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1. Introduction 

Interference as a wave characteristic of the electromagnetic wave has many applications in 
science, technology and medicine (Grattan & Meggit, 1997; Wang et al., 2011). The fringe 
visibility of the first order interference experiments such as the famous double slit Young 
experiment and Michelson interferometer, is determined by the first order correlation function 
(Gerry & Knight, 2005). The first order interference is also called the field interference. In 
Hanbury-Brown and Twiss (HBT) experiment, fringes are due to the intensity interference and 
visibility is determined by the second order correlation function. (Brown & Twiss, 1956; Scully 
& Zubairy 2001). In quantum optics, nonlinear Lithography and quantum Lithography, 
interferometry based on higher order correlation function is of prime importance (Bentley & 
Boyd, 2004; Boto et al., 2000). However in all of these interferometries, the fringe pattern 
depends on the optical path difference (OPD) and feature of light source. This chapter is 
concentrated on the classical field interferometry. The fringe existence is a characteristic of 
spatial or temporal coherences between the two light beams. 

The phenomenon of interference of light is used in many high precision measuring systems 
and sensors. The optical path can be controlled by optical waveguides and optical fibers. 
The use of optical fibers allows making such devices extremely compact and economic.  

Among the lots of advantages of optical fibers is their ability to reduce the effects of wave 
front distortion by the atmospheric turbulence and compact beam-splitter and combiner. 
These abilities made optical fiber as a suitable medium for transportation of light in long 
baseline interferometers which are used for gravitational wave detection, intruder sensor, 
structural health monitoring and long length leak detection systems (Sacharov, 2001; Cahill, 
2007; Cahill & Stokes, 2008; Jia et al., 2008; Mishra & Soni, 2011, Bahrampour et al., 2012). 

Other advantages that make optical fibers become useful elements in sensing technologies 
are high elongation sensitivity, fast response to internal or external defects such as 
temperature and tension, electromagnetic noise disturbance immunity, less power 
consumption and potential for large scale multiplexing (Higuera & Miguel, 2002). 

In this chapter the different structures of optical fibers which are important in fiber 
interferometry are taken into consideration. The structures of different types of fiber 
interferometers are described. The sensitivity of coherent light optical fiber interferometers 
is compared with those of the incoherent and white light optical fiber interferometers. The 
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standard methods for signal recovering are explained. A brief discussion on the noise 
sources appears in this chapter. Due to the immunity of the optical fibers to the lightening 
and electromagnetic noise, optical fibers are suitable sensors for transient measurement in 
harsh environments such as current measurement in high voltage transformers (Grattan & 
Meggit, 1999). The optical fiber hydrophone systems are based on elasto-optic effect in 
optical fiber coil, which is installed in one arm of an optical fiber interferometer (OFI) 
(Freitas, 2011). The optical fiber interferometers can be employed as biochemical sensors 
(Gopel et al., 1991). The cooperation of optical fiber interferometry and Plasmon can 
improve the sensitivity of biosensors to one molecule detection system (De Vos et al., 2009). 
The mechanical quantities such as pressure, velocity, acceleration and displacement can be 
measured by optical fiber interferometers (Shizhuo et al., 2008). Among a lot of applications 
of optical fiber interferometers, only some applications such as linear and nonlinear 
photonic circuits and distributed optical fiber sensors are mentioned in this chapter. 

2. Optical fibers structures 

2.1 Standard fibers 

An optical fiber is a cylindrical structure that transports electromagnetic waves in the 
infrared or visible bands of electromagnetic spectrum. In practice optical fibers are highly 
flexible and transparent dielectric material. The optical fiber consists of three different 
layers. Core is the central region which is surrounded by the cladding. These two layers are 
protected by protective jacket. The core refractive index can be uniform or graded while the 
cladding index is typically uniform. For light guiding, it is necessary that the core index be 
greater than the cladding index. Most of the light energy propagates in the core and only a 
small fraction travels in the cladding. The cladding radius is so large that the jacket has no 
effect on the light propagation in the optical fiber structure.  

Depending on the dimensionless frequency 懸 = に講欠岫券頂墜態 − 券頂鎮態 岻怠 態⁄ 膏⁄  where 欠 is the core 
radius, 膏 is the wavelength of the light in free space, nco and nclad are the core and clad 
refractive indices respectively, optical fibers are divided into multimode (懸 ≫ な) and single 
mode fibers (	ど < 懸 < 懸頂 ), where 懸頂 is cutoff frequency (Agrawal, 2007). 

The optical fibers whose core and cladding have very nearly the same refractive index are 
named weakly guiding fibers. The corresponding eigen value equation is simpler than the 
exact fiber characteristic equation. The notation 詣鶏程,禎 introduces the weakly guiding modes. 

The fundamental mode 茎継怠,怠is denoted by 詣鶏待,怠(Okamoto, 2006). The normalized 

propagation constant versus the dimensionless frequency is called the dispersion curve.  

Depending on the coupling and optical fiber physical parameters, bounded, radiation and 

evanescent modes can exist in an optical fiber. The total incident power can be transported 

by the bounded and radiation modes while evanescent modes store power near the 

excitation source (Snyder, 1983).  

2.2 Polarization maintained optical fibers 

Birefringent optical fibers are those fibers that display two distinct refractive indices 
depending on the polarization direction of the light entering into them. The two principal 
axes of the birefringent fibers are named the fast and slow axis. For a light beam whose 
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polarization aligned with one of the principal axes of the birefrigent fiber, the light 
propagates without any disturbance in its polarization state. The birefringence parameter of 
the fiber is defined by the difference between the two refractive indices corresponding to the 
two principal axes 稽 = 券鎚 − 券捗, where 券鎚 and 券捗	are the refractive indices of the slow and 

fast axis respectively. Sometimes birefringence is defined in terms of the fiber beat 
length	詣喋 = 膏 稽⁄  that is defined as the length of fiber over which the phase difference 
between the fast and slow waves becomes に講. The beat length should be smaller than the 
perturbation periods introduced in the drawing process as well as the physical bends and 
twists. Consequently short beat length fibers preserve the polarization direction. This kind 
of fibers are called Polarization Maintained optical Fibers and denoted by PMF. Several 
types of PMFs are shown in Fig. 1 (Okamoto, 2006). 

 

Fig. 1. Cross section of (a) elliptical core fiber (b) elliptical jacket fiber (c) side tunnel fiber (d) 
PANDA fiber (e) Bow-tie fiber. 

2.3 Photonic crystal fibers 

Light propagation in standard optical fibers and PMFs is based on the total internal 

reflection effect. Bragg diffraction effect can also be employed to confine the light in the core 

of fiber with periodic structure in the cladding. The micro structured fiber which is also 

called photonic crystal fiber (PCF) as shown in Fig. 2, consists of numerous air holes within 

a silica host. Usually the air holes are in a periodic arrangement around silica or a hollow 

core. The silica core PCF is called holey fiber, high delta or cobweb fiber while hollow core is 

named photonic band gap fiber (PBGF). The simplest structure of the holey fiber is a regular 

hexagonal lattice of small holes with a defect in the center such that the hole in the center is 

missed. In the holey fibers, guiding mechanism is also based on the total internal reflection. 

Air holes in the cladding area cause an effective lowering of the average refractive index 

(Poli, et al., 2007). In hollow-core fibers, field confinement in the air core is based on the 

band gap effect.  

 

Fig. 2. Cross section of holey fiber (left) and hollow fiber (right). 

