-
infection may cause fibrosis (Tanaka et al 2008).  

Another group has taken advantage of immune suppression of the xenograft mouse model 
to demonstrate that liver disease induced by HBV is not only the result of activation of the 
immune system, but can be, at least in part, directly mediated by the virus (Meuleman et al 
2006). However, it should be noted that the drastic cytopathic effect was observed using a 
highly pathogenic strain (HBV genotype E) isolated from a patient with fulminant hepatitis. 
In a recent study, Lutgehetmann et al demonstrated that, as in vitro and in patients, 
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interferon alpha failed to induce ISGs (MxA, OAS, TAP-1) in HBV infected hepatocytes, 
validating the model for the study of direct interaction between virus and host cells 
(Lutgehetmann et al 2011) 

Petersen et al., using the flexibility of the uPA mouse model, which could be repopulated 
either by Tupaia belangeri or human hepatocytes and infected by Wooly Monkey HBV or 
HBV respectively, have tested inhibitors of viral entry (Petersen et al 2008). In both systems, 
the authors showed that the treatment of repopulated mice with acylated HBV preS-derived 
lipopeptides prevented viral infection. This alternative approach could benefit patients 
undergoing liver transplantation to prevent vertical transmission as well as reinfection. 

This model can establish long lasting chronic infections and constitute a perfect model to 
study anti-retroviral treatments. Indeed, it has been validated in different reports showing a 
good responsiveness to several reverse transcriptase inhibitors (lamivudine, adefovil 
dipivoxil) (Dandri et al 2005; Tsuge et al 2005). Others steps of viral replication can be 
targeted, it has been demonstrated that in infected mice HAP BAY 41-4109 (inhibition of 
capsid formation) was able to diminish HBV viremia (Brezillon et al 2011). Finally, the 
presence of HBV cccDNA in nucleus of infected human hepatocytes will allow testing new 
therapeutic approaches to clear hepatocytes or to control transcription from cccDNA 
(Lutgehetmann et al 2010). 

Concerning HCV, infected humanized mice have been used to demonstrate antiviral activity 
of several molecules, (IFNα2b, BILN2061, Telaprevir, HCV-796) that were already used in 
clinic, or in pre-clinical trials (Kamiya et al 2010; Kneteman et al 2006; Kneteman et al 2009; 
Vanwolleghem et al 2007). All these molecules have demonstrated antiviral effect against 
HCV. Moreover the model has permitted to describe cardio-toxicity of BILN2061, 
confirming the perfect suitability of humanized mice for antiviral therapy evaluation. This 
model can also been used to study susceptibility of different viral recombinant strains to 
actual treatments. This will allow strategies from “bench to bedside” to design specific 
treatment for each patient (Kurbanov et al 2008). 

As for HBV, the design of inhibitors targeting several steps of HCV replication is the key to 

treat patients. In addition to protease and polymerase inhibitors, some groups tried to target 

viral entry. Meuleman et al have demonstrated the ability of antibodies directed against 

cellular surface molecules (CD81 and SR-B1) involved in virus entry to protect human 

hepatocytes from HCV infection (Meuleman et al 2008; Meuleman et al 2011a; Meuleman et 

al 2011b). Matsumura et al have shown that amphipatic DNA polymers inhibited HCV post-

binding stage and thus blocked de novo infection (Matsumura et al 2009) 

It is clear that the immune response to viral infection plays a major role in the outcome of 
liver disease during HCV infection. To study the involvement of the innate immune system 
against viral infection, Walters et al., used the immunotolerant Alb-uPA/SCID mouse 
model to analyze transcriptome profiles of HCV infected versus non infected mice (Walters 
et al 2006). Globally, in the Alb-uPA/SCID mouse model, HCV infection activates the 
transcription of interferon-stimulated genes which are in particular implicated in 
establishing the innate immune response, and thus active in the inhibition of HCV 
replication. Moreover, and as previously shown in HCV-infected patients and HCV 
transgenic mice, these authors confirmed in the Alb-uPA/SCID mouse model the 
relationship between severe HCV infection and perturbation of lipid metabolism (Joyce et al 
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2009). These observations strongly suggest that liver disease may not be mediated 
exclusively by an HCV-specific adaptive immune response. Thus, the innate immune 
response may play a fundamental role in the pathogenesis of HBV and HCV infection.  

Infection by the Plasmodium falciparum parasite is restricted to human and closely related 
species. As for the HBV and HCV viruses, ethical and financial reasons limit the use of non 
human primates to study this pathogen. Numerous studies have used a humanized mouse 
that carries human erythrocytes (Moreno et al 2007). Sporozoites, the hepatic stage of the 
pathogen [for review in the viral cycle of Plasmodium falciparum see (Greenwood et al 
2008)] were used to infect chimeric liver of humanized Alb-uPA/SCID mice. The authors 
demonstrated that the reduction of the innate immune response by anti-macrophage and 
anti-NK cell treatments both enhance the humanization of Alb-uPA/SCID mice and allowed 
the infection of human hepatocytes by sporozoites as well as the maturation of the pathogen 
(Morosan et al 2006). This new model should permit the evaluation of drugs directed 
specifically against the hepatic stage of the infection. This model has also been used to study 
biology of P. falciparum, using genetically knock out for Liver-stage antigen-1 parasite, that 
could show that LSA-1 plays a critical role during late liver-stage schizogony and is thus 
important in the parasite transition from the liver to blood (Mikolajczak et al 2011). 
Moreover, this constitutes a starting point to create a future humanized model allowing 
study of the entire parasite cycle. 

4. Concluding remarks 

The recent development of small mouse models for experimental HBV, HCV or 
Plasmodium falciparum infection has opened new perspectives for the evaluation of novel 
therapeutic and/or prophylactic compounds against these pathogens. These models are 
physiologically relevant, in that they are based on the transplantation of primary 
hepatocytes. However, to integrate humanized mouse technology into development 
process, the technology must be accessible, reproducible and at a reasonable cost. Indeed, 
both mouse models are relatively complicated to use, but they present the unquestionable 
advantage of being much less expensive and easier to maintain and breed than primates. 

The present challenge is the construction of mice combining human immune and liver cells. 
Mice with humanized immune systems already represent the model of choice for various 
lymphotropic pathogens. The addition of human hepatic tissue holds promise for the study 
of hepatotropic pathogens. Indeed, this will help to understand how hepatotropic pathogens 
are detected by the immune system, why the majority of individuals fail to mount an 
effective response, the factors involved in chronic viral persistence versus resolution of 
infection. A recent report Washburn et al have developed a specific mouse model, 
humanized with human immune system and liver tissues (Washburn et al 2011). These mice 
generate a specific immune response against the HCV and seem to develop liver diseases. 
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