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1. Introduction 

In the first part of this chapter, the optical condition of astigmatism is defined. The main 
causes and available classifications of ocular astigmatism are briefly described. The most 
relevant optical properties of image formation in an astigmatic eye are analysed and 
compared to that of an emmetropic eye and an eye with spherical ametropia. The spectacle 
prescription and axis notation for astigmatism are introduced, and the correction of 
astigmatism by means of lenses is briefly described.  
The formation of the retinal image for extended objects and the related blurring are also 
analysed, and the real limits of tolerance of uncorrected astigmatism are provided. 
Simulations of retinal images in astigmatic eyes, obtained by means of commercial optical 
design software, are also presented.  
Finally, the clinical assessment of retinal image quality by means of wavefront aberrometry 
and double-pass systems in eyes with astigmatism is presented, and current trends in 
research related to this topic are highlighted. 

2. Optics of astigmatism  

2.1 Definition, causes and classification 

Astigmatism is a meridian-dependent type of refractive error that is present in most human 
eyes (Rabbets, 2007; Tunnacliffe, 2004; Atchison & Smith, 2000). Astigmatic (or toroidal) 
surfaces have two principal meridians, with the curvature of the surface ranging from a 
minimum on one of these meridians to a maximum on the other. Clinically, this refractive 
anomaly is described as a bivariate quantity consisting of an astigmatic modulus and axis 
(McKendrick & Brennan, 1996). 
The main known causes of ocular astigmatism are hereditary and involve a lack of 
symmetry on the optical surfaces of the cornea and the crystalline lens. The main factors 
contributing to corneal and lenticular astigmatism are the following: 

 Non-spherical surfaces (usually the front surface of the cornea). 

 Tilting and/or decentring of the crystalline lens with respect to the cornea. 
Other less frequent causes of astigmatism can also be cited: refractive index variation in 
some meridians of the eye due to a rare pathological condition; and irregular astigmatism, 
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which notably occurs in corneal conditions such as keratoconus, where the principal 
meridians are not perpendicular to each other.  
Astigmatism can be classified according to several different factors:  

 The associated spherical refractive errors:  

 Compound hypermetropic astigmatism, in which both principal meridians have 
insufficient refractive power for the length of the eye. 

 Simple hypermetropic astigmatism, in which only one principal meridian has 
insufficient refractive power for the length of the eye, while the other is 
emmetropic. 

 Mixed astigmatism, in which one principal meridian has insufficient refractive 
power for the length of the eye while the other has too much refractive power. 

 Simple myopic astigmatism, in which only one principal meridian has too much 
refractive power for the length of the eye, while the other is emmetropic. 

 Compound myopic astigmatism, in which both principal meridians have too much 
refractive power for the length of the eye. 

 The axis direction:  

 With-the-rule astigmatism, in which the flattest meridian is nearer the horizontal 
than the vertical (90±30º). 

 Against-the-rule astigmatism, in which the flattest meridian is nearer the vertical 
than the horizontal (0±30º). 

 Oblique astigmatism, in which the principal meridians are more than 30º from the 
horizontal and vertical meridians (45±15º). 

 The regularity of surfaces:  

 Regular astigmatism, in which the principal meridians are perpendicular to each 
other and therefore correctable with conventional ophthalmic lenses. 

 Irregular astigmatism, in which the principal meridians are not perpendicular to 
each other or there are other rotational asymmetries that are not correctable with 
conventional ophthalmic lenses. 

Many authors have measured the values and types of astigmatism exhibited by the human 
population (Baldwin & Mills, 1981; Kragha, 1986). There are various causes of change in eye 
astigmatism, including age and accommodation (Artal et al., 2002; Saunders, 1986, 1988; 
Atkinson, 1980; Gwiazda et al., 1984; Ukai & Ichihashi, 1991; Millodot & Thibault, 1985) and 
surgery (Bar-Sela et al., 2009; de Vries, 2009; Yao et al., 2006; Vilaseca et al., 2009a).  

