1. Introduction

Critically ill states, perioperative period of major surgery, particularly cardiac operations are often encountered with large hemodynamic alterations and fluid shifts. Cardiac failure in patients with congenital heart defect has heterogeneous origin therefore diagnosis related treatment is difficult to apply. During the postoperative period, hemodynamic instability has multifactorial origin and cardiorespiratory dysfunction has several manifestation e.g. myocardial dysfunction, pulmonary hypertension etc (Laussen & Roth, 2003).

Biochemical markers play an important role in the risk stratification of patients with cardiovascular disease. Elevated brain natriuretic peptide level has been shown to reveal congestive heart failure among adult patients admitted to emergency department with dyspnoe (Maisel et al, 2002; de Lemos et al, 2001), and to predict adverse events in acute coronary syndromes (de Lemos et al, 2001). Cardiac troponin, creatine kinase-MB, brain natriuretic peptide and C-reactive protein have been shown to predict mortality and morbidity in unstable coronary artery disease (Lindahl et al, 2000). In patients with pulmonary embolism, brain natriuretic peptide and other cardiac markers, such as troponin predict adverse outcomes much more accurately than any other clinical signs (Kucher et al, 2003). In the last decade, several papers investigating the prognostic, diagnostic and therapeutic relevance of natriuretic peptides in the pediatric population have been published (in rev. Cantinotti et al, 2011; Cantinotti et al, 2011).

2. Physiology of the natriuretic peptides

The natriuretic peptides are a family of peptides produced by the myocardium, vascular endothelium and the kidneys (Clerico et al, 2006). The “hormone” of the heart is involved in the regulation of intravascular homeostasis, myocardial function. On the other hand, natriuretic peptides counteract with the renin-angiotensin-aldosterone system, sympathetic nervous system, vasopressin release. Receptors of natriuretic peptides are mainly presented in the myocardium, kidneys, lungs and vascular endothelium. The action is mediated by c-
GMP, the cytoplasmatic calcium availability will be decreased in the smooth muscles and it will result in vasodilatation (Silberbach & Roberts, 2001).

Atrial stretching triggers release of the preformed prohormone of atrial natriuretic peptide (NT-proANP) in the atrial wall. During secretion, the prohormone of atrial natriuretic peptide (ANP) is cleaved to atrial natriuretic peptide and N-terminal pro-atrial natriuretic peptide (Kangawa et al, 1984). Although brain natriuretic peptide chemically resembles atrial natriuretic peptide to some extent, it is synthesized both in the atrial and ventricular myocardium due to volume and pressure overload. The production of BNP requires time (6-12 hours), since RNA transcription of the prohormone precedes the secretion. Then, the prohormone of brain natriuretic peptide is cleaved to brain natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP). N-terminal peptides have several times higher concentrations and longer half life time in blood circulation than atrial natriuretic peptide and brain natriuretic peptide, making them reliable markers (Ham et al, 1995).

3. Diagnostic application of the natriuretic peptides

3.1 Adult population

In adults, diastolic dysfunction or asymptomatic aortic stenosis confirmed by echocardiography or angiography show marked correlations with brain natriuretic peptide (Gerber et al, 2003). Right-sided heart failure or complications after pulmonary embolism can accurately be detected by measuring natriuretic peptides, though the cut-off levels were only half of those for left ventricular dysfunction (Kucher et al, 2003). There are two widely accepted area for BNP testing; exclusion of non-cardiac origin of dyspnoea in emergency settings and prognostic information of various states of heart failure. NT-proBNP above 1065 pmol/l had a very high specificity and sensitivity for cardiac failure in our population, similar levels were found in decompensated heart failure, septic shock and acute pulmonary embolism with New York Heart Association III and IV symptoms (Seino et al, 2004). Additionally, lower postoperative cut-off value (513 pmol/l) bore high negative predictive power, indicating a level below which the occurrence of heart failure is unlikely. In these cases, NT-proBNP or BNP measurements are used. Levels above the cut-off level were independently associated with increased risk for mortality and cardiovascular morbidity including cardiac fibrillation. In adults, it has been shown that hyperthyroidism increases the NT-proBNP level and could reflect cardiac dysfunction secondary to thyreotoxicosis [Kato 2008, Welisch 2011].

