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1. Introduction 

The discovery, development and exploitation of antibiotics was one of the most significant 
advances in medicine in 20th century and in a golden era lasting from 1940s to late 1960s, 
antibiotic research provided mankind with a wide range of structurally diverse and effective 
agents to treat microbial infections (Table 1) (McDevitt and Rosenberg, 2001; Hopwood, 
2007). However, antibiotic resistance has developed steadily as new agents have been 
introduced and there has been a dramatic increase in the occurrence of resistant organisms 
in both community and hospital settings for the past 10-15 years. In particular, pathogens 
such as Staphylococcus aureus and Streptococcus pneumoniae and Enterococcus faecalis capable of 
resulting in severe and fatal infections have become increasingly resistant to multiple 
antibiotics. In hospital and community environments, Methicillin-resistant S. aureus (MRSA) 
and Vancomycin resistant enterococci (VRE) have become persistent pathogens. Other 
multiple drug resistant organisms currently include Mycobacterium tuberculosis and 
Pseudomonas, and related species in the hospital environment. Last line of antibiotics such as 
vancomycin might also become ineffective against super-bugs such as vancomycin-
intermediate-resistant S. aureus isolates. New classes of antibiotics with a new mode of 
action (e.g. Linezolid™) are necessary to combat existing and emerging infectious diseases 
deriving from multiple drug resistant agents (McDevitt and Rosenberg, 2001; Hopwood, 
2007).  

An extreme example for yet to be faced outbreaks has been the recent occurrence of multi- 
drug resistant enterohaemorrhagic E. coli in Germany claiming the lives of many 
(Chattaway et al., 2011). Interestingly, this strain acquired virulence genes from another 
group of diarrhoeagenic E. coli, the enteroaggregative E. coli (EAEC), which is the most 
common bacterial cause of diarrhoea. This event once more stressed the importance of 
powerful diagnostic systems to detect all diarrheagenic E. coli as part of routine surveillance 
systems, which would thus contribute to the mapping of the global distribution of EAEC 
(Chattaway et al., 2011; Mellmann et al., 2011). 

For more than a century, infectious diseases have been controlled by vaccination and the 
administration of antibiotics (Muzzi et al., 2007). In spite of the technical progress of the past 
century, innovation in both fields came exclusively from traditional approaches, and 
antibiotics have been identified by screening natural compounds for their ability to kill  
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DISCOVERY YEARS NAME OF ANTIBIOTICS

1940-1950 
Streptomycin
Streptothricin 
Actinomycin 

1950-1960 

Neomycin
Chlorotetracycline 
Candicidin 
Chloramphenicol 
Spiramycin 
Tetracycline 
Erythromycin 
Oxytetracyline 
Nystatin 
Kanamycin

1960-1970 

Mitomycin
Novobiocin 
Amphotericin 
Vancomycin 
Virginiamycin 
Gentamicin 
Tylosin 
Pristinamycin 
Polyoxin 
Rifamycin 
Bleomycin 

1970-1980 

Monensin
Adriamycin 
Avoparcin 
Kasugamycin 
Fosfomycin 
Bialaphos 
Lincomycin 
Teicoplanin

1980-1990 

Thienamycin
Rapamycin 
Avermectin 
Nikkomycin

1990-2000 
Spinosyn
Tacrolimus 

Table 1. Antibiotics since discovery of Streptomycin (adapted from Hopwood, 2007). 

bacteria grown in vitro. Furthermore, by improving existing drugs such as glycylcylines and 

fluoroquinolones deriving from tetracyclines and quinolones, pharmaceutical industries 

aimed to stay "one step ahead" of resistant microorganisms. Although such an approach has 

been effective, it is becoming increasingly difficult to meet the needs of the community and 

to provide sufficient coverage for all emerging infectious agents (McDevitt and Rosenberg, 

2001; Muzzi et al., 2007).  
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To keep pace with microbial resistance, objective and target-directed strategies are needed 
to discover and develop new classes of antibiotics. In the light of the global threat outlined 
above, this chapter will overview emerging novel strategies with particular emphasis on 
bacteriophages as tools in the search for new and potent therapeutic agents from 
actinomycetes. 

2. Genomics based approaches to drug discovery 

Since early 2000s, information from completed genome sequences and genomic based 
technologies has been a driving force in antibiotic discovery resulting in new target 
identification of pathogens as well as in the enhancement of action studies of antimicrobial 
compounds. Exploitation of high-throughput automated DNA sequencing capabilities and 
genome sequences of microbial pathogens advanced rapidly producing full genome 
sequence results (e.g. Enterococcus faecium genome) (Amber, 2000; McDevitt and Rosenberg, 
2001). In the past, antimicrobial studies were conducted on model microorganisms such as 
E. coli and Bacillus subtilis, however, with the new advances, research has become possible 
by directly using pathogens such as Staphylococcus aureus and Streptococcus pneumoniae 
(McDevitt and Rosenberg, 2001; Payne et al., 2007). These developments have led to a shift in 
the discovery of novel vaccines and antimicrobials from the traditional empirical approach 
to a novel knowledge-based approach.  

In conventional drug discovery, whole-cell screening approaches are adapted. This 
approach first identifies an antimicrobial compound and later seeks to establish the cellular 
target of that compound, and the vast majority of antibiotics that are currently used have 
this mode of action (e.g. targeting a limited number of proteins involved in critical cellular 
functions) (McDevitt and Rosenberg, 2001; Mills, 2003; Ricke et al., 2006). Whereas in the 
modern era of genome-driven and target-based approach a target gene is selected and its 
spectrum is identified. After it is validated for its role, cloned and sequenced, its 
corresponding protein product is expressed in an optimized expression system (e.g. Pichia 
pastoris, Baculovirus or E. coli). The target protein is then purified and screened against a 
large and diverse collection of low-molecular weight compounds in order to identify target 
inhibitors to investigate their potency, mechanism of inhibition and enzyme spectrum and 
selectivity (McDevitt and Rosenberg, 2001; Mills, 2003). 

Increasing knowledge of bacterial diversity based on genomics and pangenomics now 
suggests that the way forward should be to focus discovery strategies on the identification 
of targets that are essential for the formation and persistence of an in vivo infection or in the 
expression of virulence factors (Muzzi et al., 2007).  

Sequencing the entire genome of pathogens has revealed all of their open reading frames 
(ORFS), which can be utilized as selected targets in drug discovery. As summarized by 
McDevitt and Rosenberg (2001), there are several key criteria to be considered in target 
selection: “(1) the target should be present in a required spectrum of organisms; (2) it should 
be either absent in humans or, if present, it should be significantly different to allow 
confidence that selective inhibitors of the bacterial target over a human counterpart can be 
developed; (3) it should be essential for bacterial growth or viability under the conditions of 
the infection; (4) it should be expressed and relevant to the infection process; and (5) some 
aspects of its function should be understood to allow the relevant assays and high 
throughput screens to be developed”. 
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One example was the use of peptide deformylase (PDF) as a protein target to facilitate 
discovery of a broad spectrum antibacterial drug (Mills, 2003). The protein is encoded by the 
def gene which is present in all pathogenic bacteria, but does not share a functionally 
equivalent gene in mammalian cells, which is one of the most sought after characteristics 
related to a drug candidate (McDevitt and Rosenberg, 2001; Yuan et al., 2001; Mills, 2003). 
This example was a good proof-of-principle illustration of the genomics-driven, target-based 
approach; starting with a conserved gene and leading to an antimicrobial compound 
(Clements et al., 2001; Mills, 2003). 

Genome sequencing studies can also be utilized from the angle of drug producer 
microorganisms (Kurtböke, 2012). An example is the genome sequencing of Salinispora 
tropica, which has revealed its complex secondary metabolome as a rich source of drug-like 
molecules. Such a discovery has been a powerful interplay between genomic analysis and 
traditional natural product isolation studies (Udwary et al., 2007). Other examples that 
reveal the superior ability of actinobacteria to produce potent bioactive compounds 
facilitating discovery of novel bioactive compounds include genome sequences of 
Streptomyces coelicolor A3(2) (Bentley et al., 2002) and S. avermitilis (Ikeda et al., 2003). 

3. Bacteriophages in chemotherapy 

Therapeutic use of bacteriophages for the prevention and treatment of bacterial diseases, has 
been targeted since the discovery of phages in 1917 by Félix d’Hérelle. Following his 
discovery, he first attempted to use these against dysentery and since then, bacteriophages 
have been used to treat human infections as an alternative or a complement to antibiotic 
therapy (Hermoso et al., 2007). Particularly, from 1920s to 1950s, phage therapy has 
exploded and centres in the US, France and Georgia were established (Kütter and 
Sulakvelidze, 2005; Hermoso et al., 2007; Chanishvili, 2009), however, there have been 
limitations to antibacterial phage therapy that hamper its application as an antibiotic 
alternative. These have been summarized recently by Hermoso et al. (2007) as follows: (i) 
phages generally have narrow host range and only strongly lytic phage against bacterial 
strain infecting the patient, should be given to the patient; (ii) phages may not always 
remain lytic under the physiological conditions and bacteria can become resistant to phages 
after infection; (iii) phage preparations should be free of bacteria and their toxic components 
to meet clinical safety requirements, but sterilization of phage preparations could inactivate 
the phages; (iv) phages can be inactivated by a neutralizing antibody, and there is some risk 
of promoting allergic reactions to them; (v) the pharmacokinetics of phage treatments are 
more complicated than those of chemical drugs because of their self-replicating nature; (vi) 
phages might endow bacteria with toxic or antibacterial resistance genes. 

Due to the above-listed limitations of bacteriophage therapy, bacteriophages might have 
more value as tools in drug discovery such as for target discovery and validation, assay 
development and compound design (Brown, 2004; Projan, 2004), and some of these 
exploitations are discussed below. 

3.1 Bacterial virulence and injection mechanisms of bacteriophages 

Efficient host infection relies on bacterial virulence factors being localized outside the 
producing cell where they are identically placed to interact with host defences and subvert 
host cells for the pathogen's benefit. Pathogenic bacteria have thus developed powerful 
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molecular strategies to deliver their virulence factors across the bacterial cell envelope as 
well as powerful mechanisms to adverse host cell plasma membrane (Cambronne and Roy, 
2006; Filloux, 2009; 2011; Russell et al., 2011).  

In Gram-negative bacteria, the cell envelopes have two hydrophobic inner and outer 
membranes with a hydrophilic space in between. The secreted hydrophobic molecules of 
proteins, enzymes or toxins have to travel through the hydrophobic environment of the 
membranes in an aqueous channel, or another type of conduit, that spans the cell envelope. 
These paths to the external medium are built by assembling macromolecular complexes, 
called secretion machines (Filloux, 2009; 2011) and they are distinguishable by the number 
and characteristics of the components such as types I, II and V secretion systems and they 
play important roles in the virulence of pathogens (Filloux et al., 2008; Leiman et al., 2009; 
Pukatzki et al. 2009; Bönemann et al., 2010; Schwarz et al., 2010).  

In type VI secretion systems (T6SS) of Gram-negative bacteria the lack of an outer 
membrane channel for the T6SS might suggest an alternative delivery strategy such as local 
puncturing of the cell envelope to avoid cell lysis whilst allowing transient assembly of the 
secretion machine (Filloux, 2009; 2011). Filloux (2011) points out that the structural proteins 
of the T6SS are very similar to those that make up the injection machinery found in 
bacteriophages. Bacteriophages inject their DNA into bacterial cytosol and use the bacterium 
as a phage factory to replicate phage DNA. Bacterial cell envelope is perforated by 
bacteriophage puncturing device and its DNA is injected into bacterial cell via a tail tube. 
T6SS seems to use the same mechanism used by bacteriophages to inject their DNA into 
bacteria in which some components like the T6SS-specific exoproteins might have a similar 
tail-spike puncturing device of the T4 phage and might create a channel across the bacterial 
envelope which resembles the phage tail tube. T6SS translocation mechanism operate from 
the inside to the outside of the bacterial cell, and might be a mirror image of the phage 
translocation mechanism, which operates from outside to the inside of the bacterial cell 
Filloux (2011). Therefore, a sound understanding of bacteriophage injection and bacterial 
secretion systems might bring new insights to the development of effective therapeutic 
agents. 

3.2 Bacteriophage-guided route to biodiscovery 

Bacteriophages have evolved multiple strategies to interfere with bacterial growth. As a 
result, improved understanding of the bacteriophage-host interactions can also bring a new 
perspective to drug discovery (Young et al., 2000; Brown, 2004; Projan, 2004; Parisien et al., 
2008). Examples include successful use of phage encoded lytic enzymes to destroy bacterial 
targets (Fishetti et al., 2003) and use of lysostaphin to achieve sterilization in an endocarditis 
model (Climo et al., 1998). Furthermore, in a novel approach, Liu et al. (2004) applied 
information deriving from phage genome to target discovery of gene products that inhibit 
pathogenic bacterium such as Staphylococcus aureus. They uncovered strategies used by 
bacteriophage to disable bacteria for design of a method, which uses key phage proteins to 
identify and validate vulnerable targets and exploit them in the identification of new 
antimicrobials.  

Polysaccharide-specific phages were also suggested to treat encapsulated pathogenic bacteria 

since exolysaccharide production in bacteria involves biofilm formation and acts as a barrier 

to the penetration of therapeutic agents. Phages that can polymerize these substances 
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and/or kill the bacteria may potentially be useful for control of bacteria forming biofilms on 

medical devices (Hermoso et al., 2007). Protein antibiotics, which are the gene products of 

some small phages that do not produce endolysins, have also been shown to inhibit cell wall 

synthesis (Bernhardt et al., 2002). Genetic engineering of bacteriophages to carry toxic genes 

or proteins to produce cell death without lysis and hence avoiding the release of unwanted 

endotoxins has also been suggested (Westwater et al., 2003). Furthermore, Hagens et al. 

(2006) proposed a bacteriophage-based strategy to reduce effective doses of antibiotics 

during treatment for resensitization of antibiotic resistant pathogen via the presence of 

phage in vivo. In addition, it has been reported that phage host-cell lysis proteins, encoded 

by holins and amidases and elaborated late in the infection cycle, maintain their potent 

antibacterial activity when administered from outside cell (Loeffler et al., 2001; Schuch et al., 

2002). 

3.3 From bacteriophage genomics to drug discovery 

Over evolutionary time, bacteriophages have developed unique proteins that arrest critical 

cellular processes to commit bacterial host metabolism to phage reproduction (Liu et al., 

2004). Bacterial key metabolic processes can be shut off via inactivation of critical cellular 

proteins with these unique bacteriophage proteins, and host metabolism can be directed into 

the production of progeny phages. As an example; phages of E. coli, host physiology shuttoff 

is typically performed early during the phage lytic cycle by small phage-encoded proteins 

that target particularly vulnerable and accessible proteins involved in crucial host metabolic 

processes. Thus, Liu et al. (2004) using a high-throughput bacteriophage genomics strategy, 

exploited the concept of phage-mediated inhibition of bacterial growth to systematically 

identify antimicrobial phage-encoded polypeptides. They found that four proteins of the 

Staphylococcus aureus DNA replication machinery were targeted by a total of seven unrelated 

phage polypeptides leading to a superior approach to currently available antibiotics which 

only target topoisomerases. In some cases, sequence-unrelated polypeptides from different 

phages were found to target the same proteins in S. aureus, and such susceptibility might 

have uses in antimicrobial drug discovery.  

All these developments including increased understanding of the mechanism of injection, 
beginning with adsorption to the host and ending with complete delivery of genomic 
material (McPartland and Rothman-Denes, 2009) are now paving the way towards 
recruitment of phages in the search for new antibiotics with previously unknown 
antibacterial mechanisms. 

3.4 From endolysins to enzybiotics 

Phages have different methods of progeny release from bacterial cells: filamentous phages 

are ejected from bacterial cell walls without destroying the host cell, whereas non-

filamentous phages induce lysis through lytic enzymes. Phage lytic enzymes are highly 

evolved murein hydrolases to quickly destroy the cell wall of the host bacterium to release 

the progeny. Lysis is a result of abrupt damage to the bacterial cell wall by means of specific 

proteins and as stated by Hermoso et al. (2007) it can be completed in two different ways: (i) 

inhibition of peptidoglycan synthesis by a single protein or (ii) enzymatic cleavage of 

peptidoglycan by lysins or holin-lysin system.  
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Tailed phages achieve correctly-timed lysis by the consequtive use of endolysins and holins. 
Holins are small hydrophobic proteins that are encoded by the phage and inserted into 
cytoplasmic membrane to form membrane lesions or holes for endolysin passage. Whereas 
endolysins are phage-coded enzymes that break down bacterial peptidoglycan at the 
terminal stage of the phage reproduction cycle (Moak and Molineux, 2004; Loessner, 2005; 
Hermoso et al., 2007). Target specificity in endolysin studies reveal differences such as 
bifunctional enzyme of Streptococcus agalactiae phage with glycosidase and endopeptidase 
activities or muramidase activity of Lactobacillus helveticus phage (Loessner, 2005; Hermoso 
et al., 2007). However, most enzymes like amidases from phage that infect Gram-positive 
bacteria feature narrow lysis ranges, which can be genus-specific (Streptomyces aureofaciens) 
and even species-specific (Clostridium perfringens) (Loessner, 2005). Other examples include 
narrow specificity of endolysins only targeting Clavibacter michiganensis subspecies without 
affecting other bacteria in soil including closely related Clavibacter species (Wittmann et al., 
2010). 

Due to increasing antibiotic resistance, phage-derived lytic enzymes are now being 
exploited to control infections. In antibiotic resistant Gram-positive bacteria, it has been 
reported that even small quantities of purified recombinant lysin added externally lead to 
immediate lysis resulting in log-fold of death of the bacterial cells found on the mucosal 
surfaces and infected tissues. They have been suggested to make ideal antiinfectives due to 
lysin specificity for the pathogen that does not disturb the normal flora, the low chance of 
bacterial resistance towards lysins, and their ability to kill colonizing pathogens on mucosal 
surfaces illustrating a previously unavailable capacity (Hermoso et al., 2007, Fenton et al., 
2010; Fishetti, 2010). These enzymes are suggested to particularly be useful to control 
antibiotic resistant Gram-positive pathogens. In this group of bacteria, lysins can make 
direct contact with their cell wall carbohydrates and peptidoglycan externally making them 
suitable candidates in clinical applications (Loessner, 2005; Hermoso et al., 2007). 

Another example is Mycobacterium, phylogenetically related to Gram-positive bacteria but 
its cell envelope has a double-membrane structure similar to Gram-negative bacteria. Cell 
envelopes of mycobacteria contain peptidoglycan-arabinogalactan-mycolic acid complex 
(Sutcliffe, 2010). Mycobacteriophages must not only degrade the peptidoglycan layer but 
must also circumvent a mycolic acid-rich outer membrane covalently attached to the 
arabinogalactan-peptidoglycan complex. They utilize two lytic enzymes to produce lysis: (i) 
Lysin A that hydrolyzes peptidoglycan, and (ii) Lysin B, a novel mycolylarabinogalactan 
esterase, that cleaves the mycolylarabinogalactan bond to release free mycolic acids (Payne 
et al., 2009) and the study of phage ejection mechanisms in this group of bacteria might lead 
to the discovery of novel lytic systems and thus new antimicrobial agents.  

Effective antimicrobial activity against Gram-positive bacterial pathogens including 
Streptococcus pneumoniae and Bacillus anthracis by exogenously applied phage-encoded 
endolysins has already been demonstrated. This approach has however, proved ineffective 
against Gram-negative bacteria since the outer membrane blocks access to the peptidoglycan 
targets (Fishetti, 2008). Due to their mycolic acid, rich outer membrane mycobacteria are 
likely to be similarly intractable to exogenously added endolysins. In order to overcome this 
resistance, a novel approach has been proposed by Payne et al. (2009) to render 
mycobacterial pathogens such as M. tuberculosis susceptible to endolysin treatment through 
co-treatment with LysA and LysB proteins.  
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In-depth understanding of the host-phage interaction and the full lytic-system is required to 
design effective biocontrol strategies using bacteriophage lysins. In this search, another rich 
source for mycobacterial phages might be the activated sludge systems where fascinating 
suborder, family, genus and species-specific host-phage interactions occur (Thomas et al., 
2002). Recent genome sequencing of a Tsukamurella phage again isolated from an activated 
sludge system reveals a modular gene structure that shares some similarity with those of 
Mycobacterium phages (Petrovski et al., 2011). Accordingly, phylum level perspective and 
understanding of bacterial cell wall envelope architecture (Sutcliffe, 2010) with particular 
emphasis on monoderm and diderm bacteria, and translation of this understanding to 
phage lytic activity will advance current knowledge and contribute towards design and 
application of new phage-derived therapeutics. Actinobacteria-specific proteins, mainly 
specific for the Corynebacterium, Mycobacterium and Nocardia subgroups, have also been 
reported (Venture et al., 2007) and such specific proteins might have implications for the 
control of these pathogens. Mycetoma, a chronic granumatous infection persistent 
worldwide and endemic to tropical and subtropical regions, is another example (Linchon 
and Khachemoune, 2006) and among bacteria Actinomadura species reportedly cause the 
disease. However, in spite of trials in many different laboratories, phages specific to 
Actinomadura species were not reported until early 1990s (Long et al., 1993; Kurtböke et al., 
1993b). Phages isolated towards different species of Actinomadura from organic mulches 
used in avocado plantations revealed that they belonged to Siphoviridae group of phages 
(Kurtböke et al., 1993b). Further studies on the Actinodamura phage and host-cell-wall 
interactions might shed light on the development of effective treatment strategies deriving 
from phage lytic activity on the pathogenic host.  

Furthermore, metagenomics sequencing studies of uncultured viral populations have 
provided new insights into bacteriophage ecology. The cloning of phage lytic enzymes from 
uncultured viral DNA, and observations into colony lysis following exposure to inducing 
agent, revealed the value of viral metagenomes as potential sources of recombinant proteins 
with biotechnological value (Schmitz et al., 2010). Functional screens of viral metagenomes 
will inevitably provide a large source of recombinant proteins which might subsequently be 
used to treat infections resulting from difficult to control pathogens. 

3.5 Prophage genomics 

Prophage genomics has increased our understanding of the phage-bacterium interaction at 
the genetic level. Data deriving from these studies has also revealed genetic rules that 
underlie the arms race between the host bacterium and the infecting virus (Wagner and 
Waldor, 2002; Canchaya et al., 2003). Studies into non-pathogenic bacteria inhabiting varied 
but defined environments have also improved our understanding of the prophage 
contribution to the fitness increase of host bacterial cells. Even environmental and 
commensal bystander bacteria have been shown to be converted into toxin-producing ones 
via lysogenization (Chibani-Chennoufi et al., 2004).  

Prophage genomics studies will possibly lead to discovery of important genes for the 
ecological adaptation of bacterial commensals and symbionts (Canchaya et al., 2003; Venture 
et al., 2007). Moreover, prophage genomics studies will provide further information on the 
expression of many lysogenic conversion genes (Canchaya et al., 2003) and all this 
information will then provide significant clues to be further exploited in drug discovery.  
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4. Natural products 

Natural products have historically made significant contributions to the provision of new 
lead candidates in drug discovery programs (Newman and Cragg, 2004 a,b). Most 
characteristic features of the secondary metabolites are their incredible array of unique 
chemical structures and can be exploited as lead compounds, for chemical synthesis of new 
analogues or as templates, in the rational drug design studies. Their very frequent 
occurrence, versatile bioactivities and the rich structural and stereochemical attributes of 
natural products promote these compounds as valuable molecular scaffolds to explore their 
chemotherapeutic potential (Demain and Fang, 2000; Croteau et al., 2000; Firn and Jones, 
2002). However, to continue to be competitive with other drug discovery methods, natural 
product research needs to continually improve the speed of the screening, isolation, and 
structure elucidation processes, as well addressing the suitability of screens for natural 
product extracts and dealing with issues involved with large-scale compound supply 
(Butler, 2004). Current alternative strategies include exploitation opportunities for drug 
discovery arising from an understanding of the mode of action of existing antibiotics. In this 
way, biochemical pathways or processes (e.g. peptidoglycan synthesis, tRNA synthesis, 
transcription and DNA replication) inhibited by antibiotics already in clinical use may 
contain key functions that represent unexploited targets for further drug discovery. Since 
most of these antibiotics are of natural product origin they might provide further clues in 
the search for their alternatives (Chopra et al., 2002).  

4.1 Bioactive compounds from microbial resources 

In industrial applications, microbial secondary metabolites are often defined as “low 
molecular mass products of secondary metabolism,” which include antibiotics, pigments, 
toxins, effectors of ecological competition and symbiosis, pheromones, enzyme inhibitors, 
immunomodulating agents, receptor antagonists and agonists, pesticides, antitumor agents 
and growth promoters (Demain and Fang, 2000; Bérdy, 2005; Bull, 2004; 2007; 2010) (Table 2 
and 3).  

 

Amino sugars Glycopeptides Phenazines Pyrrolines 

Anthocyanins Glycosides Phenoxazinones Pyrrolizines 

Anthraquinones Hydroxylamines Phthaldehydes Quinolines 

Aziridines Indole derivatives Piperazines Quinones 

Benzoquinones Lactones Polyacetylenes Salicylates 

Coumarines Macrolides Polyenes Terpenoids 

Diazines Naphthalenes Polypeptides Tetracyclines 

Epoxides Naphthoquinones Pyrazines Tetronic acids 

Ergot alkoloids Nitriles Pyridines Triazines 

Flavonoids Nucleosides Pyrones Tropolones 

Furans Oligopeptides Pyrroles Vanillin 

Glutarimides Perylenes Pyrrolidones Zeaxanthin 

Table 2. Examples of classes of organic compounds deriving from microbial secondary 
metabolites (adapted from Demain, 1981 and reproduced from Kurtböke, 2010a) 
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ACTH-like Complement inhibition Hemolytic Leukemogenic 

Anabolic Convulsant Hemostatic Motility inhibition 

Analeptic Dermonecrotic Herbicidal Nephrotoxic 

Anesthetic Diabetogenic Hormone releasing Paralytic 

Anorectic Diuretic Hypersensitizing Parasympathomimetic 

Anticoagulant Edematous Hypochloresterolemic Photosensitizing 

Antidepressive Emetic Hypoglycemic Relaxant (smooth muscle) 

Antihelminthic Enzyme inhibitory Hypolipidemic Sedative 

Anti-infective Erythematous Hypotensive Serotonin antagonist 

Anti-inflammatory Estrogenic Immunostimulating Spasmolytic 

Anti-parasitic Coagulative (blood) Hallucinogenic Telecidal 

Anti-spasmodic Fertility enhancing Inflammatory Ulcerative 

Carcinogenesis inhibition Complement inhibition Hemolytic Vasodilatory 

Coagulative (blood) Hallucinogenic Insecticidal Anti-viral 

Table 3. Pharmacological activities of microbial secondary metabolites (adapted from 
Demain, 1983 and reproduced from Kurtböke, 2010a) 

However, existing antibiotics have mode of actions directed at a narrow spectrum of targets, 

principally cell wall, DNA and protein biosynthesis and so far multidrug resistance among 

bacterial pathogens has been largely due to a limited repertoire of antibacterial drugs that 

eradicate bacteria using a narrow range of mechanisms (Brown, 2004; Baltz, 2005; 2006a,b; 

2008). Novel structural attributes are also required and only one new class of antibiotics has 

reached the clinic since 2001 (Ford et al., 2001). Currently, many novel microorganisms are 

being isolated from extreme biological niches, revealing their own chemical defence 

mechanisms. These naturally occurring organisms, together with recombinant organisms 

generated using combinatorial genetics and the availability of new chimeric metabolic 

pathways, might deliver an abundance of new compounds (Payne et al., 2007; Goodfellow 

2010).  

As advocates of natural product screening to search for novel antibacterial leads, Payne et al. 

(2007) adapted an alternative innovative approach with the belief that leads were not going 

to come from screening, but from alternative approaches. They reconsidered known 

antibacterial molecules to see whether they could improve their antibacterial and 

developmental properties and along these lines, they modified the pleuromutilin core 

structure in ways to bring three derivatives into clinical development. They also found lead 

molecules by screening a small, discrete library of compounds for antibacterial activity, 

which resulted in the discovery of a novel compound class capable of inhibiting bacterial 

DNA replication, and reached the developmental stage.  

In the light of the above-mentioned advances, revisiting natural products with target-
directed strategies might again provide us with novel and potent therapeutic agents. 

4.2 Actinomycetes and drug discovery 

Among the bacteria, the members of the order Actinomycetales have proved to be a 
particularly rich source of secondary metabolites with extensive industrial applications 
(Table 4).  
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Source Bioactive secondary metabolites 

 Antibiotics Bioactive metabolites Total bioactive 
metabolites 

 Total With other 
activity 

No antibiotic 
activity 

Antibiotics plus 
other active 
compounds 

 

Bacteria 2900 780 900 1680 3800 

Actinomycetes 8700 2400 1400 3800 10100 

Fungi 4900 2300 3700 6000 8600 

Total 16500 5500 6000 11500 22500 

Table 4. Bioactive compounds of microbial origin (adapted from Bérdy, 2005 and 
reproduced from Kurtböke, 2010b). 

In particular, the capacity of the members of the genus Streptomyces to produce 
commercially significant compounds, especially antibiotics, remains unsurpassed, possibly 
because of the extra-large DNA complement of these bacteria (Goodfellow and Williams, 
1986; Kurtböke, 2010a; 2012). Members from this genus are even predicted to be the 
producers of many novel yet to be discovered bioactive compounds (Watve et al., 2001). As a 
result, selective isolation of previously undetected bioactive actinomycetes is one of the 
major targets of industrial microbiologists in the search for novel therapeutic agents (Bull et 
al., 2000; Bull and Stach, 2007; Goodfellow, 2010; Goodfellow and Fiedler, 2010; Kurtböke, 
2003; 2010a). 

The range of versatility of actinomycete metabolites is enormous and yields significant 
economic returns, yet, biodiscovery from these sources depends on the  

i. detection and recovery of bioactive actinomycete fraction from previously unexplored 
environmental sources,  

ii. effective assessment of their metabolites in defined targets (Goodfellow, 2010; 
Kurtböke, 2003; 2010a). 

4.3 Bacteriophage-guided route to detection of rare actinomycetes  

Chemical diversity of bioactive compounds, particularly from those rare and "yet to be 

discovered" actinomycetes is promising, however, detection of bioactive actinomycete taxa 

requires in-depth understanding of their true diversity and eco-physiology through which 

target-directed isolation strategies can be implemented (Bull et al., 2000; Bull, 2003; 

Kurtböke, 2012).  

Isolation of bioactive rare actinomycete taxa requires highly specialised isolation techniques 

(Lazzarini et al., 2000; Kurtböke, 2003; Goodfellow 2010), and those employed range from 

the use of antibiotics to chemotaxis chambers, and excessive heat treatments (Hayakawa, 

2003; Terekhova, 2003; Okazaki, 2003; Goodfellow 2010). In this context, bacteriophages 

have also proved to be useful tools in different applications, such as naturally-present 

indicators of under-represented or rare actinobacterial taxa in environmental samples; or as 

tools for deselecting unwanted taxa on the isolation plates in the process of target specific 

search for rare actinomycete taxa (Kurtböke, 2003; 2009; 2010b; 2011). 

www.intechopen.com



 
Bacteriophages 248 

4.3.1 Actinophages as naturally-present indicators of rare actinomycetes in 
environmental samples 

Presently, more than 50 rare actinomycete taxa are reported to be the producers of 2500 
bioactive compounds (Bérdy, 2005), including several clinically important antibiotics such as 
vancomycin, erythromycin, tobramycin, apramycin, and spinosyns. However, these 
actinomycetes are not commonly cultured from natural substrates. Vancomycin producer 
Amycolatopsis sp. or spinosyn producer Saccharopolyspora sp. were found to be 4% and 3% 
abundant (Baltz, 2005).  

Bacteriophages indicate presence of their host bacteria in an environmental sample and 
increased phage titre to detectable levels reflects the growth of indigenous host cells, and 
failure to do so reflects their absence from that source (Goyal, 1987). High densities of 
phages were reported in soils with conditions favourable for the host proliferation (Reanney 
and Marsh, 1973; Goyal et al., 1987). This ecological reality has been used to utilize 
bacteriophages as naturally-present indicators of under-represented or rare actinobacterial 
taxa in environmental samples (Williams et al., 1993; Kurtböke, 2003; Kurtböke, 2005; 2007; 
2010b; 2011). Examples include detection of indicator phages towards actinomycetes 
including members of the genera Saccharopolyspora and Salinispora species (Kurtböke, 2009). 

4.3.2 Exploitation of phages as deselection agents of unwanted taxa on isolation 
plates to recover rare actinomycetes from environmental samples 

Direct analysis of rRNA gene sequences and birth of metagenomic studies showed that the 
vast majority of microorganisms present in the environment had not been captured by 
culture-dependent methods (Handelsman, 2004). Current advances such as microarrays  

  ペ  ボ  ペ  ボ 

 

Fig. 1. Use of polyvalent streptomycete phage to reduce their numbers on isolation plates of 
a soil sample (A: without phage, B: with phage)  
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targeting the 16S rRNA gene of bacteria and archaea and the use of PhyloChips to identify 
specific members within a complex microbial community as well as targeting known 
functional gene markers to study functional gene diversity and activities of microorganisms 
in specific environment reveal true microbial diversity (Andersen et al., 2010). Functional 
gene arrays (GeoChips) have also been used to analyse microbial communities, and provide 
linkages of microbial genes/populations to ecosystem processes and functions (Andersen et 
al., 2010). Culturing representatives of these microorganisms with particular reference to 
previously explored environments such as those extreme and marine, has thus importance 
for biotechnological applications (Kennedy et al., 2007; Joint et al., 2010). 

 

 

Fig. 2. Use of phage battery to reduce the numbers of (a) unwanted bacteria and (b) 
streptomycetes on ½ TSA plates to isolate rare actinomycetes. (1): Without phage, (2): With 
phage (reproduced from Kurtböke, 2010b) 
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Once information is generated on microbial diversity via above-listed molecular advances, 
phages can again be effective tools to remove unwanted taxa on the isolation plates in the 
process of target specific isolation of targeted taxa such as rare actinomycetes (Kurtböke et 
al., 1992; Kurtböke, 2003; Kurtböke, 2011). Examples include removal of smearing bacterial 
contaminants (e.g. as Bacillus species) rendering isolation of rare actinomycetes difficult 
from heated material on the isolation plates via phage battery (Kurtböke et al., 1993b; 
Kurtböke, 2003) (Figure 2 a,b).  

Furthermore, layer by layer removal of unwanted soil taxa can also reveal bioactive 
fractions of the test sample under study (Kurtböke et al., 2002; Kurtböke and French, 2007). 
This fact is illustrated in Figure 1 where removal of streptomycete fraction of the sample 
reveals the presence of other bacterial taxa which are obviously susceptible to the antibiotic 
activity of streptomycetes (Kurtböke et al., 1992). This approach can particularly be useful in 
the detection of antimicrobial compound producing actinomycetes, even including novel 
streptomycetes in the samples, proved to be carrying antibiotic-resistant bacteria. It is a 
known fact that most studied environments can still yield novel members of bioactive 
genera (Williams et al., 1984) and revisiting these environments via the aid of indicator 
phages might render new bioactive species. 

It is important to note that in-depth understanding of each sample‘s natural characteristics 
and its microfloral diversity is required for successful application of phage battery as a tool 
for selective isolation. In every different sample, a new set of bacteriophages suitable for the 
nature of the sample, has to be used to remove layers only to be present in that sample. 
Accordingly, new sets of phages obtained against contaminating background will be 
required for complete reduction in the numbers of background bacteria in each different 
sample (Kurtböke et al., 1992). 

5. Conclusion  

Bacteriophages can be powerful tools in the detection of bioactive actinomycetes and 
facilitate the discovery of novel bioactive compounds. They can offer more than we 
currently benefit from them if improved understanding of the host-phage ecology can be 
generated. Sound knowledge of microbial taxonomy is also a prerequisite for the effective 
use of bacteriophages in selective isolation procedures. Phage cross infectivity should also 
be interpreted carefully before they can be effectively exploited to select bioactive bacterial 
taxa (Kurtböke, 2011). In addition, current expansion of knowledge of phage and prophage 
genomics and phage infective mechanisms of host bacteria will provide a platform for the 
effective use of phages in biodiscovery.  

Targeting host bacterial functional diversity, in which, certain metabolic activities might be 
triggered in a defined ecosystem following phage-mediated gene transfer might also offer 
clues for bioactivity (e.g. abolishment of rapamycin production as a consequence of phage 
insertion and its restoration upon the loss of the inserted phage by a second recombination 
(König et al., 1997)). An evaluation of the role of host-phage interactions in antibiotic 
production as well as in rendering antibiotics ineffective via lysogenation or prophage 
exertion will also further complement therapeutic success, and all this provides enough 
reason for the value of phages to be reconsidered in the post-genomic era (Kurtböke, 2011). 

Current expertise of host receptor recognition by phages and the specificity of phage-
derived lytic enzymes also needs to be developed further as well as an in-depth 
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understanding of the ecological and evolutionary reasons for monovalency and polyvalency 
(Kurtböke, 2011). Through such cumulative information, bacteriophages will gain increasing 
value as tools in drug discovery with their further use ranging from assay development to 
compound design (Brown, 2004; Projan, 2004). 

6. In Memoriam  

This chapter is dedicated to the memory of Professor Romano Locci (1937-2010), University 
of Milan and University of Udine, Italy. 
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