2.2 The retinal image of a point object 

In an emmetropic eye or in an eye with spherical ametropia, rays diverging from a point on 
the axis are converged to a conjugate image point provided that the paraxial approximation 
is taken into account. In an eye with regular astigmatism, the image of a point object is not a 
point because of the different refractive powers corresponding to each of the principal 
meridians. In this case, the image of a point object is generally an ellipse, as shown in Figure 
1.  
The figure shows the main features of the refracted pencil in an astigmatic eye. For 
convenience, the principal meridians denoted as y and z are presented in the vertical and 
horizontal directions, respectively. In this particular case, the vertical meridian (y) has the 
greatest optical power and a focal line F’y. This means that parallel rays contained in a 
vertical plane will be converged onto a point located on this focal line, while parallel rays 
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Fig. 1. Plots showing image formation in an emmetropic eye or an eye with spherical 
ametropia (left) and in an eye with a with-the-rule astigmatic refractive error (right). The 
principal meridians (y, z), the first and second focal lines (F’y, F’z), and the disc of least 
confusion (DLC) are shown.  

contained in a horizontal plane will be converged onto a point located on the focal line F’z. 

At any other distance other than that of the two focal lines, the cross-section of the refracted 

pencil is generally an ellipse. Precisely at the dioptric midpoint between the two focal lines, 

the cross-section of the pencil is circular and is called the disc of least confusion (DLC). The 

region between these two focal lines is known as the conoid of Sturm or Sturm's interval. 

The characteristics of the blurred ellipse depend on the pupil diameter and on the type of 

astigmatism (Charman & Voisin, 1993a, 1993b; Keating & Carroll, 1976). 

2.3 Ocular refraction: notation and correction 

Refraction (defined as the vergence of the eye’s far point [or punctum remotum], i.e. the point 

conjugate with the fovea of the unaccommodated eye) is generally used to quantify any 

spherical or astigmatic ametropia. In the case of astigmatism (A), the absolute value of the 

difference between the refraction of the most powerful meridian (Ry) and that of the flattest 

one (Rz) is commonly used. This is equivalent to computing the difference in terms of 

refractive power between the least powerful meridian (Pz) and the most powerful one (Py): 

 y z z yA= R R = P P   (1) 

The notation commonly employed for astigmatism is the one also typically used for the 

prescription of sphero-cylindrical lenses. Astigmatism can therefore be thought of as being 

formed by the following components: sphere (S); cylinder (C), which describes how the 

most different meridian differs from the sphere; and axis () (Figure 2). In the notation for 

astigmatism, the refraction corresponding to the most powerful plane is often given first 

(Ry), followed by the value of the astigmatism (A), and finally the axis of the most powerful 

meridian (y) (see Equation 2). However, there is also another possibility: the refraction 

corresponding to the least powerful meridian can be given first (Rz), followed by the value 

of the astigmatism but with the sign changed (-A), and finally the axis of the least powerful 

meridian (z). These two options—the "plus cylinder notation" and the "minus cylinder 
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notation"—are the two conventions for indicating the amount of astigmatism in a spectacle 

prescription. 

 y

z

S         C       

R        A      

R      A      

y

z






 (2) 

The following is an example of spectacle prescription. Consider an eye with compound 
hypermetropic astigmatism with refractions of +1.00 D in the vertical meridian (R90º = +1.00 
D) and +2.00 D in the horizontal meridian (R0º = R180º = +2.00 D), that is, with-the-rule. Using 
Equation 1, the astigmatism of this eye can be quantified (A= R90º - R0º = -1.00 D). Therefore, 
the notation of the astigmatism will be +2.00 -1.00 0º (or equivalently 180º) or +1.00 +1.00 
90º. 

 

Fig. 2. Components of a sphero-cylindrical lens prescription (S: sphere, C: cylinder, : axis) 

From this analysis, it is clear that people with astigmatism have blurred vision at all 
distances, although this may be worse for distant or near vision, depending on the type of 
astigmatism. The most common way to correct astigmatism is by means of an astigmatic 
ophthalmic lens, although contact lenses and refractive surgery (laser corneal treatments 
and intraocular lens implants) are also available. In the astigmatic eye, the patient needs a 
different correction power for each principal meridian of the eye. Ophthalmic lenses for 
astigmatism correction usually have a spherical surface as well as a toroidal one that is 
generally located on the back surface of the lens, and, as mentioned above, are often called 
sphero-cylindrical lenses. For proper correction, the principal meridians of the lens must be 
aligned with those of the astigmatic eye, and the principal refractive powers must be such 
that each principal focus of the lens coincides with the eye’s far point (Figure 3). 