ANP or NT-proANP reflect acute changes in atrial wall stress (Ruskoaho, 2003). Therefore, it is not suitable for long-term follow-up of congestive heart failure. Recently, a new immunoassay has been developed for a hybrid peptide (referred to as NT-proXNP) containing peptide sequences from both NT-proANP and NT-proBNP (Ala-Kopsala et al, 2005). This novel assay mimics the physiological signaling pathway since the actions of the different active natriuretic fragments on the target cells are mediated by a single natriuretic peptide receptor. The NT-proXNP assay measures the concentration of the new virtual natriuretic peptide, and thus provides combined information about the plasma levels of NT-proANP and NT-proBNP. In cardiac diseases, the neurohormonal system of the heart is activated. The diagnostic performances of NT-proXNP in adults for coronary artery disease and valvular heart disease are greater than or equal to those of NT-proANP or NT-proBNP, individually. NT-proXNP seems to combine the characteristics of the two natriuretic peptides. Therefore, NT-proXNP will increase earlier during myocardial wall stress than the NT-proBNP alone.
Based on physiological considerations, BNP and NT-proBNP levels are age dependent in the first two weeks after birth (Albers et al, 2006-Schwachtgen et al, 2005). The perinatal

Fig. 1. Reference mean and median values of healthy subjects

3.2 Pediatric population

Based on physiological considerations, BNP and NT-proBNP levels are age dependent in the first two weeks after birth (Albers et al, 2006-Schwachtgen et al, 2005). The perinatal
transition from fetal to neonatal circulation is accompanied by an increase in the pulmonary blood flow and an increase in the systemic vascular resistance. These hemodynamic changes lead to pressure and volume load of the heart and it may stimulate the secretion and release of natriuretic peptides. From 31 days to 12 years of age, there is no significant change in healthy subjects (Cantinotti et al, 2010). From 14 years of age, gender related differences should be accounted and it is probably due to steroid sex hormones (Soldin et al, 2006). Age-corrected brain natriuretic peptide and NT-proBNP values should be used in the neonatal population (Cantinotti et al, 2010b), while gender should be considered in the adolescent population. Additionally, it is important to note that reference ranges, decision values are method dependent and it shows variations between the assays and consequently between the studies (Soldin et al, 2006, Cantinotti et al, 2010). These variations are seen in Figure 1. As in the adult population NT-proBNP is significantly higher in children with sepsis. In children with sepsis NT-proBNP levels are higher in some patients with leftventricular dysfunction (Fried 2006). In comparison to the adult population there are no paediatric studies in hyperthyroidism available at present (Welisch 2011).

3.3 Pediatric population – Congenital heart disease
Different requirements have been formulated for the natriuretic peptide assays in the pediatric population. One major area is the exclusion of cardiovascular disease particularly below one year of age. The clinical signs are poor or share the ones with other noncardiac diseases. The major symptoms are dyspnea, tachypnea, cold extremities, murmurs, tachycardia, hypotension, etc. The assay is easy to carry out and requires only 0.5 ml blood. The recent studies showed convincing results that the BNP test could be performed without difficulties from capillary stick and it had a high negative power both in neonates and infants (Law et al, 2009,Maher et al, 2008).

The anatomy of the congenital heart diseases is heterogenous. Additionally, the situation after different types of surgery complicates the hemodynamic state. An arbitrary classification is the following: ventricle volume overload, including left-right shunts, ventricular septal defects, patent ductus arteriosus, atrial septal defect, atroventricular malformations, truncus arteriosus, etc; pressure overload, as a consequence of outflow tract obstruction or valvular stenosis, such as tetralogy of Fallot, pulmonary or aorta stenosis; univentricular physiology and non-clusterable complex malformations. Despite the age related BNP elevation in the neonatal period, the severity of heart failure can be determined and diagnosed (Cantinotti et al, 2010b, Law et al, 2009). Other studies have been described the linear relationship between BNP or NT-proBNP levels and the magnitude of left-right shunting (Kunii et al, 2003) and BNP levels were able to predict the need for ductus arteriosus closure (Paul et al, 2009). Echocardiographic studies have been confirmed the association between pressure gradient and natriuretic peptide levels (Cowley et al, 2004). In right sided pressure overload, the BNP levels were lower compared to left sided pressure overload (Cantinotti et al, 2009, Holmgren et al, 2005). In Table 1 and 2 pediatric studies measuring BNP and NT-proBNP levels are shown.

