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1. Introduction  

Iron is a mineral that is found in nature and foods. It is involved in many physiological 
functions in the body, and poor iron intake can lead to iron deficiency and later to anemia. 
Iron deficiency anemia (IDA) is the most prevalent nutritional disorder in the world 
despite iron being the fourth most common element on earth. Anemia is amongst the 
most important contributing factors to the global burden of disease. According to a recent 
WHO report on the global prevalence of anemia, one in four people is affected by anemia 
worldwide (McLean et al., 2009; WHO, 2008), with pregnant women and preschool-age 
children at the greatest risk. Two thirds of preschool-age children are affected in 
developing regions of Africa and South East-Asia, and about 40% of the world’s anaemic 
preschool-age children reside in South-East Asia (McLean et al., 2009; WHO, 2008). Of the 
293.1 million children who suffer from anemia worldwide, 83 million (28%) are in sub-
Saharan Africa, representing 67% of the total population of children of this age group in 
the continent.  
Adverse health consequences of anemia in preschool children include altered cognitive 

function, impaired motor development and growth, poor school performance, poor immune 

function and susceptibility to infections, decreased in responsiveness and activity, increased 

in body tension and fatigue. Even before clinical symptoms are visible, iron deficiency that 

leads to anemia is detrimental to children and may condemn one third of the world 

population to live permanently below their full mental and physical potential. Indeed, the 

impact of iron deficiency anemia on psychomotor development and cognitive function in 

children under the age of two years may be irreversible despite adequate therapy (Lozoff et 

al., 2000). Horton & Ross (2003) estimated the median productivity lost due to iron 

deficiency anemia alone to be about US$2.32 per capita or 4.05% of gross domestic product 

(GDP). The authors estimated an additional US$14.46 per capita lost in cognitive function, 

for a total annual loss (cognitive & productive) of about $50 billion in GDP worldwide from 

iron deficiency anemia. Due to its detrimental effects among children, effective interventions 
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to improve iron status and reduce the burden of anemia will likely promote health and 

development.  

Anemia is preventable, yet it remains the most widespread nutritional deficiency in the 

world. Countries, which realized significant progresses in the control of the problem have 

identified contextual risk factors and implement context relevant programs. In sub-Saharan 

African, conditions which increase the risk for anemia in children are complex and 

multidimensional. A first step for evidence-based interventions and policies towards the 

control and elimination of iron deficiency anemia is a better understanding of these risk 

factors. The current chapter discusses the determinants of iron deficiency anemia in sub-

Saharan Africa children.  

2. Definition and conceptual framework  

In the literature, the terms anemia, iron deficiency, and iron-deficiency anemia are often 

used interchangeably, but are not equivalent. Anemia is defined as a significant reduction in 

hemoglobin concentration, hematocrit, or the number of circulating red blood cells at a level 

below that is considered normal for age, sex, physiological state, and altitude, without 

considering the cause of the deficiency (Nestel et al., 2002). Iron deficiency anemia is a 

condition in which there is anemia due to lack of available iron to support normal red cell 

production. It is the third and last stage of iron deficiency which starts with depletion of iron 

stores as reflected by a reduced serum ferritin concentration. The second stage is iron 

deficient erythropoiesis, characterized by decreased serum iron, transferrin saturation and 

serum ferritin concentration but with a normal hemoglobin concentration. Because anemia 

can arise from nutritional factors and from non-nutritional ones, several terms are used to 

classify anemia, including nutritional anemia, anemia of infection, anemia of chronic 

diseases, pernicious anemia. For the purpose of this chapter, we focus on the first three that 

are the most common in developing countries, have modifiable risk factors and can be 

prevented through appropriate behavioral tailored intervention.  

Several factors contribute concurrently in childhood anemia, but their relationships to the 

onset of anemia are not identical. Therefore, from an epidemiological perspective, it is 

important to distinguish between the different factors. A causal factor is linked to the onset 

of a disease or the condition and precedes the disease. A risk factor is an element linked to a 

person (biologic or hereditary), a behaviour, lifestyle or environment that increases the 

likelihood of developing the condition and has been found correlated with the condition in 

epidemiological studies (Last, 2004). When an intervention targeting a factor can reduce the 

likelihood of the condition developing, the factor is considered a modifiable risk factor. A 

factor susceptible to increase the onset of a pathological condition is a determining factor or 

determinant. For example the major causal factors of iron deficiency that lead to anemia are 

low dietary iron intake, inadequate iron absorption, chronic blood loss, and increased iron 

demand. However, there are several other factors (non causal relationship) that contribute 

to anemia including among others sociocultural factors, poverty, maternal factors, chronic 

conditions secondary to AIDS, tuberculosis and genetic factors such as sickle cell and 

thalassemia. There are several levels of stratification of anemia risk factors for children 

including structural and environmental level factors, community level factors, household 

level factors and individual health and nutrition related factors. Figure 1 summarizes the 

www.intechopen.com



 

Risk Factors for Anemia in Preschool Children in Sub-Saharan Africa  

 

173 

multi-level risk factors of anemia in children in developing countries. There is an 

anthropological perspective that can be seen as a transverse risk factor. 