2.4 The retinal image of an extended object 

The formation of the retinal image of an extended object can be thought of as being 
composed of images of many individual points, each giving rise to its own astigmatic pencil. 
As shown above, the intersection of an astigmatic refracted pencil with the retina may form 
an ellipse (with specific orientation and elongation), a circle, or a line.  
Figure 4 shows some examples of images of extended objects as a function of the position of 
the retina. The most favourable orientation, in which blurring is least apparent, is always 
perpendicular to the most emmetropic meridian. 
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Fig. 3. In the correction of astigmatism by means of ophthalmic lenses, the principal 
meridians of the lens are aligned with those of the astigmatic eye (y, z), and the principal 
refractive powers are such that each principal focus of the lens (F’y, F’z) coincides with the 
eye’s far point (pry, prz). The figure shows the correction of an eye with compound myopic 
astigmatism with the far point in front of each eye. 

2.5 Simulations of the retinal image 
The retinal image in an astigmatic eye can be simulated using commercially available optical 
design software. For most purposes, ocular astigmatism can be studied using schematic 
eyes, which have specific constructional data, Gaussian constants, cardinal points and 
aberrations (Atchison & Smith, 2000). From these elements, relevant information about the 
optical performance of the eye can be obtained. Moreover, software of this sort makes it 
possible to analyse the influence of several factors, such as pupil size and extra-axial field, 
on the retinal image. Theoretical models are now being widely used to gain more insight 
into the performance of various optical systems, such as contact and intraocular lenses, 
together with the eye. 
For an eye with astigmatism of 1 DC (dioptres cylinder), Figure 5 shows simulations of 
images obtained at different planes using the OSLO® commercial software. Simulations 
were carried out with artificial eyes using a paraxial model (Le Grand eye model) and a 
finite model with aspherical surfaces (Navarro eye model) (Atchison & Smith, 2000; Navarro 
et al., 1985). A 4-mm pupil diameter and an angular field of 25º were considered. 

3. Vision and tolerances to uncorrected astigmatism 

3.1 Vision in uncorrected astigmatism 
This section discusses vision in uncorrected astigmatism, taking into account the paraxial 
approximation. The size and blur of the retinal image for an uncorrected astigmatic eye are 
presented, taking into account the corresponding mean ocular refraction. These factors may 
have a relevant impact on current ophthalmologic practice.  
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Fig. 4. Examples of image formation for extended objects as a function of the position of the 
retina (DLC: disc of least confusion; F’y and F’z: first and second focal lines). 

Firstly, let us introduce the concept of mean ocular refraction (Rmean), also commonly known 
as spherical equivalent, which is the mean of the refractive errors in the two principal 
meridians of an astigmatic eye. The spherical equivalent gives the position of the DLC in 
terms of ametropia. Continuing with the example presented in a previous section, an eye 
with compound hypermetropic astigmatism of +2.00 -1.00 180º would have a mean ocular 
refraction of +1.50 D. In this example, it is likely that the patient can put the DLC, which is 
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the most favourable cross-section of the astigmatic pencil, into focus, provided that 
sufficient accommodation is available (i.e. the patient is healthy and young). Taking all this 

into account, the diameter of the DLC (DLC) can be computed as a function of the 
astigmatism as follows: 
 

 
mean mean2

DLC PE

A
=

(R + P )
  


 (3) 

where PE is the eye’s entrance pupil diameter and Pmean is the average refractive power of 

the astigmatic eye, that is,  zy P+P
2

1
. 