3.4 Pediatric cardiac population postoperative period
Monitoring of cardiac output is still a problematic issue, although early recognition of hemodynamic complications is essential in pediatric critical care. During the postoperative period, hemodynamically unstable patients are characterized by high volume intake, the need for considerable inotropic support, edema formation, hepatic congestion, lung
<table>
<thead>
<tr>
<th>Author</th>
<th>Key words</th>
<th>n</th>
<th>result</th>
<th>Congenital HD</th>
<th>cut-off// lowest level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowenthal, A (Lowenthal 2010)</td>
<td>BNP, pediatric Carvedilol trial, heterogenous subject population, cut off values in subgroups</td>
<td>29</td>
<td>positive predictive of heart failure</td>
<td>single ventricle physiology</td>
<td>>30pg/ml</td>
</tr>
<tr>
<td>Hall, EK (Hall 2011)</td>
<td>orthotope heart transplantation, follow up, cardiac catheterization, acute cellular rejection</td>
<td>62</td>
<td>Corr betw BNP&right sided pressure measurements</td>
<td>OHT</td>
<td>mean 171pg/ml</td>
</tr>
<tr>
<td>Shah A (Shah 2009)</td>
<td>single ventricle, heart failure, BNP</td>
<td>29</td>
<td>Positive predictive of heart failure</td>
<td>single ventricle physiology</td>
<td>>30pg/ml</td>
</tr>
<tr>
<td>Cowley C (Cowley 2004)</td>
<td>catheterization, BNP correlation pressures espec left ventr outflow obstruction</td>
<td>107</td>
<td>BNP correlates with left ventricular outflow obstruction</td>
<td></td>
<td>median 19pg/ml</td>
</tr>
<tr>
<td>Muta H (Muta 2002)</td>
<td>catheterization, ASD closure</td>
<td>14</td>
<td>natriuretic peptides may reflect hemodynamic changes</td>
<td>ASD</td>
<td>ANP24ng/l, BNP23ng/l</td>
</tr>
<tr>
<td>Hsu J (Hsu 2007)</td>
<td>neonates, cardiac surgery</td>
<td>36</td>
<td>in neonates BNP predicts poor outcome after cardiac surgery</td>
<td>group 1: stage 1 Norwood, group 2: biventricular repair</td>
<td></td>
</tr>
<tr>
<td>Hsu J (Hsu 2008)</td>
<td>bidirectional cavopulmonary anastomosis, total cavopulmonary connection</td>
<td>36</td>
<td>BNP predicts unplanned surgical/transcatherter interventions includ transplantation</td>
<td>functionally single ventricle</td>
<td>BNP>500pg/ml</td>
</tr>
<tr>
<td>Knirsch W (Knirsch 2011)</td>
<td>BNP, PulmHT, AqHD, CongHD</td>
<td>522</td>
<td>BNP useful as follow-up, e.g. BNP decrease after Fontan proc, e.g. BNP decrease after initialization of treatment for PulmHT</td>
<td>yes (heterogeneous group before med treatment,surgery or catheterization)</td>
<td>no cut-off values</td>
</tr>
<tr>
<td>Berry J (Berry 2008)</td>
<td>single ventricle, prognostic BNP</td>
<td>25</td>
<td>early postoperative BNP levels correlate with ensuing duration of hospitalization and duration of inotropic support</td>
<td>single ventricle to undergo Norwood, Bidirectional cavopulmonary Anastomosis, Fontan</td>
<td></td>
</tr>
<tr>
<td>Law Y (Law 2009)</td>
<td>BNP, rapid triage tool, identify CardVascDisease</td>
<td>100</td>
<td>BNP reliable test to diagnose significant structural or functional CVD in children</td>
<td>BNP: neonatal 170pg/ml, older age 41pg/ml, combined group 44pg/ml</td>
<td></td>
</tr>
<tr>
<td>Maher K (Maher 2008)</td>
<td>acute care setting, CongHD, AqHD</td>
<td>103</td>
<td>BNP in acute care settings valuable diagnostic tool</td>
<td>yes, (heterogenous group of 33 children)no</td>
<td>highest median in hypoplastic left heart syndr 492pg/ml</td>
</tr>
<tr>
<td>El-Khuffash, A (El-Khuffash 2011)</td>
<td>PDA, neurodevelopmental outcome, cTNT, preterm</td>
<td>60</td>
<td>possibl assoc cTNT/BNP & hd significant PDA: no statistic significance foud</td>
<td>exclusion criteria</td>
<td>1664vs9209p mol/INT- proBNBP</td>
</tr>
</tbody>
</table>