3. Anthropological perspective  

Anthropologists believed that agrarian revolution that resulted in changes in dietary 
behaviours and outbreak of infectious diseases about 10,000 years ago has played an 
important role in the emergence and spread of iron deficiency and anemia (Denic & 
Agarwal, 2008; Wander et al., 2009). According to this theory, meat was the main source of 
energy prior to agrarian revolution. When humans turned from hunting to agriculture, the 
diet became deficient in bioavailable iron, thus increased the prevalence of iron deficiency 
and its subsequent anemia. Cultivating plant-based foods has increased calorie intakes, but 
reduced meat consumption. As a result, iron intake became insufficient to meet individual 
daily requirements. According to Mann (2007), daily total iron intake decreased from 87 mg 
in the Palaeolithic age to 15 mg in the twentieth century. In addition, increased consumption 
of plant-based foods has reduced the intake of absorbable iron because the amount of non-
heme iron and inhibitors of iron absorption has increased in the diet, while the amount of 
heme iron has decreased.  
With sedentarization and animal husbandry, carriers of infectious diseases were able to be 
transmitted from animals to humans leading to emerging or re-emerging human infectious 
diseases. Thereafter, poor environmental and hygienic conditions, crowding and lifestyle 
changes have resulted in proliferation and spread of these carriers (Denic & Agarwal, 2007). 
Several studies suggested that mild to moderate iron deficiency may protect against acute 
infection (Oppenheimer, 2001; Prentice, 2008; Sazawal et al., 2006). Thus some authors put 
forward the hypothesis of a potential metabolic adaptation during which the human body 
self-regulates its iron to a deficiency status, the « iron-deficient phenotype », to prevent the 
severity of infections when re-infection is a continuous process (Denic & Agarwal, 2007). 
According to these authors, the important advancement in developed countries to control 
anemia are more likely due to the successful eradication of infections rather than the quality 
of diet. In malaria endemic areas such as Africa, the iron deficiency phenotype survived 
better over time (Denic & Agarwal, 2007; Wander et al., 2009). Therefore, iron substitution 
therapy in some population groups such as iron supplementation in children with no 
functional iron deficiency may cause more harm than good (Sazawal et al., 2006; 
WHO/UNICEF, 2006). 

4. Dietary factors 

The dietary risk factors for childhood anemia in developing countries include single or 
combined deficiency of micronutrients such as iron, folic acid, vitamin B6, vitamin B12, 
vitamin A and copper. Association has been found between anemia and deficiency of 
vitamin A, riboflavin, protein and other nutrients (Gamble et al., 2004, Semba & Bloem 2002; 
Thorandenya et al. 2006; Rock et al., 1988). Although nutritional factors are thought to be the 
most important contributing factors to childhood anemia, their exact contribution to the risk 
of anemia is not well established and may vary with the level of infection and the diet 
quality. Magalhaes & Clements (2011) estimated that about 37% of Anemia cases in 
preschool children in three West African countries namely; Burkina Faso, Ghana and Mali 
could be averted by treating nutrition related factors alone.  
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Fig. 1. Simplified conceptual framework for determinants of anemia among children 
(adapted from Ngnie-Teta et al, 2007). 