As an example, Figure 6 shows the size of the DLC corresponding to eyes with uncorrected 
compound hypermetropic astigmatisms ranging from 0.25 to 3.00 DC. In accordance with 
the example given above (with-the-rule astigmatism), the following values are considered in 
the calculations: Py = +59.00D (Ry = +1.00D, if the reduced eye model is considered) and 
+56.00 ≤ Pz ≤ +58.75 D. 
If the DLC has been put into focus, the principal meridians of the astigmatic eye form the 
corresponding images of an extended object located at any distance in front of and behind 
the retina, respectively, thus obtaining a blurred retinal image. As stated above, this retinal 
image can be thought of as being composed of many DLCs, each corresponding to one point 
of the object, and the size of the blurred retinal image (y’) can be calculated as follows 
(Figure 7): 

 
mean mean

y'
2

DLC PE
y y

u A
= b + = +

R + P (R + P )
 

 
 
  

 (4) 

where b is the size of the basic (sharp) retinal image that would be formed for a distant 
object subtending the same angle u. 
The degree of blurring (DB) is then computed as the ratio between the diameter of the DLC 
and the size of the basic (sharp) retinal image as follows: 

 DB
b

DLC=


 (5) 

Figure 8 shows two retinal images with different degrees of blurring but with basic (sharp) 
retinal images of the same size. 
Figure 9 shows the degree of blurring corresponding to a far object (3 m) and a near object 
(40 cm) in eyes with uncorrected compound hypermetropic astigmatisms ranging from 0.25 
to 3.00 DC. 
In the case of an unaccommodated eye with spherical ametropia, the size of the DLC for a 
distant object can be computed as follows: 

 DLC PE

R
=

R + P
    (6) 

where R is the spherical refraction and P is the refractive power of the ametropic eye. 
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Fig. 5. Spot diagrams showing images at different planes corresponding to a point object of 
an eye with astigmatism of 1 DC, located on and off (8.82 and 12.5 degrees) the optical axis, 
simulated using the Le Grand artificial eye model (top) and the Navarro artificial eye model 
(bottom). A pupil diameter of 4 mm and an angular field of 25º were considered. Spot size is 
in millimetres and focus shift is in dioptres. 
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Fig. 6. Diameter of the disc of least confusion (DLC) as a function of the astigmatism (A) (D: 
dioptres). 

 
 

 

Fig. 7. Formation of the image of an extended object located at any distance for an eye with 
compound hypermetropic astigmatism; for convenience, only the image corresponding to 
the vertical meridian, located behind the retina, is shown (b: size of the basic [sharp] retinal 

image that would be formed for a distant object subtending the same angle u; DLC: diameter 
of the disc of least confusion). 

 

 

Fig. 8. Two examples of retinal images having basic (sharp) retinal images of the same size 
(b) but different degrees of blurring (DB) due to the different sizes of the discs of least 
confusion. 
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Fig. 9. Degree of blurring (DB) for far (3 m) and near (40 cm) objects as a function of the 
astigmatism (A) (D: dioptres). 

Equations 3 and 6 show that, for a given entrance pupil size, the size of the DLC 
corresponding to a certain amount of astigmatism is only approximately half the size of the 
DLC generated by the same amount of spherical ametropia. Therefore, patients with 
astigmatism and the DLC focused on the retina theoretically have better vision than those 
with the same amount of spherical ametropia. This paraxial approximation supports the fact 
that a visual acuity of 6/18 was traditionally thought to indicate spherical ametropia of 
about 1.00 D or astigmatism of approximately 2.00 DC, provided that the DLC is focused on 
the retina (Rabbets, 2007). However, Section 3.3 will show that when all aberrations of the 
eye are considered—rather than the paraxial approximation—the difference in vision 
between spherical ametropia and astigmatism of the same amount is in fact much lower. 
Finally, in eyes with myopic astigmatism, far vision cannot be improved by accommodation, 
so the patient would be expected to have vision similar to that of an eye with spherical 
ametropia equal to the corresponding spherical equivalent. 

3.2 Lens rotation and mismatches in the cylinder 

This section analyses the effects of lens rotation or mismatches in the cylindrical power of 
the lens used to correct astigmatism. It should be noted that the rotation of a cylindrical lens 
with respect to the eye results in a residual refraction consisting of a cylinder (C) and a 
sphere (S) due to the combination of two obliquely crossed cylinders.  
In general, when two toroidal surfaces (with cylindrical powers of C1 and C2) are combined, 
they result in a residual error, which consists of the following components expressed in 
terms of sphero-cylindrical lens notation (Rabbets, 2007; Harris, 1988): 

  

2 2
1 2 1 2

1 2

1 2

1 2

C (C +C ) 4C C sin

1S C +C C
2

C +C +C
arctan tan

C +C +C

= ±

=

θ =









 
 

 

 (7) 

where  is the angle between cylindrical powers C1 and C2, and  is the angle measured 
from C1 to C (see Figure 10). 
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Fig. 10. Composition of two obliquely crossed cylinders with cylindrical powers of C1 and 
C2 (C: resultant cylinder).  

Figure 11 shows an example of residual refraction in terms of cylinder and sphere as a 
function of the rotation angle, when the ophthalmic lens and the astigmatism of the eye 
have the same cylindrical powers and when they differ by 0.50 DC. Results are given for 
eyes with astigmatisms of 1 and 3 D, respectively.  
 

  

  

Fig. 11. Residual refraction as a function of the rotation angle between the cylindrical lens 

and the astigmatism axis () when the cylindrical power of the lens and the astigmatism of 
the eye have the same value (left) and when the cylindrical power of the lens and the 
astigmatism of the eye differ by 0.50 DC (right). Results are given for astigmatic eyes with 
cylinders of 1 and 3 DC, respectively (C: cylinder; S: sphere; D: dioptres; º: degrees). 

3.3 Tolerances to uncorrected astigmatism 

The question of the extent to which the retinal image may be degraded by defocus or 

astigmatism before it starts to be noticeably blurred has already been analysed taking into 

account the paraxial approximation. This question may play an important role in corrective 
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lens design and refractive surgery outcomes, among other issues. Some studies including 

experiments involving just-noticeable decreases in image clarity have suggested that the 

limits for astigmatism are about 1.4 times greater than those for defocus blur (0.32 DC as 

compared to 0.23 D) (Burton & Haig, 1984; Haig & Burton, 1987). Using a similar approach, 

Legras et al. found that the cross-cylinder blur limit was about 1.25 times higher than that 

found for defocus (Legras et al., 2004).  

Sloan (1951) determined the relative effects of spherical and cylindrical errors on visual 

acuity and found that cylindrical errors reduce visual acuity at 0.8 the rate of spherical 

errors, while Raasch (1995) found that pure cylindrical errors reduced visual acuity at about 

0.7 the rate of spherical errors. By carrying out visual acuity simulations, other authors have 

found that aberrations with low orientation dependence had greater effects than those with 

higher orientation dependence. In dioptric terms, the ratios of visual acuity loss with 

astigmatism as compared to defocus were 1.1 and 0.8 for high- and low-contrast letters, 

respectively (Applegate et al., 2003). 

By using an experimental setup based on adaptive optics, Atchison et al. (2009) determined 

the level of additional aberration at which an individual with normal inherent levels of 

higher-order ocular aberration becomes aware of blur due to extra defocus or cross-cylinder 

astigmatism. Cross-cylinder astigmatic blur limits were found to be approximately 90% of 

those for defocus. 

Charman & Voisin (1993b) approached the question of visual tolerance to uncorrected 
astigmatism by exploring the changes in the modulation transfer function (MTF), which 
represents the loss of contrast produced by the eye’s optics as a function of spatial 
frequency. The authors found a reduction in the MTF and orientation dependence with the 
magnitude of the astigmatism. These effects tended to increase with the spatial frequency, 
but also with the pupil diameter and inversely with the wavelength, because all of these 
parameters affected the wavefront aberration. Tolerance to astigmatism deduced from 
purely optical considerations (based on the analysis of the wavefront aberration or changes 
in the ocular MTF) was found to be approximately 0.25 DC. Nevertheless, tolerance to 
refractive error depends upon both the changes in the optical image on the retina and the 
ability of the neural stages of the visual system to detect those changes. Some authors have 
suggested that, since in real life the peak of the neural contrast sensitivity function at spatial 
frequencies is lower than 10 cycles per degree (Campbell, 1965), the contrast of natural 
scenes is low, and the roll-off in the amplitude spectrum is approximately reciprocal to the 
spatial frequency (Tolhurst et al., 1992), visual tolerances to astigmatic error are more 
heavily weighted toward the lower end of the spatial frequency spectrum, which is less 
influenced by astigmatic errors. Hence, although the optical deficits of 0.50 and 0.75 DC 
appear substantial, some authors have argued that they might be well tolerated in everyday 
use by less critical observers, although visual discomfort might arise during more exacting 
tasks such as work at visual display terminals (Wiggins & Daum, 1991).  
Although the paraxial approximation is a very useful tool for easily analysing the visual 

implications of spherical ametropia and astigmatism, the aforementioned results show that 

this optical approach may be misleading in analysing real tolerances to uncorrected 

astigmatism in the aberrated human eye (see Section 3.1). The experimental results 

described above support the notion that the vision differences reported between spherical 

and astigmatic refractive errors are considerably smaller than those suggested by the 

paraxial approximation. 
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4. Clinical assessment of retinal image quality in eyes with astigmatism  

Retinal image quality can be clinically analysed using several different tools, such as 
wavefront aberrometers and double-pass systems. From them, relevant information on the 
optical quality of the retinal image, in particular of an eye with astigmatism, can be 
obtained. 
Over the past decade, wavefront aberrometers have been widely used to determine retinal 
image quality in connection with customized wavefront-guided LASIK (Schallhorn et al., 
2008; Dougherty & Bains, 2008). Most of these instruments are based on the Hartmann-
Shack sensor (Prieto et al., 2000; Liang et al., 1994). They generally consist of a microlens 
array conjugated with the eye’s pupil and a camera placed at its focal plane. If a plane 
wavefront reaches the microlens array, the image recorded with the camera is a perfectly 
regular mosaic of spots. If a distorted (that is, aberrated) wavefront reaches the sensor, the 
pattern of spots is irregular. From the displacement of the spots, the wavefront aberration 
can be computed by fitting to the Zernike polynomials and the MTF can also be calculated. 
Some studies have analysed the wavefront aberrations of the eye as a function of age. 
Measurements of the total aberrations of the eye and of the aberrations of the anterior 
corneal surface suggest that astigmatism of the cornea is more widespread than astigmatism 
of the full eye in younger subjects (Artal et al., 2002). Other recent studies have focused on 
changes in refraction and peripheral aberrations as a function of accommodation (Mathur et 
al., 2009; Radhakrishnan & Charman, 2007). The authors of these studies generally found a 
small change in the astigmatic components of refraction or the higher-order Zernike 
coefficients, apart from fourth-order spherical aberration, which became more negative at all 
field locations. Researchers have recently demonstrated that certain combinations of non-
rotationally symmetric aberrations, such as coma and astigmatism, can result in better 
retinal image quality as compared to the condition with the same amount of astigmatism 
alone (de Gracia et al., 2010). Other authors have studied the effect of cataract surgery on the 
optical aberrations of the eye, and astigmatism in particular (Montés-Micó et al., 2008; 
Guirao et al. 2004; Marcos et al., 2007). Most of these studies found that astigmatism 
increased significantly after surgery. 
The double-pass technique has also been shown to be a useful tool for comprehensively 
evaluating retinal image quality in eyes affected by several optical conditions, such as 
defocus, astigmatism and higher-order aberrations. Double-pass systems are based on 
recording images from a point-source object after reflection on the retina and a double pass 
through the ocular media. Figure 12 shows a conventional layout of a double-pass system, 
which consists of a laser coupled to an optical fibre as a light source (LD). A motorized 
optometer consisting of two lenses (L3, L4) with a focal length of 100 mm and two mirrors 
(M2, M3) is used to measure the subject’s defocus correction. A video camera (CCD1) 
records the double-pass images after the light is reflected on the retina and on a beam 
splitter (BS2). Pupil alignment is controlled with an additional camera (CCD2). A fixation 
test (FT) helps the subject during the measurements. The instrument has an artificial and 
variable exit pupil (ExP), controlled by a diaphragm wheel, whose image is formed on the 
subject’s natural pupil plane.  
Unlike standard wavefront aberrometry, double-pass systems directly compute the MTF 

from the acquired double-pass retinal image by Fourier transform, making possible the 

complete characterization of the optical quality of the eye (Santamaría et al., 1987). Because 

of the differences between the two technologies, recent studies have suggested that 
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Fig. 12. Double-pass experimental setup (LD: laser; L1-L5: lenses; EP: entrance pupil; ExP: 
exit pupil; BS1, BS2: beam splitters; FT: fixation test; CCD1, CCD2: CCD cameras; M1-M4: 
mirrors; DF: dichroic filter; IL: infrared LED). 