Table 1. Usefulness of Brain Natriuretic Peptide measurements. Prospective observational study PO, Brain natriuretic peptide BNP, Atrial natriuretic peptide ANP, cardiac Troponin cTNT, orthotope heart transplantation OHT, persistent Ductus arteriosus PDA, Atria septum defect ASD, pulmonary hypertension pulmHT, aquired heart disease AqHD, congenital heart disease congHD, cardiovascular disease CardVascDis.
<table>
<thead>
<tr>
<th>Author</th>
<th>Key words</th>
<th>n</th>
<th>Result</th>
<th>Cut-off// lowest level</th>
<th>Special remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heise G</td>
<td>serial, natriuretic hormone system, pulsatile MCS (Berlin Heart EXCOR)</td>
<td>19</td>
<td>serial NP correlate with level of unloading of heart & potential recovery</td>
<td>250pg/ml on MCS</td>
<td>none</td>
</tr>
<tr>
<td>Gessler P</td>
<td>risk stratification for low-risk surgery in CongHD, RACHS-1 score, lactate, duration of CBP, cyanotic defect</td>
<td>40</td>
<td>high NT-proBNP preop predictive of postop prolonged need for inotropic therapy</td>
<td></td>
<td>risk stratification for surgery in CongHD</td>
</tr>
<tr>
<td>Pietrzak R</td>
<td>Fallot correction, right ventricular failure, transannular patch, duration of QRS</td>
<td>20</td>
<td>high NT-proBNP may help identify patients at risk for arrhythmias, right ventr failure after Fallot correction</td>
<td>postop correction of Fallot tetralogy</td>
<td></td>
</tr>
<tr>
<td>Breuer T</td>
<td>NT-proXNP, neonates/infants <1 year, complete biventriculair repair</td>
<td>26</td>
<td>NT-proXNP correlates with CI</td>
<td>NT-proXNP >1000pg/ml</td>
<td>none</td>
</tr>
<tr>
<td>Kaneko K</td>
<td>Kawasaki syndrome, NT-proBNP, coronary arterial lesions</td>
<td>43</td>
<td>risk to develop coronary artery lesions 10x higher with NT-proBNP>1000pg/ml</td>
<td>NT-proBNP>1000pg/ml</td>
<td>none</td>
</tr>
<tr>
<td>Joseph L</td>
<td>Bronchopulmonarydysplasia, natriureticpeptides, pre maturity <34weeks gest</td>
<td>34</td>
<td>NT-proBNP signif higher with BPD, NT-signif higher with Resp Distress Syndr</td>
<td>Cong HD/ sepsis/ current PDA exclusion criteria</td>
<td>none</td>
</tr>
<tr>
<td>Mazurek B</td>
<td>idiopathic ventricular arrhythmia, asymptomatic circulatory failure</td>
<td>36</td>
<td>NT-proBNP increases with malignant ventricular arrhythmia</td>
<td>none, idiopathic ventricular arrhythmia</td>
<td>none</td>
</tr>
<tr>
<td>Rusconi P</td>
<td>dilated cardiomyopathy (idiopathic, anthracycline-related, uremic, muscular dystrophy), heart failure, changes in echocardiographic evaluation of HF</td>
<td>36</td>
<td>serial NT-proBNP >1000pg/ml correlates with HF, echocardiographic measures correlate with NT-proBNP changes within patients</td>
<td>none</td>
<td>retrospective; NT-proBNP <450pg/ml</td>
</tr>
<tr>
<td>Nir A</td>
<td>reference values neonates/infants, log-normal distribution, high NT-proBNP in pubertal girls</td>
<td>690</td>
<td>reference values for pediatric population</td>
<td>no, no cardiac disease, no respiratory disease</td>
<td>see table 1</td>
</tr>
<tr>
<td>Cohen S</td>
<td>differentiate between cardiac or respiratory problem</td>
<td>48</td>
<td>BNP differentiates between heart failure and lung disease, BNP for monitoring treatment for heart failure</td>
<td>yes (heterogeneous group)</td>
<td></td>
</tr>
</tbody>
</table>

www.intechopen.com

Table 2. Usefulness of NT-proBrain Natriuretic Peptide measurements. Retrospective study