4.1 Iron deficiency  
The leading cause of anemia worldwide is iron deficiency due to inadequate intake or 
malabsorption of dietary iron. The adequacy of dietary iron depends on the intake and the 
bioavailability, which in turn are contingent to the nature of the food and the composition of 
the overall diet. In many developing countries, the amount of iron in the diet is usually 
enough to cover body needs, however because it is mainly provided by plant based food in 
the form of non-heme iron, its bioavailability is very low (Adish et al., 1998; Sanou et al., 
2011; Zimmermann et al., 2005)  
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Iron is present in food in two forms: heme iron and non-heme iron. Heme is a component of 
hemoglobin and myoglobin and heme iron is mainly provided by animal tissues such as meat, 
poultry, fish and shellfish. Heme iron represents about 40% of animal tissue iron and is easily 
absorbed. However, it contributes to less than 15% of the total dietary iron, and may represent 
less than 1% in some countries where consumption of animal foods is very low (Monsen et al., 
1978). Most of the dietary iron is provided in the form of non-heme iron that is comprised of 
non-heme iron component of animal tissues, iron from eggs, milk and plant-based foods. The 
absorption rate of non-heme iron is very low and depends on iron status and combined effects 
of enhancers and inhibitors of iron absorption (Monsen et al., 1978). Enhancers of iron 
absorption include animal tissues (meat, poultry, and fish) and vitamin C and organic acids 
(Diaz et al. 2003; Reddy et al. 2000). Dietary factors that can reduce the absorption of iron 
(inhibitors) are phytates and some groups of polyphenols such as tannins (Reddy et al., 2000; 
Sandberg et al., 1999), high intake of calcium and zinc (Lind et al., 2003; Lynch, 2000), and 
cow’s milk (Kibangou et al. 2005). Studies conducted in different regions of the world with 
high prevalence of anemia showed strong correlation between iron stores and absorbable iron 
intakes while there is no evidence of association between total iron intake, iron deficiency and 
anemia (Zimmermann et al., 2005; Talata et al. 1998; Adish et al., 1998).  

4.2 Other micronutrient deficiencies associated with anemia 

Other micronutrients are directly or indirectly involved in red blood cell metabolism. 
Vitamin B6 (pyridoxal phosphate) for example is required for activation of -aminolevulinic 
acid synthase that is necessary for heme synthesis. Vitamine B9 (folate) and B12 (cobalamine) 
deficiencies result in immature erythrocyte leading to macrocytic anemia (Gropper et al., 
2005). Poor vitamin A status has been associated with Anemia (Gamble et al., 2004; Semba & 
Bloem 2002) and vitamin A supplementation has been shown to reduce the prevalence of 
Anemia (Semba et al., 2001). Copper is an enzymatic cofactor of ceruloplasmin (ferroxydase) 
that is involved in iron mobilisation during the hemoglobin synthesis. Therefore, a 
deficiency of copper may contribute to iron deficiency anemia (Gropper et al., 2005). It has 
been suggested that because of some similarities metabolic pathways of iron and zinc, high 
level zinc intake in the form of supplement may reduce the effectiveness of iron 
supplementation programmes aimed at reducing the burden anemia (Lind et al., 2003).  

4.3 Severe acute malnutrition  

Acute malnutrition resulting from inadequate dietary intake of nutrients and/or from acute 
infection and disease may also lead to mild to moderate anemia. Several hypotheses have been 
put forward to explain the relationship between anemia and protein-energy malnutrition; 1) 
adaptation to lower tissue-metabolic requirements for oxygen transport, 2) the reduction of 
protein required for hematopoiesis and 3) the reduction of survival time of red blood cells and 
the maturation of the erythroblasts (MacDougall et al., 1982). Some authors however consider 
that the anemia of PEM is the outcome of a complex haematological process in which iron and 
other micronutrient deficiencies interplay (Awasthi et al., 2003). 

5. Infections 

Infections are the second most important cause of anemia after iron deficiency and contribute 
in some settings to up to 50% of the cases (Asobayire et al., 2001; Stoltzfus et al., 2000). Children 
are particularly affected by infection-related anemia because of their lower immune response 
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and their frequent exposure to poor sanitation and environmental conditions which favour the 
transmission and spread of parasites. Infections including malaria, hookworms, schistosomia, 
etc. are highly prevalent in developing countries and may negatively affect the nutritional 
status and growth of children. Studies conducted in many regions of Africa found positive 
associations between the presence and density of infection and chronic undernutrition, anemia 
and poor cognition (Brooker et al., 1999; Calis et al., 2008a; Friedman et al., 2005; Osazuwa et 
al. 2011; Sanou et al. 2008; Tolentino & Friedman, 2007). Regardless, the parasites or bacteria 
causing the anemia are different, all cases of anemia due to infection share some common 
pathways; 1) resulting iron deficiency through reduction of iron intake due to poor appetite 
and blood loss; 2) hemolysis i.e increased red blood cell destruction; 3) decreased red cells 
production and; 4) resulting inflammation. These mechanisms will be discussed later together 
with some pathways that are specific to each infection.  