wavefront aberrometers may overestimate retinal image quality in eyes where higher-order 
aberrations and intraocular scattered light are prominent (Díaz-Doutón et al., 2006). 
Figure 13 shows the double-pass images and the corresponding intensity profiles as a 
function of the angle (averaged section of the double-pass image), MTFs, and simulated 
vision using a standard visual acuity chart for an emmetropic eye, an eye with uncorrected 
astigmatism and an eye with spherical ametropia. The measurements were taken with the 
Optical Quality Analysis System (OQAS, Visiometrics, S.L., Spain) (Güell et al., 2006; Saad et 
al., 2010; Vilaseca et al., 2010a), which is a double-pass system currently available for use in 
daily clinical practice that includes this application.  
The double-pass technique has been used extensively to determine the optical quality of the 
eye, mainly by means of the ocular MTF. Studies have revealed the potential of this 
technique in basic research (Artal et al., 1995a; Williams et al., 1994, 1996) and in its 
application to ophthalmology, optometry, and ophthalmic optics testing. In particular, it has 
been used to assess retinal image quality in patients with keratitis (Jiménez et al., 2009) and 
patients undergoing refractive surgery, such as LASIK (Vilaseca et al., 2009a; Vilaseca et al., 
2010b) and intraocular lens implants (Vilaseca et al., 2009a; Alió et al., 2005; Fernández-Vega 
et al., 2009; Artal et al., 1995b). This technique has also been used to evaluate presbyopia 
after photorefractive keratectomy (Artola et al., 2006), to study retinal image quality in 
contact lens wearers (Torrents at al., 1997), and to analyse in vitro optical quality of foldable 
monofocal intraocular lenses (Vilaseca et al., 2009b). 
Pujol et al. (1998) used the double-pass technique to study retinal image quality in eyes with 
uncorrected astigmatism. Performing direct optical measurements to characterize retinal 
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Fig. 13. Double-pass images corresponding to an emmetropic eye (left), an astigmatic eye 
(middle) and an eye with spherical ametropia (right). The corresponding intensity profiles 
as a function of the angle (minutes of arc [arc min]), MTF curves and simulated vision using 
a standard visual acuity chart are also provided. 

image quality in astigmatic eyes can be advantageous since the standard clinical evaluation 

using visual acuity tests may be affected by non-optical problems in the subjects’ visual 

system that cannot be separated from the optical ones. Pujol et al. studied the influence of 

the amount of astigmatism and changes in axis of astigmatism on the eye’s optical 
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performance by means of numerical simulation using an emmetropic eye model (Navarro et 

al., 1985), an artificial eye, and three real subjects (JG, JP, VB) for a 4-mm artificial pupil. 

Different amounts of astigmatism were obtained by varying the cylindrical power of a lens 

situated in front of the eye, from 0.25 DC overcorrection to 1 DC undercorrection at intervals 

of 0.25 DC. Changes in the axis of astigmatism were obtained by rotating the lens, which 

neutralized the astigmatism in an angle of ±10° at 5° intervals. 

The results showed a decrease in retinal image quality and an increase in the degree of 

image astigmatism as the amount of astigmatism increased (Figure 14) or when the angle 

between the lens and the eye axis was other than zero. In general, the largest variations were 

found when the astigmatism changed from 0 to 0.25 DC or when the axis changed from 0° to 

±5°. Astigmatism reduced optical performance in the eye model, the artificial eye, and the 

living eyes, but in different proportions. The images obtained by simulation had better 

optical quality than those of the artificial eye, probably because exact focusing of the image 

was more difficult for the artificial eye than for the simulated eye. When these images were 

compared with those for the living eyes, considerable differences in shape and size due to 

the eye’s optical performance were observed. The aberrations and intraocular scattering in 

living eyes introduced an additional blur into the retinal image that tended to reduce the 

loss of retinal image quality introduced by astigmatism. 

 

 

Fig. 14. Double-pass images numerically simulated in an eye model (a), measured in an 
artificial eye (b) and measured in a living eye (c) for different amounts of astigmatism. 
Negative values of astigmatism mean overcorrection and positive values mean 
undercorrection (source: Pujol et al., 1998). 
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The study also reported a reduction in the MTF with the presence of astigmatism. Figure 15 
shows the MTF profiles in the direction of the low-power (solid curve) and high-power 
(dotted curve) principal meridians corresponding to the three subjects when astigmatism 
was 0 and 1 DC. Measurements were taken in the plane of the focal line corresponding to 
the low-power meridian. These profiles showed the minimum and maximum effects of 
 

 

Fig. 15. MTF profiles in the direction of the low-power (solid curve) and the high-power 
(dotted curve) principal meridians for the three subjects and for astigmatisms of 0 and 1 DC 
(source: Pujol et al., 1998). 

 

 

Fig. 16. Average MTF profiles for a simulated eye, an artificial eye, and a living eye (subject 
JG) at astigmatism values of 0 and 1 DC (source: Pujol et al., 1998). 
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astigmatism: the lower curve corresponds to the orientation showing the maximum 

elongation of the double-pass image, while the upper curve corresponds to the minimum 

elongation. In this context, Figure 16 shows the mean MTF obtained by averaging this 

function over all orientations for the simulated eye, the artificial eye, and the living eye 

(subject JG) when the astigmatism was 0 and 1 DC. For astigmatism of 0 DC, the highest 

optical performance was obtained for the eye model and the lowest for the living eye, which 

means that, when there is no dioptric blur in the retinal image, the aberrations present in the 

living eye are greater than those in the eye model. The optical performances of the living, 

artificial and simulated eyes were more similar for astigmatism of 1 DC than for 0 DC. At 0 

DC, the associated dioptric blur was the greatest aberration. 

 

 

Fig. 17. Refractive error of the three subjects (Table 1) and residual sphero-cylindrical power 
when the lens and eye axes are different (Table 2) (source: Pujol et al., 1998). 
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To evaluate the influence of variation in the axis of astigmatism on retinal image quality, the 

authors placed in front of the eye a lens whose cylindrical power was suitable for correcting 

the astigmatism and whose axis formed a particular angle with the axis of the astigmatic 

eye. This situation can occur in clinical practice when the correction axis and the eye axis are 

not coincident. Figure 17 shows the refractive errors and the residual sphero-cylindrical 

power for the three subjects and for the values of the angle formed by the lens and eye axes. 

According to Table 2, the retinal image quality decreased as the angular change in axis of 

astigmatism increased. For a particular angular value, the greatest variation was expected 

for subjects with a higher residual refractive error (JP, JG). However, the results did not 

show the proportional dependence on the residual refractive error that had been expected 

on the basis of the geometrical approximation. Again in this case, the aberrations (besides 

astigmatism) present in the living eye reduced the contribution of the residual sphero-

cylindrical power to a decrease in retinal image quality. 

Torrents et al. published a study in which they applied the double-pass technique to 

determine optical image quality in monofocal contact lens wearers and showed the 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 18. Double-pass images for an eye with no lens, a soft contact lens and a rigid gas-
permeable contact lens (a), and the corresponding intensity profiles as a function of the 
angle (b) (source: Torrents et al., 1997). 
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influence of ocular astigmatism on retinal image quality in this case (Torrents et al., 1997). In 

eyes with corneal astigmatism, the best results were obtained with rigid gas-permeable 

contact lenses because the lens offset the corneal astigmatism. The MTF was considerably 

smaller when no lenses or soft lenses were worn, even for small amounts of astigmatism (0.5 

D) (Figure 18). 

Finally, Vilaseca et al. (2009a) analysed the retinal image quality of eyes that had undergone 

kerato-refractive and phakic intraocular lens surgery by means of a double-pass system. In 

this study, residual astigmatism, and therefore retinal image quality, was found to be 

slightly different depending on the surgical procedure used. Although in general there was 

a high correction of astigmatism as well as good safety and efficacy indexes, some surgically 

induced astigmatism remained one month after surgery, especially in patients with 

intraocular lens implants. 
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