<table>
<thead>
<tr>
<th>Author</th>
<th>Key words</th>
<th>n</th>
<th>Result</th>
<th>Cut-off// lowest level</th>
<th>Special remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mir T (Mir 2002)</td>
<td>establish normal age-related NT-proBNP levels in children form infant to adulthood, compare CongestiveHF with controlgrou</td>
<td>164</td>
<td>NT-proBNP is higher in children with CHF, correlates with severity of clinical signs and echocardiographic EF</td>
<td>yes, (heterogenous group of 31 children)</td>
<td>none</td>
</tr>
<tr>
<td>Wong D (Wong 2011)</td>
<td>mechanical circulatory support, transplantation, acute decompensated heart failure</td>
<td>24</td>
<td>signif diff MCS/no-MCS, but not predictive</td>
<td>4 CHD, 17 cardiomyopathy, 3 "other"</td>
<td>Median of max value 40pg/ml</td>
</tr>
</tbody>
</table>

Dysfunction or the combination of them (Laussen & Roth, 2003). High lactate levels and low base excess on the first postoperative day have been reported to predict mortality and outcome in pediatric cardiac patients (Tibby et al, 1999, Carmona et al, 2008). Mir et al. found limited value of NT-proBNP levels in the perioperative period. In their study, dosage and duration of catecholamines and length of mechanical ventilation correlated with postoperative troponin T and arterial lactate levels, but not with NT-proBNP (Mir et al, 2006). Since catecholamine therapy is a consequence of hemodynamic instability and prolonged mechanical ventilation can be influenced by certain non-cardiac factors, the direct relationship might be concerned. Indeed, clinical signs and scores of congestive heart failure is difficult to apply as diaphoresis, respiratory rate, heart rate in the early postoperative period are strongly modified by inotropic, analgesic and sedative medication (Tibby et al, 1999). Preoperative NT-proBNP was associated with adverse postoperative outcome in children undergoing heart surgery, like duration of mechanical ventilation, dose of inotropic support, length of intensive care unit stay (33-Hsu et al, 2007). BNP and NT-proBNP levels usually exceed the peak maximum at 12 hours, and a second peak may occur about five days after surgery (Koch et al, 2007). Postoperative BNP and NT-proBNP levels have also been shown to have prognostic value after pediatric cardiac surgery. After cavopulmonary anastomosis a decrease in natriuretic peptides level compared to preoperative level were correlated with better outcomes (Hsu et al, 2008). Prognostic role of BNP was also reported after switch surgery in neonates (Lehot et al, 1992).

Our study investigated the prognostic role of NT-proXNP, a hybride analyte. NT-proXNP level correlated significantly with the simultaneously measured NT-proANP level (r = 0.60, p < 0.001), but more strongly with NT-proBNP level (r = 0.89, p < 0.001) and the arithmetic sum of both peptides throughout the perioperative period (r = 0.88, p < 0.001). Baseline NT-proXNP level correlated with the age (r = -0.72, p < 0.001) and the weight of the patients (r = -0.47, p = 0.026). Preoperative creatinine level (53.3 ± 13.1 μmol/l) correlated with baseline NT-proXNP (r = 0.53, p = 0.013). The duration of operation and the duration of CPB were associated with the preoperative NT-proXNP level (r = 0.58, p = 0.005 and r = 0.62 p = 0.002,
Fig. 2. Correlation between logarithmic transformed NT-proXNP levels and cardiopulmonary bypass time respectively) and the peak postoperative NT-proXNP level ($r = 0.64$, $p < 0.001$ and $r = 0.67$, $p < 0.001$, respectively). NT-proBNP showed similar correlations with the duration of operation and CPB (Breuer et al, 2010). In the postoperative period, natriuretic peptide levels correlated significantly with the simultaneously assessed hemodynamic parameters. NT-proXNP correlated stronger with the hemodynamic parameters except for extravascular lung water index than the arithmetic sum of NT-proANP and NT-proBNP. The correlation between NT-proXNP and CI remained significant after adjusting for age ($r = 0.60$, $p = 0.018$) or weight ($r = 0.81$, $p < 0.001$).