5.1 Malaria  

The highest prevalence of childhood Anemia worldwide is found in malaria endemic 
regions. The WHO recent estimation of the global prevalence of anemia 1993-2005 suggested 
that between 31% and 90% of children in malaria-endemic areas of Africa suffer from 
anemia (WHO, 2008). Anemia is a common manifestation of the malaria infection and 
severe anemia can contribute to malaria mortality through hypoxia and cardiac failure 
(Memendez et al., 2000). Various Plasmodium species cause malaria, yet P. falciparum is the 
most critical for anemia in children. Contrary to iron deficiency anemia that develops 
slowly, P. falciparum causes severe and profound anemia within 48 hours of the onset of the 
fever. Other Plasmodium that can contribute to malaria include P. vivax and P malariae.  
Table 1 shows the pathophysiology of malaria induced anemia. Philips and Pasvol (1992) 
summarized the pathophysiology of malarial anemia as follows, “anemia occurs when red 
cells are destroyed more rapidly than they can be replaced, or when red cell production falls 
below the minimal level required to maintain the steady state”. Potential causes of increased 
red blood cell destruction include alteration of the red cell membrane rigidity and 
deformability, “loss of infected cells by rupture or phagocytosis, removal of uninfected cells 
due to antibody sensitization or other physico-chemical changes, and increased 
reticuloendothelial activity, particularly in organs such as the spleen” (Nuchsongsin et al., 
2007; Park et al., 2008; Phillips & Pasvol, 1992). Factors leading to decreased red cell 
production include bone marrow hyploplasia and dyserythropoiesis. The severity of the 
malaria induced anemia is correlated with the density of the parasitaemia.  
Although there is a consensus that clinical malaria causes severe anemia, there is limited 
evidence on the effect of asymptomatic malaria on severe anemia. While some authors 
reported that asymptomatic malaria does not significantly impact Haemoglobin level (Nkuo 
et al. 2002), some studies have demonstrated that asymptomatic malaria can cause 
homeostatic imbalance and lower Haemoglobin level in children (Kurtzhals et al. 1999); thus 
contributing to mild to moderate anemia (Price et al. 2001; Sowunmi et al., 2010; Umar et al. 
2007). Imbalances of cytokines such as TNF-, IL-6, IL-10 and IFN-Ǆ resulting from malaria 
related-inflammation can induce changes in iron absorption and distribution, thus 
contributing to iron deficiency and subsequent iron deficiency anemia (Cercamondi et al., 
2010; Shaw & Friedman, 2011). Bed net use is well documented as effective anemia 
prevention strategy (Korenromp et al., 2004, TerKuile, 2001). An exhaustive review of 
impact of malaria control on risk of anemia among children (Korenromp et al., 2004), 
estimates the protective effect of bed net on severe anemia to be 60%.  
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Mechanism Comments  
Increased erythrocyte destruction 

Non-immune mediated 
haemolysis 

Rupture of parasitized red blood cells  (PRBC) following 
invasion of RBC by malaria parasites  
Phagocytosis of parasitized (PRBC) and unparasitized red 
blood cells (NPRBC) due to proliferation and hyperactivity 
of macrophages in the reticuloendothelial system; thus 
shortening their life span  
Premature removal of NPRBC from the circulation due to 
reduce deformability and membrane binding of parasite 
components   
Increased clearance of parasitaemia due to splenic 
hypertrophy and hypersplenism (increased activity of the 
spleen that filters malaria infected RBC from the circulation) 

Auto-immune haemolysis 

Increased premature removal and clearance of unparasitized 
RBC due to immunoglobulin and complement activation 
leading to an extravascular haemolysis  
Hapten induced intravascular haemolysis due to the use of 
quinine that acts as a hapten combining with RBC protein 
to become antigenic  

Decreased erythrocyte production  
Morphological 
abnormalities of the bone 
marrow  

Aberrations of erythroblast morphology, macrophage 
hyperplasia, erythroid hypolasia and failure of reticulocyte 
release following a repeated attacks of malaria  

Dyserythropoiesis  

Morphological abnormalities of the eryhtroid series including 
multinuclearity of the normoblasts, intercytoplasmic 
bridging, karyorrhexis, incomplete and unequal mitotic 
nuclear divisions in some individuals with malaria  

suppression of 
erythropoietin (EPO) 
synthesis 

Suppression of EPO synthesis by inflammatory mediators 
such as TNF in some adults with malaria  

Imbalances of cytokines 
(Inflammation induced 
anemia) 

Bone marrow depression, dyserythropoeisis and 
erythrophagocytosis following low interleukine (IL-10 and 
IL-12) or excess of T helper cell type 1 (th1), cytokines 
THF-a et TNF-x, and nitric acid (NO)  

Inflammation induced 
erythroid hypoplasia  

Suppression of normal response to erythropoietin due to 
an autologous serum factor that may suppress the growth 
of early precursors of RBC including the burst-forming 
unit-erythron (BFU-E) and the colony-forming unit 
erythron (CFU-E). 

Concomitant infections 
Increased susceptibility to secondary infections due to 
reduced immune systems following malaria infection  

Anti-malarial drugs 

Antifolate antimalarial  
Megaloblastic anemia due to overdosing of 
pyremethamine and/or trimethoprim  
Quinine induced intravascular auto-immune haemolysis  

Table 1. Pathophysiology mechanisms of malaria-related anemia (Memendez et al., 2000; 
Phillips & Pasvol, 1992). 
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Price et al. (2001) reported that treatment failure in uncomplicated malaria can lead to 
anemia. It has also been suggested that child undernutrition, particularly stunting modify 
the associations between malaria and anemia (Verhoef et al. 2002). Verhoef et al (2002) 
reported that stunting impairs host immunity, increases inflammation, and increases iron 
demand in developing erythroblasts, thus increasing the malaria-associated anemia.  

5.2 Hookworms 

Helminths are a group of intestinal nematodes that are recognized as a major public health 
problem in many developing countries. The effects on anemia are well documented for four 
species, namely trichomonas (Trichuris trichiura), ankylostoma (Necator americanus, 
Ancylostoma duodenale), hookworm (Hymelolepis nana) and ascaris (Ascaris lumbricoides). It is 
believed that the burden of hookworm is the most important particularly on severe anemia 
and is mostly due to extracorporeal blood loss in the stools resulting from a parasite release 
of a coagulase in the blood. A. duodenale was found more harmful than N. americanum and 
Skeletee (2003) for example estimated that it can cause approximately 0.25 mL blood loss per 
parasite per day during pregnancy.  
According to a study done in Kenyan preschool children, hookworm contributed to 4% of 
anemia cases in children and heavy infection with hookworm increases the risk of anemia 
by 5 (Brooker et al., 1999). However, the authors did not find any association between 
hookworm and hemoglobin concentration likely due to the relatively low prevalence of the 
infection. Indeed, the burden of hookworm is directly related to the intensity of infection, 
the infecting species and the individual’s nutritional status.  
Calis et al. (2008a) also reported that the likelihood of developing severe anemia was 
increased by 4.8 in hookworm infected Malawian preschool children. In West Africa, a risk 
mapping approach using geostatistical models estimated that 4.2% of anemia cases in 
preschool children could be averted by treating hookworm (Magalhaes & Clements, 2011). 
Trichomonas trichiura, the causal agent of Trichuris Dysentery Syndrome has been associated 
with growth failure and Anemia. The anaemic effect of T. trichiura is thought to be linked to 
the blood consumption by the worm, inflammation induced anemia and reduced dietary 
iron intake due to decreased appetite (Shaw & Friedman, 2011).  
Intervention studies have shown positive associations between mass deworming and 
decreased prevalence of anemia, physical performance, cognitive scores, growth and general 
morbidity among children from developing countries. Further, there is evidence that 
effectiveness of iron interventions such as supplementation and dietary approaches may be 
reduced when activities aiming at controlling infections are not part of the strategies 
(Davidson et al., 2005). Therefore, it is recommended to include deworming in interventions 
targeting iron status at the community level.  

5.3 Human schistosomiasis 

Three major species of schistosomiasis have been identified as the most prevalent 
worldwide and cause human disease. These species that are endemic in some rural areas of 
Africa include Schistosoma haematobium S. mansoni and S. japonica (Friedman et al., 2005; 
Dianou et al., 2004). Although most attention has been on schoolchildren, some studies have 
examined the relationship between schistosomiasis and anemia in preschool children 
(Brooker et al., 1999; Magalhaes & Clements, 2011; Talata et al., 1998). Friedman et al. (2005) 
described four mechanisms underlying the relationship between schistosome infections and 
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anemia: 1) iron deficiency due to extracorporeal blood loss of iron; 2) splenic sequestration 
iii) auto-immune hemolysis and; 4) anemia of inflammation. It is also important to mention 
that infection may reduce appetite and disturb the intakes, absorption and metabolism of 
dietary iron.  

5.4 HIV/AIDS 

Anemia is a common hematological manifestation in Human immunodeficiency (HIV-

infection), and has been identified as a marker for disease progression and survival (Calis et 

al., 2008b). A review of the global literature on HIV-related anemia in children by Calis et al. 

(2008b) revealed that mild to moderate anemia was more prevalent and hematocrit levels 

lower in HIV-infected children as compared to uninfected children. The authors also found 

that Anemia prevalence was higher in children with more advanced disease. However, 

blood loss and hemolysis are not common in HIV-infection. The suspected pathogenetic 

mechanisms for HIV-related anemia likely include decreased production of erythrocytes 

and subsequent inflammation. Further, based on findings from Uganda (Totin et al., 2002) 

and South Africa (Eley et al., 2002) that have suggested that iron deficiency anemia is 

equally affecting both HIV-infected and uninfected children, Shaw & Friedman (2011) 

concluded that HIV-related anemia is an Anemia of inflammation.  

5.5 Bacteremia  

The most common anemia inducing bacteria reported in the literature is Helicobacter pylori 
(Digirolamo et al. 2007; Dubois & Kearney 2005). H. pylori is thought to cause anemia 
through three mechanisms: 1) reduced iron absorption due to hypochlorhydria resulting 
from impaired secretion of gastric acid; 2) inflammation and; 3) competing iron demands 
of the bacteria and the host (Shaw & Friedman, 2011). Nontyphoid Salmonella has been 
also independently associated with anemia in children (Calis et al. 2008a; Dubois et al., 
2005).  
Although not investigated, it is possible that other species that can cause bloody dysentery 

such as Shigella and Enteroinvasive E. coli contribute to anemia. Comorbid conditions such as 

fever and respiratory infection often resulting from bacterial infection have been correlated 

with anemia (Stoltzfus et al., 2000; Howard et al., 2007). Diarrheal illness is associated with 

loss of iron and decreased absorption of nutrients needed to maintain normal Hb status. It is 

also likely that as demonstrated for other nutrient deficiencies, diarrhea shares many 

common causes with anemia (Tomkins, 1986).  

Further due to the high susceptibility of HIV-infected children to opportunistic infection, 

bacteria may also act as synergetic factors in HIV-related anemia. A number of studies have 

reported biological synergisms between pathogens for disease progression (Ezeamama et 

al., 2008; Robertson et al., 1992). Ezeamama et al. (2008) investigated the effect of 

codistribution of schistosomiasis, hookworm and trichuris infection on paediatric anemia 

and found that hookworm and S. japonicum infections were independent risk factors for 

anemia and that co-infections of hookworm and either S. japonicum or T. trichiura were 

associated with higher levels of anemia than would be expected if the effects of these species 

had only independent effects on anemia. More recently, Magalhaes & Clements (2011) 

found that hookworm/S. haematobium coinfection significantly increased the likelihood of 

pediatric anemia as compared to individual infestation with one of these pathogens.  
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6. Inflammation and chronic diseases  

Anemia of inflammation also termed the anemia of chronic disease (ACD) is the second 
most prevalent type of anemia after anemia of iron deficiency. It is observed in patients 
with chronic infectious disease (tuberculosis, meningitis, pulmonary infection to name a 
few), non-infectious chronic conditions (rheumatoid arthritis, Crohn disease, burn 
patients, etc.) or chronic neoplasic conditions (leukemia, carcinoma, Hodgkin disease, etc.) 
(Weiss & Goodnough, 2005). The pathophysiological mechanisms are not well 
understood, but it is believed that they are similar to the indirect pathways by which 
infection causes anemia. Anemia of chronic inflammatory diseases is immune driven and 
includes several pathways regulated by different immune and inflammatory mediators 
(Weiss & Goudnough, 2005):  
- decreased red blood cell half-life because of dyserythropoiesis, red blood cell damage 

and increased erythrophagocytosis (TNF-ǂ); 

- inadequate erythropoietin responses for the degree of anemia in most, but not all (e.g. 

systemic-onset of juvenile chronic arthritis) (IL-1 and TNF-ǂ);  

- impaired responsiveness of erythroid cells to erythropoietin (IFN-Ǆ, IL-1, and TNF-ǂ);  

- inhibited proliferation and differentiation of erythroid cells (IFN-Ǆ, IL-1, TNF-ǂ, and ǂ-

1-antitrypsin); and 

- pathological iron homeostasis caused by increased DMT-1 (IFN-Ǆ) and TfR (IL-10) 

expression in macrophages, reduced ferroportin 1 expression (IFN-Ǆ and IL-6-induced 

high hepcidin levels) in enterocytes (inhibition of iron absorption) and macrophages 

(inhibition of iron recirculation), and increased ferritin synthesis (TNF-ǂ, IL-1, IL-6, IL-

10) (increased iron storage).  

In a review published in New England Journal of Medicine, Weiss & Goudnough (2005) 
carefully discussed these mechanisms and summarized them in a single figure (Figure 2). 
Recent studies have identified hepcidin as the main iron regulatory hormone in human 

(Andrews & Schmidt, 2007, Ganz, 2003). Hepcidin is an antimicrobial hormone that is 

synthesized in response to liver iron levels, inflammation, hypoxia and anemia. The 

persistence of inflammation results in excess hepcidin which in the circulation binds 

ferroportin on enterocytes and macrophages. The excess of hepcidin lowers iron absorption 

and prevents iron recycling, which results in hypoferremia and iron-restricted 

erythropoiesis, despite normal iron stores (functional ID), and anemia of chronic disease. In 

acute inflammation-related anemia (e.g. trauma or surgery), inflammatory responses are 

mediated by cytokine production mainly IL-6 and IL-8 (Weiss & Goudnough, 2005). Indeed, 

during inflammation, cytokines such as interleukin IL-6 stimulates the human hepcidin gene 

(HAMP) which in turns induces hepcidin secretion in the hepatocytes (Nicolas et al., 2002; 

Nemeth et al., 2004). In contrast, decreased hepcidin expression due to iron deficiency, 

anemia and hypoxia may lead to hereditary haemochromatosis (HH type I, mutations of the 

HFE gene) and type II (mutations of the hemojuvelin and hepcidin genes). In persisting iron 

deficiency due to decreased iron absorption and/or chronic blood loss, anemia of chronic 

disease evolves to anemia of chronic disease with a true iron deficiency (ACD + ID). 

It is also important to keep in mind that the links between anemia and infection are bilateral 
and may be mutually beneficial. Indeed iron deficiency may protect against adverse effects 
of infections on iron status (Denic & Agarwal 2007; Sazawal et al., 2006; Oppenheimer, 2001; 
Weinberg 1984).  
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Fig. 2. Pathophysiological mechanisms of anemia of chronic diseases (Weiss & Goudnough, 
2005)  - reproduced with the permission from the authors and the New England Journal of 
Medicine -  
In Panel A, the invasion of microorganisms, the emergence of malignant cells, or 
autoimmune dysregulation leads to activation of T cells (CD3+) and monocytes. These cells 
induce immune effector mechanisms, thereby producing cytokines such as interferon-Ǆ 
(from T cells) and tumor necrosis factor ǂ (TNF-ǂ), interleukin-1, interleukin-6, and 
interleukin-10 (from monocytes or macrophages). In Panel B, interleukin-6 and 
lipopolysaccharide stimulate the hepatic expression of the acute-phase protein hepcidin, 
which inhibits duodenal absorption of iron. In Panel C, interferon-Ǆ, lipopolysaccharide, or 
both increase the expression of divalent metal transporter 1 on macrophages and stimulate 
the uptake of ferrous iron (Fe2+). The antiinflammatory cytokine interleukin-10 up-regulates 
transferrin receptor expression and increases transferrin-receptor–mediated uptake of 
transferrin-bound iron into monocytes. In addition, activated macrophages phagocytose and 
degrade senescent erythrocytes for the recycling of iron, a process that is further induced by 
TNF-ǂ through damaging of erythrocyte membranes and stimulation of phagocytosis. 
Interferon-Ǆ and lipopolysaccharide down-regulate the expression of the macrophage iron 
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transporter ferroportin 1, thus inhibiting iron export from macrophages, a process that is 
also affected by hepcidin. At the same time, TNF-ǂ, interleukin-1, interleukin-6, and 
interleukin-10 induce ferritin expression and stimulate the storage and retention of iron 
within macrophages. In summary, these mechanisms lead to a decreased iron concentration 
in the circulation and thus to a limited availability of iron for erythroid cells. In Panel D, 
TNF-ǂ and interferon-Ǆ inhibit the production of erythropoietin in the kidney. In Panel E, 
TNF-ǂ, interferon-Ǆ, and interleukin-1 directly inhibit the differentiation and proliferation of 
erythroid progenitor cells. In addition, the limited availability of iron and the decreased 
biologic activity of erythropoietin lead to inhibition of erythropoiesis and the development 
of anemia. Plus signs represent stimulation, and minus signs inhibition (Weiss & 
Goudnough, 2005). 

7. Genetic polymorphisms  

Some hemoglobinopathies such as sickle-cell disease, thalassaemias, glucose-6-phosphate 
deshydrogenase are common in many developing countries (Deyde et al., 2002; Simpore et 

al., 2003; Thurlow et al., 2005). These disorders are particularly found in malaria endemic 
areas and have been associated with Anemia. Glucose-6-phosphate deshydrogenase for 
example is correlated with chronic haemolytic Anemia (Lang et al., 2002; van Bruggen et al., 
2002). 
Sickle cell Anemia is highly prevalent in West Africa, with a frequency of the trait of 15% to 
30% (WHO, 2006). Many studies suggested that these red cell polymorphisms are a human 
body adaptation against adverse effects of malaria. Sickle cell for example results from 
genetic mutation of allele A in allele S or C of the ǃ chain to provide resistance against 
Plasmodium effect (Modiano et al. 2008; Rihet et al. 2004). In Gambia and Burkina Faso, it has 
been reported that sickle-cell trait is associated with protection against malaria, malaria 
Anemia and even cerebral Anemia (Hill, 1991; Modiano et al., 2008). In central Burkina Faso, 
the prevalence is expected to increase if the malaria prevalence does not decrease (Modiano 
et al., 2008).  
Data from the National Health and Nutrition Examination Survey» (NHANES I, II et III) of 
the USA consistently show hemoglobin levels of Black Americans are usually lower than for 
their white and hispanic counterparts at all ages, regardless of the iron, health et 
socioeconomic status (Johnson-Spear & Yip, 1995). This finding has resulted in an 
adjustment of Haemoglobin cut-off for population origin 1 g/L below the normal cut-off for 
other population groups (Nestel et al., 2002). Although the causes of this difference is not 
well established, it is hypothesized that high prevalence of hemoglobinopathies such as 
thalassaemias and chronic inflammations as well as other genetic disorders may be 
important contributing factors (Beutler & West, 2005).  

8. Socio-economic risk factors  

The socioeconomic status, commonly measured by household income and/or household 
assets is a key determinant of anemia. There is strong evidence that that children living in low 
income household are at greater risk of anemia compared to those with higher income. 
Limited access to food and poor sanitation are often correlated to low income and to some 
extent, explain the higher risk of anemia among these children (Osorio et al., 2004). Moreover, 
the diet of children living in poor families is usually monotonous, even when there is enough 
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food to eat. A study by Ag Bendech et al. (1996) in Burkina Faso showed that even though 
almost all the family enrolled were having three meals per day, only children from the 
wealthiest families were taken two or three different meals while their peers from middle 
income and poor households had the same meals for breakfast, lunch and dinner. The authors 
also reported that animal source foods which are rich in bioavailable iron were limited, 
contributing to only 9% of the total protein intake in poor households, 19% in middle income 
households and up to 41% in wealthiest households (Ag Bendech et al., 1996).  
Parent’s level of education constitutes another well documented determinant of anemia in 
children. Educated parents are more likely to have well paid job and also more likely to 
adopt healthier dietary behavior. In Brazil, Osorio’s et al. (2004) found that mean 
hemoglobin level of children whose mothers attended secondary schools (9 years of 
schooling) was 11.5 g/dl, 11.2 for mothers with 5-8 years in school and 10.8 g/dl for mothers 
with less than 4 years of schooling. De Pee et al. (2002) report similar results among 
Palestinian children with risk of anemia twice higher for children from non-educated 
mothers. Even in developed countries, low level of education is associated with higher risk 
of anemia (Sargent et al., 1996; Soh et al., 2004).  
Community level factors play an important role in the risk of anemia. Several studies have 
shown that living in rural areas increases the risk of child malnutrition (Kuate-Defo, 2001 ; 
Sommerfelt, 1991) and anemia (Bentley 2003; Osorio et al. 2001; Osorio et al., 2004; Ngnie-
Teta et al., 2007). Altitude also affects the risk of anemia. Indeed, the amount of oxygen 
decrease with altitude, hence reducing the saturation ability of hemoglobin to capture 
oxygen (Cohen & Haas, 1999). This should be counterbalanced by an increased number of 
red blood cells. Therefore hemoglobin cut-offs have been adjusted for different age groups 
according to the altitude (Nestel et al., 2002).  
Due to increasing use of multilevel, modelling neighbourhood contribution to the risk of 
disease could now be quantified. A recent study in West Africa reported significant 
contribution of community factors of 14% to 19% to the prevalence of moderate-to-severe 
anemia (Ngnie-Teta et al., 2007; 2008). This reflects the variability in the risk of anemia 
attributable to the differences between communities, regardless of individual and 
households characteristics.  

9. Conclusion 

Anemia can result from deficiency of one or several micronutrients but also unfavourable 
environmental conditions and social determinants of health. Although quantitative and 
qualitative iron deficiency is thought to be the leading cause, infection such as malaria, 
schistosomiasis, hookworms, HIV and bacteria can contribute to up to 50% of the cases of 
anemia in developing regions where these conditions are common. Due to the multi-
factorial conditions, the complexity of the risk factors of anemia, and potential interactions 
among them, a single strategy to control anemia in developing countries may have little 
success. Country level strategies to tackle anemia should include an emergency nutrition 
programme that will target severe anemia particularly in children under the age of two and 
children who live in rural areas, but also a broader nutrition and health programme that 
may to prevent and treat moderate to mild Anemia. Whatever strategy is used, nutrition 
education to increase animal sources in the diet where possible in order to enhance 
bioavailability of iron and to improve sanitation and basic hygiene are highly recommended 
as complementary measures.  
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