2.4 Slab optical waveguide 

Optical fibers are suitable transmission lines for several applications such as high capacity 
long-haul communication networks and long length optical interferometry. In many 
applications such as integrated circuits, the transmission length is less than one millimeter. 
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Optical waveguides are proper for such applications. A dielectric waveguide consists of a 
dielectric with refractive index n1 which is deposited on a substrate with refractive index n2. 
The refractive index of the medium above the layer n1 is indicated by n3. To achieve true 
guiding modes, it is necessary that n1 be larger than n2 and n3. The propagating modes of the 
slab waveguides are TE and TM modes. The mathematical mode analysis of slab 
waveguides can be found in any standard text book (Adams, 1981). Depending on the 
propagation constant 紅, modes of narrow dielectric strip waveguide are also classified into 
the bounded, radiation and evanescent modes (Adams, 1981; Snyder, 1983). 

2.5 Fiber Bragg gratings  

The modes of optical fibers and waveguides are propagated without coupling to each other 
in the absence of any perturbation. Coupling to the desired modes can be controlled by 
changing the amplitude and the phase of the perturbation in the optical fiber. The coupled 
mode theory (CMT) can be found in the standard text books (Huang, 1984). If the refractive 
index of the core varies periodically, due to the Bragg diffraction effect, scattering from 
different periods can be constructive for some frequencies and destructive for the other 
ones. Depending on the period length, the periodic structures are classified as either long 
period grating (LPG) or fiber Bragg grating (FBG). The period of the LPG is of the order of 
micrometer while in the FBG, it is of the order of nanometer. The operation of the LPG is on 
the basis of coupling the fundamental core mode to higher order co-propagating cladding 
modes. The coupling wavelength is obtained by the linear momentum conservation law or 
the phase matching equation 膏 = 岫紅怠 − 紅態岻Λ, where 紅怠	and 紅態 are the core and cladding 
mode propagation constants respectively and Λ is the period of the LPG (Kashyap, 1999). 

FBG can be employed as a frequency selective reflector or a polarization selective rotator. In 

the reflector state, the forward modes are coupled to the backward modes. While in the 

polarization rotator, a mode with a definite polarization is coupled to another mode with 

different polarization. In the frequency selective reflector, coupling to the backward modes 

occurs in a narrow range of wavelengths around the wavelength for which Bragg condition 
is satisfied  膏 = に券勅捗捗Λ, where 券勅捗捗 is the effective refractive index of the core. Bandwidth of  

FBG is typically below 1nm and depends on the amount of refractive index variation and 

the length of FBG. The governing equations of the FBG can be obtained from the 

conservation of energy and momentum (Kashyap, 1999; Chen, 2006). 

Depending on the application of FBG, the period of the structure can vary in a definite way 
or randomly along the optical fiber core. This structure is named chirped FBG which has 
many applications in optical networks and sensors (Kashyap, 1999; Rao, 1997). 

3. Basic optical fiber interferometer configurations 

Interferometry is based on the superimposing of two or more light beams to measure the 
phase difference between them. Interferometer utilizes two light beams with the same 
frequency. Typically an incident light beam of interferometer is split into two or more parts 
and then recombine together to create an interference pattern. The integer number of 
wavelength for the optical path difference between the two paths corresponds to 
constructive points and odd number of half wavelengths corresponds to destructive points 
of the interference pattern. So in the output optical spectrum of the optical fiber 
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interferometer (OFI), the position of minimum can be shifted to maximum position if the 
optical path difference varies by odd number of half wavelengths. At least two optical paths 
are necessary for an interfererometery experiment. These optical paths can be in one optical 
fiber with two or more different optical fiber modes. Each of modes defines one optical path 
for the interferometer such as the Sagnac interferometer where the optical paths are defined 
by the clockwise and counter clockwise modes. The optical paths can be defined by separate 
optical fibers such as Mach-Zehnder OFI. There are many interferometer configurations that 
have been realized with the optical fiber. To see the principle of their operation, the detail of 
some interferometers such as Sagnac, birefringence OFI, Mach-Zehnder, Michelson, Moiré 
and Fabry-Perot interferometer are presented. 

3.1 Sagnac optical fiber interferometer 

The configuration of a Sagnac optical fiber is illustrated by Fig. 3. The optical source is a 

single mode stabilized coherent semi-conductor or Erbium doped optical fiber laser. The 

laser output beam is assumed to be well collimated with uniform phase. The laser beam 

enters the lossless 3dB optical fiber coupler (OFC). At the OFC the injected light splits into 

two parts with equal intensity that each of them travels around single mode optical fiber coil 

in opposite directions. The output of Sagnac coil is guided toward a single detector. 

 

Fig. 3. A schematic diagram of Sagnac fiber interferometer. 

Due to this specific configuration, fiber Sagnac interferometer has been used for rotation 
sensing primarily. In a non-rotating Sgnac interferometer, the clockwise (CW) and counter 
clockwise (CCW) modes are in phase while for a rotating Sagnac configuration due to the 
rotating velocity, the optical path of one of the modes is shorten and the other one is 
lengthen. The Sagnac effect causes the interference spectrum depends on the angular 
frequency of the setup (Sagnac, 1913). Analysis can be based on the Doppler frequency 
difference between the CW and CCW modes. The detector output frequency is the beating 
frequency of CW and CCW modes. When rotational axis is oriented along the optical fiber 
coil axis, the phase difference of CW and CCW modes is ∆溝 = 8講軽畦硬 膏潔⁄  (Burns, 1993; Vali 
& Shorthill, 1976), where 膏 is the free space optical wavelength, ′畦′ is the area of Sagnac coil, 
N is the number of the coil turn and	硬 is the angular velocity. The sensitivity is the ratio of 
the phase difference to the angular velocity 鯨 = 8講軽畦 膏潔⁄ , which is increased by increasing 
the coil radius, total fiber length and laser frequency. Optical fiber loss and packaging 
criteria limit the total fiber length and coil radius respectively.  

Sagnac fiber interferometers can also be employed for sensing nonreciprocal and time-
varying phenomena. So they become applicable tools for detection current, acoustic wave, 
strain and temperature. The optical gyroscope based on sagnac interferometer is 
commercially available (Bohnert et al., 2002; Lin et al., 2004; Starodumov et al., 1997; Dong & 
Tam, 2007; Fu et al., 2010) 
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3.2 Modal optical fiber interferometer 

The modal interferometers are based on the difference between velocities of two different 
modes. Typically the first two modes of step index fiber like LP01 and LP11 or the HE11 and 
HE21 can be employed to design the modal interferometers. Also the two eigen polarizations 
of PMF are employed for modal interferometry (Bahrampour et al., 2012). The holy structure 
fibers have unique modal properties that are not possible with conventional optical fibers. 
Fig. 4 (a) and (b) show the cross section of high birefringence photonic crystal fiber (HiBi-
PCF) and polarization maintaining photonic crystal fiber (PM-PCF) respectively (Villatoro, 
2009). 

 

Fig. 4. Cross section of (a) HiBi-PCF (b) PM-PCF. 

The PCFs have the possibility for the detection, sensing or spectroscopic analysis of gasses 
and liquids. In PCF a fraction of light penetrates into the voids for interaction and detection 
of gasses or liquids by spectroscopic methods (Villatoro et al., 2009). The holey and hollow 
fibers have their own advantages. Holey fiber which is filled with the desired gas or liquid, 
interacts with evanescent field which is only a few percent of total light power, while in 
hollow fiber, the fiber core is filled by gas or liquid and interacts with core light which is 
more than 90% of the total light power. The silica core single mode PCF bandwidth is more 
than one thousand nanometer which is much greater than those of an air core PCF fiber. A 
nano layer of rare metal coating on the surface of core and voids causes Plasmon-light 
interaction in PCF and extremely enhances the interferometer sensitivity (Hassani & 
Skorobogatiy, 2006). However the compact simple modal fiber interferometers depending 
on the fiber type such as Panda or birefringent PCF, can be employed in long lengths and 
short lengths applications (Villatoro et al., 2006). 

3.3 Mach-Zehnder optical fiber interferometer 

A schematic of conventional Mach-Zehnder OFI is sketched in Fig. 5.  

 

Fig. 5. A Schematic of optical fiber Mach-Zehnder interferometer. 

(a) (b)
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By employing the commercial (軽 × 軽) coupler and single mode optical fibers, it is easy to 
construct the N-path interferometer. A schematic of N-path Mach-Zehnder interferometer is 
presented in Fig. 6. Each lossless linear multi port coupler is described by a ぬ軽 × ぬ軽 unitary 
matrix. If N inputs and N outputs are linear polarized, linear coupler can be characterized 
by 軽 × 軽	matrix. As an example a symmetric ぬ × ぬ fiber coupler (tritters) which is 
commercially available, is described by ぬ × ぬ matrix (Weihs et al., 1996) 

 

Fig. 6. A schematic configuration of N-path Mach-zehnder interferometer. 

The 3-paths Mach-Zehnder interferometer is described by the product of two coupler 

matrices T and diagonal phase matrix 鶏 = 穴件欠訣岫結沈釘迭 , 結沈釘鉄 , 結沈釘典岻	where 砿沈(i=1,2,3) is the 
phase of the i-th path	岫警 = 劇鶏劇岻. This analysis is restricted to beams with identical 
polarization thus a scalar analysis is sufficient. It is assumed that only one of the input fields 
is nonzero. So the input field vector is denoted by 継沈津 = 岫継怠沈津, ど, ど岻. The output field 継墜通痛 = 岫継怠墜通痛 , 継態墜通痛 , 継態墜通痛岻 is determined by the Mach-Zehnder transformation matrix 継墜通痛 = 警継沈津. The output intensities 荊津 = 弁継津墜通痛弁態(n=1,2,3) versus the input intensity 荊墜 = 弁継怠沈津弁態are given in the following: 

 荊津 = 彫轍苔 [ぬ + に cos岫砿怠態 + 肯津岻 + に cos岫砿態戴 + 肯津岻 + に cos岫砿戴怠 + 肯津岻]; 	券 = な,に,ぬ		 (1) 

where	岫肯怠, 肯態, 肯戴岻 = 岫ど,− 態訂戴 , 態訂戴 岻 and 砿沈珍 = 砿沈 − 砿珍 is the phase difference between the i-th 

and j-th branches. Above results are based on the loss-less fiber. For lossy fibers the phase 

matrix P is replaced by matrix 鶏′ = 穴件欠訣岫欠怠, 欠態 exp岫件砿怠態岻 , 欠戴 exp岫件砿怠戴岻岻	where 欠津 (n=1,2,3) is 
the transmission coefficient of the n-th optical fiber branch. The output intensities at the 
output of a ぬ × ぬ	lossy Mach-Zehnder interferometer are: 

 荊津 = 彫轍苔 [欠怠態 + 欠態態 + 欠戴態 + に欠怠欠態 cos岫砿怠態 + 肯津岻+に欠態欠戴 cos岫砿態戴 + 肯津岻 + に欠怠欠戴cos岫砿戴怠 + 肯津岻]; 			券 = な,に,ぬ (2) 

Similar to the interference pattern of the N-slit which is illuminated by a plane wave, there 
are 軽 − に	side lobes between the main peaks of interference pattern in the N-path fiber 
interferometer.  

The sensitivity of an N-path interferometer is higher than the conventional Mach-Zehnder 
interferometer, because the slopes of main peaks are steeper. Mach-Zehnder interferometer 
can be used as a fiber sensor, because the phase difference can be changed by environmental 
effects such as strain. The light in the cladding is more sensitive to the surrounding changes 
than that in the core. The Long Period Grating (LPG) which can couple light from the core to 
the cladding or reverse is suitable to be employed in Mach-Zehnder fiber interferometer 
sensor. (Dianov et al., 1996) 

OFC1 OFC2Laser 

Out1 

Out2 

Out3 

OutN 
剛朝 

剛怠 剛態 剛朝 
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3.4 Michelson optical fiber interferometer 

A schematic of conventional Michelson OFI is depicted in Fig. 7. The high coherent light 
beam is split into two different optical paths in the upper and lower single mode optical 
fibers by the に × に optical fiber coupler (OFC). The light reflected back by mirrors M1 and M2 
are recombined by the OFC to produce interference pattern at the receiver. 

 

Fig. 7. A schematic configuration of Michelson OFI. 

As shown in Fig. 8 by employing a 軽 × 軽 bidirectional coupler, the conventional Michelson 

OFI is generalized to the N-path Michelson OFI. Each ports of a 軽 ×軽 coupler can transmit 

incoming and outgoing waves simultaneously. Generally each linear bidirectional 軽 ×軽 

OFC is characterized by a は軽 × は軽 scattering matrix. In an analysis based on the identical 

polarization where a scalar analysis is sufficient, the scattering matrix becomes a	に軽 × に軽 

matrix and denoted by	桁. The incoming and outgoing electric field vectors are denoted by 継沈津 = 岫継沈津岫怠岻, 継沈津岫態岻岻 and 継墜通痛 = 岫継墜通痛岫怠岻 , 継墜通痛岫態岻 岻 respectively. 継沈津岫怠岻, 継墜通痛岫怠岻
 and 継沈津岫態岻, 継墜通痛岫態岻

 correspond to 

the	軽 × な vectors of the left and right ports of the 軽 ×軽 bidirectional coupler.  

 

Fig. 8. A schematic configuration of N-path Michelson interferometer. 

The incoming and outgoing vectors are related by 継墜通痛 = 桁継沈津 where 	桁 can also be written 
in the block form:  

 蕃継墜通痛岫怠岻継墜通痛岫態岻否 = 岾桁怠怠 桁怠態桁態怠 桁態態峇蕃継沈津岫怠岻継沈津岫態岻否 (3) 

where 桁沈珍(i,j=1,2) is a 軽 × 軽 matrix. For a lossless 軽 ×軽	OFC, 桁 is a unitary matrix. The 

diagonal matrix 鶏 = 穴件欠訣盤欠怠態, 欠態態 exp盤iφ怠態匪 , … , 欠朝態 exp盤iφ怠択匪匪 is the transfer matrix between 

the forward and backward waves in the optical fiber array. 欠津	is the transmission coefficient 
of the nth optical fiber and φ怠樽 is the phase difference between the phase accumulated by 

the field during the propagation in the nth and first optical fiber. The outgoing and 
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incoming fields of the right ports of the 軽 ×軽 OFC is related by the relation 継沈津岫態岻 = 鶏継墜通痛岫態岻
. By 

combining this relation and (3), the transfer matrix of the Nth path Michelson interferometer 
is obtained. 

 継墜通痛岫怠岻 = [桁怠怠 + 桁怠態桁態怠鶏岫な − 桁態態鶏岻貸怠]継沈津岫怠岻 (4) 

It is assumed that only one of the input fields is nonzero. The input field vector is denoted 
by 継沈津 = 岫綱怠沈津, ど,ど, … , ど岻. The output intensities of the left ports are: 

 荊珍 = 荊待弁桁珍怠怠怠 + 岫桁怠態桁態怠鶏岫な − 桁態態鶏岻貸怠岻珍怠弁態,										j = な,⋯ , N (5) 

As mentioned in Mach-Zehnder OFI, it is easy to show that the sensitivity of multi-paths 
Michelson interferometer is greater than that of conventional two paths one.  

3.5 Optical fiber Moiré interferometery 

Moiré interferometry is based on the fringe pattern formed by overlaying two or more 
gratings at different angle 肯. The desired fringe pattern can also be designed by a suitable 
arrangement of optical fibers. The optical fiber based generator of interference grid pattern, 
is configured by N polarization maintained fibers. The coordinates of the center of the jth 

fiber in the plane 権 = ど is denoted by 盤欠珍 , 決珍匪, 岫	倹 = な,… ,軽岻. The polarization angle of the jth 

fiber relative to the x axis is denoted by 肯珍 	岫	倹 = な,… , 軽岻. The field at the point	岫x, y岻 in the 権 = 経 plane is given by: 

 継 = ∑継撤屎屎屎王 結貸沈[入呑盤掴銚乳袋槻長乳匪袋釘乳] 			+ 潔. 潔. (6) 

where 砿珍 is the phase of the jth fiber at the		権 = ど plane. The field intensity at the point 岫x, y岻 
in the observation plane is as follows: 

 荊 = ∑ 荊沈 + ∑ 紐荊沈荊珍 潔剣嫌岫肯沈 − 肯珍岻沈貯珍朝沈退怠 潔剣嫌 峽賃帖 範盤欠沈 − 欠珍匪捲 + 盤決沈 − 決珍匪検飯 − 砿沈珍峺 , (7) 

where 荊沈岫件 = な,… , 軽岻 is the light intensity corresponding to the ith fiber at point 岫x, y岻, 砿沈珍 is 

the phase difference between the ith and jth optical fibers and 倦 is the light wave number. 
(Yuan et al., 2005). By suitable choosing of the parameters 欠沈 , 決沈 	欠券穴	肯沈 		岫件 = な,… , 軽岻, the 
desired fringe configuration can be obtained. As an example consider a system of three fiber 
centered at 鶏岫ど,ど岻, 鶏岫に欠, ど岻 and 鶏岫ど,に欠岻, where ′欠’ is the radius of the polarization 
maintained fiber. Fig. 9 shows the arrangement of the interference pattern generator. The 
interference pattern of three fibers with the same polarization direction is shown in Fig. 9 
(a). The vertical and horizontal patterns correspond to the interferences of fibers 1 and 2 and 
fibers 1 and 3 respectively. The oblique lines families in Fig. 9 (a) are due to the interference 
of the fibers 2 and 3. As shown in Fig. 9 (b), by employing the vertical and horizontal 

polarization for the fibers 2 and 3 respectively and setting the angle ねの° between the 
polarization of fiber 1 and x-axis, the oblique lines are eliminated. The inverse problem is to 
design a suitable configuration of PMF optical fibers to obtain a desired intensity 
distribution 荊岫捲, 検岻 or fringe pattern. By defining a suitable meter on the intensity 
distribution space and employing the optimization techniques such as variational method 
and genetic algorithm, it is possible to minimize the distance between the generated 
distribution and the desired distribution. 
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Fig. 9. Two arrangements of optical fiber Moiré interferometer and their interference 
patterns. a) The polarizations of the three fibers are in the same direction b) fibers 2 and 3 

with vertical and horizontal polarization and fiber 3 with angle ねの°. 

3.6 Optical fiber Fabry-Perot interferometer 

A Fabry-Perot (FP) consists of two optically parallel reflectors with reflectance 迎怠岫降岻 and 迎態岫降岻 separated by a cavity of length L. Reflectors can be mirrors, interface of two dielectrics 
or fiber Bragg gratings. The cavity may be an optical fiber or any other optical medium.  

Two different optical fiber Fabry-Perot interferometers are shown in Fig. 10.  

 

Fig. 10. (a) Fabry-perot based on the light transmission (b) Fabry-perot based on the light 
reflection. 

One is based on the light transmission through a Fabry-Perot, while the other is based on the 
reflection. Due to multiple reflections, the reflected and transmitted spectrums are functions 
of cavity length, medium index of refraction and mirrors reflectivity. Because of energy 
conservation law, the transmitted spectrum is opposite to the reflected spectrum.  

Optical fiber Fabry-Perots are classified as intrinsic and extrinsic types. In the intrinsic fiber 
FP interferometer (IFFPI), the two mirrors are separated by a single mode fiber, while in the 
extrinsic fiber FP interferometer (EFFPI), the two mirrors are separated by an air gap or by 
some solid material other than fiber. In both IFFPI and EFFPI, light from emitter to the FP 
and from FP to the detector are transmitted by a single mode fiber. Fig. 11 shows schematic 
configurations of three IFFPI. One end of the fiber shown in Fig. 11 (a) is polished as a 
mirror. For higher reflection the polished end is coated with switchable dielectric layers. The 
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second mirror of IFFPI shown in Fig. 11 (a) is an internal mirror which can be produced by 
splicing of polished fibers or by polished coated fibers. Both mirrors of the IFFPI shown in 
Fig. 11 (b) are internal fiber mirrors while those are used in the IFFPI presented in Fig. 11 (c) 
are FBG reflectors. Depending on the application of IFFPI, one of the configurations 
presented in Fig. 11 can be used.  

 

Fig. 11. Schematic configurations of three IFFPI. 

Four different EFFPI configurations are shown in Fig. 12.  

 

Fig. 12. Schematic configurations of four EFFPI. 

In Fig. 12 (a) the air-gap cavity is bounded by the end of a polished fiber and a diaphragm 

mirror. The cavity length is of the order of several microns and can be increased by convex 

mirror diaphragm. In another configuration presented in Fig. 12 (b) a thin film of 

transparent solid material is coated on the end of the fiber. The air-gap cavity between two 

polished fiber surfaces, where the fibers are aligned in a hollow tube is another 

configuration of EFFPI (Fig. 12 (c)). The structure shown in Fig. 12 (d) is called the in-line 

fiber etalon (ILFE). The ILFE is constructed of a hollow-core fiber spliced between two single 

mode fibers. The diffraction loss causes to limit the practical length of EFFPI to a few 

hundred of microns (Shizhuo, 2008). 

3.7 White light fiber interferometry  

The interferometric techniques are known as the precise method for measuring physical 
quantities that can induce the optical path difference (OPD) in the interferometers. The 
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coherent length of the narrow band sources such as Lasers are greater than the optical path 
length difference in the interferometers. Due to the periodic nature of the interferogram 
fringes, the interferometric measurement suffers from an integer multiple of	に講	phase 
ambiguity. Hence interferometers driven by narrow line-width Lasers do not produce 
absolute data unless extra complexity is added to the interferometer. By employing the short 
coherent light that is illuminated from wide-band light sources, the phase ambiguity is 
eliminated. In wide bandwidth interferometer the fringes of the interferogram are narrowly 
located in the zero path length difference region (Flourney et al., 1972). So the phase 
difference can be determined without the phase ambiguity by measuring the fringe peak or 
the envelop peak of the interferogram. This type of interferometry is named as white light or 
low coherence interferometry. In white light interferometry (WLI) corresponding to each 
wavelength a separate fringe system is produced. The electric field at any point of 
observation is the sum of electric fields of these individual patterns. In a WLI which is 
adjusted such that the optical path difference is zero at the center of the field of view, the 
electric field of different wavelengths exhibits the maximum at the center point. The fringes 
of different wavelengths will no longer coincide as moving away from the center of the 
pattern. The fringe pattern is a sequence of colors whose saturation decreases rapidly. The 
central bright white light fringe can be used to adjust the WLI. 

The light sources such as fluorescent lamp, SLDs, LEDs, Laser diodes near threshold, 
optically pumped Erbium-doped fibers and tungsten lamps, can be used in the WLI. The 
spectral width of SLD and LED is between 20 and 100 nm. It is expected that at the 
operating wavelength (1.3 µm) of these types of light sources, the coherent length is between 
17 and 85 µm. Because of the wave-train damping, the Doppler effect, disturbances by 
neighbor atoms, noises and mode mixing effects, the practical coherent length is less than 
those are predicted previously. 

In the WLI, one of the two arms is used as the measurement arm and the other one as the 

reference arm. The length of the reference arm can be controlled by different methods such 

as moving mirrors or Piezoelectric (PZT) devices. Generally the operation of WLI is based 

on the balancing the two arms of the interferometer and compensating the OPD in the 

measurement arm. Therefore the desired measurement can be achieved. 

As the OPD between the two paths of a WLI is varied, the intensity of interference fringe 

drops from a maximum to a minimum value. The maximum intensity corresponds to the 

central white bright fringe. Measurement of the position of the central fringe in the WLI is of 

prime importance. Because the distance between the central fringe and its adjacent side 

fringes is too small and the presence of noise, the determination of the central fringe position 

is inaccurate, so there are some ambiguities in the central fringe identification. This problem 

can be solved by employing a combinational source of two or three multimode Laser diodes 

with different wavelengths. 

White light fiber interferometers (WLFI) can be designed on different topologies of single or 
multi-mode fiber interferometers. Each of the single mode and multi-mode fibers has their 
own advantages and disadvantages. For example usually white light single mode fiber 
interferometer provides stable and large signal to noise ratio while in the interferometers 
based on multi-mode fiber, cheaper optical components are employed (Song et al., 2001; 
Manojlovi et al., 2010). Generally there are several WLI topologies corresponding to the 
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standard optical fiber interferometer and their combinations (Yuan, 2002; Mercado et al., 
2001;). As an example Fig. 13 shows a white light fiber optic Michelson interferometer 
working in the spatial domain. The LED light is coupled to the two path of Michelson 
interferometer through a に × に OFC without insertion loss. The reflected beams recombine 
on the PIN detector of the WLI. The scanning mirror is adjusted for maximum output 
corresponding to the position of central fringe. 

 

Fig. 13. (a) A schematic configuration of WLI Michelson interferometer (b) Input LED 
spectrum (c) Interference fringe pattern. 

As shown in Fig. 13(c) for OPD less than the source coherence length, the white-light fringe 
pattern is produced. The position of the highest amplitude corresponds to the exactly zero 
optical path difference between two beams. After some mathematical manipulations for 
LED parameters presented in (Yuan, 1997), the normalized interference fringe pattern is 
calculated and result is presented in Fig. 14. The results of three peaks LED are compared 
with those of a normal LED to see how the multi wavelength white light source increases 
the precision of the central fringe position measurement relative to the single white light 
source. 

 

Fig. 14. The spectrum distribution of the light source (up) and their normalized interference 
fringe pattern (down) (a) Three peaks LED (b) Normal LED. 

4. Signal recovering methods 

The phase difference between two coherent light beams is detected by interferometric 
methods, which are most sensitive techniques for optical path difference measurement. The 
OPD variations have sufficiently low frequency components. So when they are converted to 
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the light intensity on the observation plan, they can easily be detected by photo diodes, 
photo diode matrix or charge coupled devices (CCD). The detector output is proportional to 潔剣嫌岫剛岻, where 剛 is the phase difference. In the presence of cosine and the absence of 
sinusoidal signal an ambiguity exists in the phase recovering. If the phase amplitude falls 
outside the (ど	to	にπ) range, in addition to sine and cosine values we must track the history of 
phase angle variation to know in which quadrant it precisely lie. Numerous methods have 
been devised for recovering the path length difference from the output signals of OFI. The 
methods based on the production of new frequencies are called heterodyne detection 
otherwise are named homodyne methods. The main three methods are briefly described in 
following. 

4.1 Phase generated carrier (PGC) homodyne detection  

In this method the interferometer Laser source is driven by combination of direct and 
sinusoidal current. The Laser output power and wavelength are modulated by the Laser 
current variation. In the presence of path length difference, the change of the wavelengths 
indicates itself as a change in the output phase. The current frequency can be observed in 
the received phase in the output. Each of the current frequency and its harmonics carries in 
their sidebands a copy of the created phase modulated signal. Two of these copies are 
chosen by band pass filters. Proper control of the amplitude of the sinusoidal current and 
filters configuration guaranty that the chosen copies have the same amplitude. The filters 
outputs are used as the inputs of an electronic mixer. One of the outputs of the mixer is 
proportional to sine, while the other one is proportional to the cosine of the interesting 
signal. Sometimes the method is also called Pseudo-Heterodyne Detection (PHD) (Jackson et 
al., 1982).To produce the phase shift instead of Laser frequency modulation it is possible to 
create phase shift with a cylindrical Piezoelectric, which is wrapped around one arm of the 
interferometer and is derived with a sinusoidal voltage (Hoeling et al., 2001). This case is 
called synthetic heterodyne method (Strauss, 1994). 

4.2 Fringe-rate methods  

When large phase shift is produced in an interferometer, two new methods which are called 
fringe-counting and fringe-rate demodulation become feasible (Barone et al., 1994; Crooker 
& Garrett, 1987). These methods are based on the transitions of interferometric outputs 
across some central value. In the fringe counting method, on a suitable period of time the 
transitions are counted digitally. The instantaneous frequency is determined by the ratio of 
the counting number to the counting time. Because in practice one must wait a short time to 
obtain at least one count, it is impossible to obtain an instantaneous count. However the 
phase can be obtained by integrating the instantaneous frequency. In the fringe-rate method, 
the transitions are used as inputs of a frequency to voltage converter circuit (FVC). To obtain 
the phase difference, the output of FVC circuit is integrated. There is no transition for weak 
signal. The minimum detectable signal is of the order of π radian. 

4.3 Homodyne method 

The operation range of the synthetic heterodyne method is limited above to π radian, while 
the fringe-counting and fringe-rate techniques are limited from below to π radian (Dorrer et 
al., 2001). A number of homodyne techniques are employed to bridge this region. All these 

www.intechopen.com



 
Optical Fiber Interferometers and Their Applications 17 

methods are based on the use of orthogonal components without using heterodyne 
methods. OFIs usually have two outputs. A に × に OFC is employed to combine the two path 
beams of the interferometer and form the interference pattern. By energy conservation law it 

is easy to show that the two outputs are な8ど°out of phase from one another. When one 
output is dark, all energy must be presented in the other output and vice versa. So no 
orthogonal components can be found in the outputs. The orthogonal components are 
produced by the heterodyne methods. The output coupler can be modified such that the 
orthogonal components directly exist in the outputs. As an example a  ぬ × ぬ  coupler can be 
employed as the output coupler of the interferometer to create output with orthogonal 
components without employing the heterodyne detection method (Choma et al., 2003). 

5. Noise sources in optical fiber interferometers 

Calculation of signal to noise ratio strongly depends on the OFI topology. In principle the 
noise sources belong to the light source, optical fibers, detector, electronic circuits and 
environment (Bottacchi, 2008; Tucker & Baney, 2001). Moreover any random process in each 
stage of interferometry: signal generation, transmission and detection can be considered as a 
noise source.  

The laser generation is the result of the quantum interaction of electromagnetic wave and 

matter. The spontaneous and stimulated emissions are quantum effects and are the noise 

sources in the phase and amplitude of laser output (Linde, 1986; Clark, 1999; Tsuchida, 

1998). On the other hand the interaction of light with universal modes of surrounding 

reservoir through the mirror coupling and stimulated emission in active medium bath are 

also noise sources for the laser output (Scully & Zubairy, 2001). The cavity filtering and 

feedback can reduce the laser noise significantly (Sanders et al., 1992; Cliché et al., 2007). The 

phase and amplitude of laser noise cause to increase the bandwidth of the laser light. In 

single mode lasers by proper design of optical cavities, the bandwidth can be reduced to 

several kilohertz, which gives several tens of kilometers for coherent length. The mode 

competition and cross saturation effects are new noise sources in multimode lasers that can 

be employed in wide band fiber interferometry. 

Rayleigh scattering, Mie scattering, core cladding interface scattering, Brillouin scattering, 

absorption and amplification parts in the optical fiber, are the main noise sources in OFI 

arms and transmission parts. Some parts of the scattered light are trapped in the guided 

region and travel in both direction of the fiber, contribute to the phase and amplitude noises. 

Other parts are scattered out of the optical fiber and affect the amplitude noise only. Except 

the Brillouin and Raman scatterings, all other effects are linear and do not change the light 

frequency. Both the Brillouin and Raman scattering have two different components Stokes 

and anti-Stokes frequencies. The Stokes and anti-Stokes Brillouin shifts are due to the light-

acoustic phonon interaction and are about ±にの GHz, while the Stokes and anti-Stokes 

Raman shift correspond to the optical phonon-photon interaction and are of the order of 13 

THz (Agrawal, 2007). Beating between Stokes, anti-Stokes and direct beam can occur, but 

such a high beating frequencies cannot be observed at the output response of any realistic 

detector and are eliminated intrinsically by the low pass filter detector. The Brillouin and 

Raman scattering loss can be considered as a source of amplitude noise. The Rayleigh, 

Brillouin and Raman scattering are symmetrically distributed with respect to the forward 
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and backward direction while those of Mie and core-cladding interference scattering are 

mainly in the forward direction.  

Mode coupling is another source of noise in multimode fiber interferometer. In such an 
interferometer the mode coupling noise must be taken into account. Absorption and 
amplification correspond to the interaction of light with reservoirs so according to quantum 
Langevin equation there are some noises in the output (Scully & Zubairy, 2001). Generally 
Avalanch photo diode (APD), PIN diode, charge coupled device (CCD) and photo 
multiplier (PM) are used as the electronic detector of the OFIs. Dark current noise, shot 
noise, background noise, thermal noise and flicker noise are common in all of the optical 
detectors. The generation and recombination of electron hole are a stochastic process in 
semiconductor detectors and are the noise sources of such detectors. The avalanche effect, 
the basis of operation of APDs is a random process and causes noise generation in avalanche 
photo diode. The same effect on the anodes of PM can be a noise source in PM detectors. 
The amplifier noise which is consistent of the shot noise, Johnson noise, burst noise and 
flicker noise of different solid state electronic elements of the amplifier is the final intrinsic 
noise of OFI.  

The fiber parameters can be affected by the environmental physical variations such as 
mechanical vibration, acoustic agitation, pressure, tension and thermal variations. In a 
controlled way this effects can be used to make the optical fibers as a sensor for these 
physical quantities, while in OFIs are noise sources. As an example the population of 
Stokes and anti-Stokes photons are functions of the fiber temperature and can be used to 
design a high precision temperature sensor for water, oil and gas leak detection systems 
(Harris et al., 2010; Chelliah et al., 2010). The Stokes and anti-Stokes parameters of 
Brillouin scattering are functions of fiber strain and fiber temperature. This effect is used 
to measure the strain and temperature simultaneously for structural health monitoring 
systems (Güemes, 2006; Bahrampour & Maasoumi, 2010). The optical fiber sensitivity to 
mechanical variation and acoustic waves are employed for various applications such as 
acoustic, vibration and ultrasonic detectors for under water sensor systems. However the 
output signal is affected by all the noise sources and the aim is to denoise signal by the 
signal processing methods. Depending on the signal, one of the denoising methods such 
as Fourier regularized deconvolution (ForD) and Fourier wavelet regularized 
deconvolution (ForWaRD) method can be employed (Bahrampour & Askari, 2006; 
Bahrampour et al., 2012). The wavelet deconvolution method generally use to denoise  
transient signals. The short time Fourier method is employed to denoise the music-like 
signals of a fiber intruder detector based on the birefrigent fiber interferometer 
(Bahrampour et al., 2012). 

6. Applications of optical fiber interferometers 

Optical fiber interferometers as a precise measuring interferometer or sensitive tools have 
many applications in all branches of science and technology (Shizhuo et al., 2008). The OFIs 
can be employed to design the optical components for the inline signal processing, such as 
band pass filters in optical communication networks. The same topologies can be easily 
fabricated by the light waveguides in the integrated circuits by means of photolithographic 
process for application in optical transmitters and receivers. Because of high sensitivity of 
the interferometer, the linear and nonlinear properties of optical fiber can be detected. These 
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properties make long length and short length waveguide and fiber interferometer sensors, 
suitable in novel applications such as oil and gas pipeline monitoring, temperature 
distribution measurement in the depth of ocean and intruder sensors. Among the wide 
range of applications of waveguides and fiber interferometers, only a few applications in the 
optical communication networks and special types of fiber and waveguide interferometric 
sensors are mentioned in this section. 

6.1 Applications in optical fiber networks 

The key devices in optical DWDM communication networks are re-amplifying, re-shaping 

and re-timing (3R-regenerator) systems. In re-shaping and re-timing circuits the nonlinear 

networks such as clipper, clampers, switching and flip-flops are of prime importance. While 

in add-drop filters, the linear filters such as tune and notch filters have an important role. 

On the basis of a nonlinear Mach-Zehnder interferometer, the structure of an all optical 

inverter is shown in Fig. 15. 

 

Fig. 15. A schematic of an all optical inverter. OFC is an optical に × に coupler. 

An optical fiber with high nonlinear Kerr effect such as Chalcogenide glasses is employed in 

one of the Mach-Zehnder interferometer arms. So in the presence of a suitable light intensity 

at the input of optical fiber coupler 1 (OFC 1), the change of refractive index ( 券 = 券待 + 券荊 ) 
causes a 講-phase shift in the upper arm of the interferometer relative to the lower arm. It is 

assumed that in the absence of the input, the interferometer arms are balanced and the 

outputs 畦 and 畦̅ are in the constructive and destructive conditions respectively. The 0 and 1 

digital states are represented by destructive and constructive output ports. In the presence 

of the OFC 1 input, the output 畦 changes to 0 and the 畦̅ switches to 1. This interferometer is 

an optical logic inverter. The structure shown in Fig. 15 is also used in quantum non-

demolition experiments (Gerry & Knight, 2005). For small input intensities Fig. 15 acts as an 

intensity modulator circuit and 畦̅ output is approximately proportional to the input 

intensity. By varying input intensity, the output varies from its maximum value to zero, i.e. 

this circuit operates as a light controlled variable attenuator.   

The inverter of Fig. 16 is designed on the basis of optical waveguides to avoid the high 

length nonlinear optical fibers in the inverter design.  

 

Fig. 16. A schematic of an inverter based on an optical waveguide and micro-ring resonator. 
OC is 2×2 optical coupler. 
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As shown in Fig. 16, the Kerr cell that is shown in Fig. 15 is replaced by a high dispersive 
nonlinear element such as micro-ring or microsphere. The phase difference between the 
input and output of micro-ring can be changed by the resonance frequency of the micro-ring 
which is controllable due to the cross-Kerr effect. The upper input to the micro-ring causes 
to change the micro-ring refractive index and therefore the resonance frequency is changed. 
So the phase difference between the input and output of the upper arm of the interferometer 
is changed. On the basis of optical fiber and optical waveguide interferometers in 
combination with ultrahigh nonlinear optical elements (UHNO), such as semiconductor 
optical amplifiers (SOA), different high frequency optical classical logic gates are designed 
and demonstrated. Also quantum interferometers such as Hong-Ou-Mandel interferometer 
are employed to design quantum gates (Hong et al., 1987; Olindo et al., 2006). 

The bi-stability effect is the basis of the clipper and flip-flop circuits. Most bi-stability designs 
include both a cavity with nonlinear medium and a feedback (Bahrampour et al., 2008a, 2008b, 
2008c). A novel OFI with common mode compensation is proposed by Backman (Backman, 
1989). The Backman interferometer consists of a Mach-Zehnder interferometer with one 
nonlinear path and re-circulating delay line as shown in Fig. 17. The output intensity |継墜通痛|態 
versus the input intensity |継沈津|態 in the steady state has the bi-stability behavior. 

 

Fig. 17. A schematic of Backman interferometer. NL is nonlinear line and DL is delay line. 

Flip-flops are building blocks of the sequential logic circuits such as time recovering circuits. 
As usual a reset-set (RS) flip-flop can be designed on the basis of regenerative feedback in 
the two inverter circuit. Fig.18 shows a RS flip-flop based on the two Mach-Zehnder 
interferometer inverters. The optical fiber couplers OFC 1 and OFC 2 are	ぬ × ぬ couplers and 
OFC 3 and OFC 4 are	に × に couplers. The bias light inserts to the upper and lower Mach-
Zehnder interferometers (MZI 1, MZI 2) by a に × に coupler. R and S are the reset and set 

trigger inputs.	畦	, 畦̅ and 稽	, 稽博  are the outputs of MZI 1 and MZI 2 respectively. Due to the 
energy conservation law, 畦̅ and 稽博  are the logic complement of 畦 and 稽 outputs. In the 
absence of set and reset 畦 = 稽 = な. The output complement of each inverter is connected to 
the control input of the other inverter. This network of Fig.18 has two stable (畦 = ど, 稽博 = な) 
and (畦 = な, 稽博 = ど岻 states. In the presence of trigger signal at S or R inputs, this system can 
switch between these two stable states. 

 

Fig. 18. A schematic of an optical Flip-Flop by combination of two Mach-Zehnder 
Interferometers. 
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In addition to the logic gates and nonlinear circuits, the fiber interferometers can be used to 
design linear circuits such as different types of optical filters. In many applications such as 
selection of a narrow spectrum from a broad band spectrum, band pass filter is of prime 
importance. Due to the Bragg diffraction effect, each FBG fiber can be used as a notch or 
band stop filter. As shown in Fig. 19, an optical coupler is employed to detect the reflected 
spectrum of FBG.  In this filter, the input power splits into two parts by the OFC. The light 
reflected by a FBG is again equally split between the ports 1 and 2. Hence only 25% of the 
light is in the output port 2 of the band pass filter (Kashyap, 1999). 

 

Fig. 19. A schematic of band pass filter.  

To eliminate the insertion-loss of the band pass filter several interferometric methods was 
proposed (Kashyap, 1999). On the basis of Michelson, Mach-Zehnder and Fabry-Perot 
interferometers three different design of band pass filters are presented in Fig. 20(a-c) 
respectively(Kashyap, 1999). 

 

Fig. 20. Interferometric design of band pass filter (a) Michelson (b) Mach-Zehnder (c) Fabry-
Perot. 

In both arms of Michelson interferometer as shown in Fig. 20(a) a FBG is employed. The 
arms of Michelson interferometer are designed in such a way that the reflected light from 
FBG 2 arrives at the input port of OFC, has 講 out of phase with respect to the light reflected 
from FBG 1. In such a condition light from FBG 1 and FBG 2 interfere constructively at the 
output port 2, so that 100% of the light at the Bragg wavelength appears at the output port 
of band pass filter (Kashyap, 1999). The band pass spectrum can be designed by the profile 
of chirped spectrum. The dual grating Mach-Zehnder interferometer band pass filter as 
shown in Fig. 20 (b) is designed for the application in add-drop filters. The principle of 
operation is the same as that is demonstrated in Michelson band pass filter. Here ''UV 
trimming'' is used to balance the interferometer after the gratings are written. ''UV 
trimming'' relies on photo induced change in the refractive index to adjust the optical path 
difference. The simplest band pass filter is an inline Fabry-Perot interferometer. In 
distributed feedback (DFB) lasers, two FBG can be employed instead of mirrors. As shown 
in Fig. 20(c) a single 膏 ね⁄  phase-shifted FBG has a sharp Lorentzian line shape band pass in 
the middle of band stop. The broader transmission band width is obtained by cascading 
several structure (Haus & Lai, 1992). Number of band pass peaks that they appear within 
the band stop increases by increasing the gap between the two grating sections. 
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6.2 Some applications in optical fiber sensors 

The traveling wave in the dielectric medium of optical fibers and waveguides can be 
perturbed by their environment. This is the basic idea of the optical fiber sensors (OFS). The 
interaction of quantity of interest (which is called the measurand), with the optical fiber 
produces a modulation in the parameters of propagating light beam within the fiber. 
Generally there are four beam parameters for measurand modulation: 

I) Intensity modulation: the intensity modulated fiber sensors are simplest and low cost fiber 
sensors for measuring the position, pressure and vibration in medical and industrial 
applications (Polygerinos et al., 2011, Jayanthkumar et al., 2006). Fig. 21 shows a distributed 
oil leak detection system based on intensity modulated sensor (Carrillo, 2002). The leaked oil 
causes to expand the polymer around the optical fiber. Due to the wrapped strain-less steel 
wire, the fiber bending loss increases and the oil leakage position can be measured by a 
commercial optical time domain reflectometer (OTDR) (Righini et al., 2009). 

 

Fig. 21. Distributed Oil leak detection system.  

II) Wavelength modulation: The measurands such as temperature and strain can be 
modulated on the resonance frequency of an inline Fabry-Perot or Bragg wavelength of an 
inline LPG. An optical or chemical transducers joint at the end of a fiber can be used as the 
wavelength modulator. Interaction of the measurand with transducer causes to change the 
spectral properties of transducer. The measurement of the optical spectrum of the 
transducer through the optical fiber makes possibility to monitor measurand status (Righini 
et al., 2009). 

III) Polarization modulation: In birefringent optical fibers the two fundamental modes 
propagate with slightly different phase velocities. On the basis of high birefringent fibers 
several methods for current and magnetic field measurement are designed and 
manufactured. Fig. 22 shows the principle of operation of an intrusion sensor based on the 
birefringent optical fiber (Bahrampour et al., 2012). 

An x-polarized ramped frequency modulated laser is injected to the birefringent fiber 
sensor. At the cross point of the intrusion and the fiber sensor, energy from the x-polarized 
mode is converted to the y-polarized mode. Due to different velocities of the x- and y- 
polarized modes a beating frequency is observed at the output of the detector. The intrusion 
position can be obtained from the output beating frequency. 

The optical fiber and waveguide sensors that have been investigated and proposed for 
science, industrial, military, biochemical, biomedical, environment, automotive, avionic and 
geophysical applications are countless. One of the basic characteristics of the optical fiber 
sensors is their ability for long length distributed sensing. One of the most popular 
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Fig. 22. A schematic of a birefringent fiber intruder detection system. FM is the frequency 
modulator, LD is laser diod, x-po is a x-polarizer, FPBS is a fiber polarization beam splitter, 
FPR is a fiber polarization rotator, APD is an avalanche photo-diode detector, ALPF is an 
active electronic low pass filter, A/D is an analog to digital convertor, Com. a computer 
system for signal processing and denoising. (b) Ramp input to the FM system (Bahrampour 
et al, 2012). 

distributed fiber sensors is optical time domain reflectometer (OTDR) which is based on the 

monitoring the Rayleigh back scattering along the fiber. On the basis of Raman and 

Brilliouin scattering the OTDR is developed to the Raman time optical domain reflectometer 

(ROTDR) and Brillouin optical time domain reflectometer (BOTDR) respectively. The 

OTDR, ROTDR and BOTDR optical fiber sensors have applications in structural health 

monitoring (Glisic & Inaudi, 2008). In the absence of any intrusion, the 溝OTDR signal is 

saved in an electronic memory and it is compared with the 溝OTDR output continuously 

(Juarez et al., 2005). Due to the elasto-optic effect, in the presence of an intrusion, the fiber 

refractive index and hence the phase of the back scattered signal changes. This phase 

changes can be measured at the sensor output (Righini et al., 2009). 

IV ) Phase modulated sensors: Variation of the optical length of optical fiber causes a phase 

shift of the light beam	Δ剛 = に講岫券Δ詣 + 詣Δ券岻 膏待⁄ , where 膏待 is the free space light wavelength 

and n is the fiber refractive index. Phase shifts usually are measured by interferometric 

methods. Refractive index and fiber length can vary due to the characteristic of various 

measurands and therefore the cross sensitivity occurs. To avoid the cross sensitivity, special 

design of jacketing is necessary. The material of the jacketing is chosen such that to improve 

the effect of desired measurand and attenuates the others. A schematic of an optical fiber 

intrusion detector system is presented in Fig. 23. The light laser source through an optical 

circulator and a 50:50 coupler is connected to a Faraday rotating mirror (FRM). The 

intrusion distance (詣掴) is the length between the intrusion point and FRM. The parts 3 and 4 

of the coupler are connected with a fiber of length 詣鳥 to form a delay loop. The returned 

light through the port 1 of 50:50 coupler and circulator is transported to the detector . The 

intrusion point is determined after signal processing. There are four different paths in the 

system for transmission of light from source to detector: 

Path I: な → に − 繋迎警 − に → ぬ → 詣鳥 → ね → な 

Path II: な → ね → 詣鳥 → ぬ → に → 繋迎警 → に → な 

Path III: な → に → 繋迎警 → に → な 

Path IV: な → ね → 詣鳥 → ぬ → に → 繋迎警 → に → ぬ → 詣鳥 → ね → な 
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Fig. 23. A schematic of an optical fiber intrusion detector system. 

All path differences except the optical path difference of the path I and II are so large, so 
they have no effect on the interference signal. The electric field at the photo detector is the 
superposition of the electric field corresponding to the four different paths. The time 
dependence of the strength of an intrusion at the detector and the instant 建 is ∆圏 =∆砿待嫌件券降鎚建, where Δφ0 and ωs are the induced amplitude and frequency by intruder 
respectively. The light intensity of interference of electric field of path I and path II on the 
photo detector is easily obtained. 

 荊沈津 = に継待態潔剣嫌 峽ね∆砿待嫌件券 邸鉄摘濡態 潔剣嫌 邸迭摘濡態 潔剣嫌降鎚岫建 − 建待岻峺, (8) 

where 酵怠 = に券詣掴/潔, 酵態 = に券詣鳥/潔 and 建待 = 岫酵怠 + 酵態岻/に. The relative amplitude of the 

frequency components of the detector outputs are functions of the intrusion distances and 

can be obtained by the Fourier transform method (Jia et al., 2008).  

According to the general relativity, gravitational waves (GW) are produced when the 

curvature of spacetime disturbed by accelerating mass. The ripples in the curvature of 

spacetime propagate at the speed of light. A GW causes a tiny time dependent quadruple 

change of strain in the plane transverse to the wave’s propagation direction.  The space is 

stretched in one direction while is shrunk along its perpendicular direction. The strength of 

GW ‘h’ is expressed by the dimensionless strain 絞詣 詣⁄ . Due to the quadruple nature of 

Michelson interferometer, it is suitable device for gravitational wave detection. The 

interference pattern is linear measure of the strain. The amplitudes of GWs radiated from 

astrophysical sources at Earth are typically of the order of など貸態怠 or smaller. Detection of 

such weak strains needs high sensitive devices. For increasing the sensitivity of the 

interferometer, the lengths of the interferometer arms were increased to the order of 

kilometers and multi-path cell or Fabry-Perot optical cavity was used in each arm. So the 

light can be stored for a time comparable to the time scale of GW signal. Long base line 

gravitational wave detectors such as LIGO, VIRGO, GEO and TAMA are now operational. 

In the presence of GW, the change in the length of arms is very small. Hence many noises 

such as seismic noise, thermal noise and quantum noise limit the sensitivity of 

interferometer. Quantum noise is the fundamental and unavoidable noise in new generation 

of these interferometers and is due to the light-interferometer interaction. So the sensitivity 

of laser GW detector depends on the quantum state of light. It was shown that depending 

on the parameters of interferometer such as arm’s lengths, frequency of laser and mass of 

mirrors, the optimum quantum state for the dark port is vacuum squeezed state with 

specific squeezing factor. By employing this optimum quantum state in the dark port, the 

quantum noise and optimum laser power reduce one order of magnitude relative to the 

conventional interferometers (Tofighi et al., 2010). 
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To minimize the effects of other noises, whole setup including optical elements and beam 
path are kept in ultra-high vacuum (など貸腿 − など貸苔	建剣堅堅) and the optical elements are 
suspended on top of the seismic isolation system. A highly stabilized laser and active 
control system for adjusting cavity length are employed in these devices. So the long 
baseline Laser interferometer GW detectors are high cost projects. 

Fig. 24 shows another configuration for GW detection that uses optical fiber in the arms of 
Michelson interferometer. GW optical fiber interferometric detector is very small, cheap and 
simple to build and operate (Cahill, 2007; Sacharov, 2001; Cahill & Stokes, 2008). 

 

Fig. 24. A schematic of gravitational wave optical fiber interferometric detector. 
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