The hemodynamic parameters improved during the postoperative period as the myocardium recovered. The application of transpulmonary thermodilution was safe and reliable and it added useful information to the conventionally measured pressure values in neonates and infant following open heart surgery. We found lower global end diastolic volume indices and higher extravascular lung water indices compared to adult ranges, whereas the cardiac indices were the same. Age related and disease specific reference values of the transpulmonary thermodilution parameters are yet to be determined in children.

In ROC analysis, a postoperative NT-proBNP level of 2051 pmol/l was diagnostic for cardiac index (CI) lower than 3 l/min/m2 with 79% sensitivity and 95% specificity (AUC: 0.87 ± 0.06), whereas a postoperative NT-proXNP level of 079 pmol/l was diagnostic for that with 89% sensitivity and 90% specificity (AUC: 0.91 ± 0.05). The length of mechanical ventilation and ICU stay did not correlate with the baseline or the peak natriuretic peptide
levels. NT-proBNP and NT-proXNP, but not NT-proANP level at 24 hours after surgery were correlated to the length of mechanical ventilation \(r = 0.51, p = 0.015 \) and \(r = 0.47, p = 0.027 \), respectively. The area under the curve (AUC) of NT-proBNP and NT-proXNP at 24 hours after surgery for prolonged mechanical ventilation (> 72h) in ROC analysis was \(0.81 \pm 0.10 \) and \(0.72 \pm 0.11 \), respectively.

Fig. 3. Relationship between logarithmic transformed NT-proXNP levels and Cardiac index.

Conventionally measured parameters such as heart rate, mean arterial pressure and pulse-pressure product exhibited weaker correlations with CI than natriuretic peptide levels. Parameters measured by echocardiography i.e. fractional shortening and calculated pressures of the right ventricle were not correlated to CI. Clinical and laboratory values, except for creatinine level and creatinine clearance, showed no correlation with CI or NT-proXNP. According to our findings, natriuretic peptides and NT-proXNP are indicators of hemodynamic parameters following pediatric cardiac surgery that can only be measured by invasive hemodynamic monitoring.

3.5 Pediatric cardiac population—follow-up period

Pediatric cardiac population follow-up period Pediatric patients with simple cardiac lesions after corrective surgery show a marked reduction in BNP and NT-proBNP levels compared to the preoperative period. The same is true after catheter interventions, like closure of atrial
septal defect or closure of ductus arteriosus. In patients with residual defects, like pulmonary stenosis or pulmonary arterial hypertension, serial measurements of BNP or NT-proBNP levels provide a useful, easy and non-invasive tool for follow-up and it can be used for quantification of the disease severity. During the follow-up of cardiac transplant patients rejection can be detected by increase of BNP levels.

4. Conclusion

Natriuretic peptide levels are age dependent and show significant variability according to the type of the cardiac malformation and the actual hemodynamic condition. Recently, age related normal values have been established in the neonatal period and it allows detection of the congenital heart disease in different age groups. Right sided hemodynamic ventricular stress is encountered with lower BNP values. Preoperative and postoperative application of natriuretic peptides provides a useful tool for the detection of postoperative complications. The new analyte, NT-proXNP seems to have promising characteristics, because it reflects the cardiac output changes earlier than the BNP, NT-proBNP assay.

5. Acknowledgment

TAMOP TAMOP-4.2.2/B10/1.-2010-0013, who has sponsored the preparation of this chapter.

6. References

This book considers mainly the current perioperative care, as well as progresses in new cardiac surgery technologies. Perioperative strategies and new technologies in the field of cardiac surgery will continue to contribute to improvements in postoperative outcomes and enable the cardiac surgical society to optimize surgical procedures. This book should prove to be a useful reference for trainees, senior surgeons and nurses in cardiac surgery, as well as anesthesiologists, perfusionists, and all the related health care workers who are involved in taking care of patients with heart disease which require surgical therapy. I hope these internationally cumulative and diligent efforts will provide patients undergoing cardiac surgery with meticulous perioperative care methods.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following: