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1. Introduction

1.1 Motivation

Disregarding any underlying process (and therefore any physical, chemical, economical or
whichever meaning of its mere numeric values), we can consider a time series just as an
ordered set of values and play the naive mathematical game of turning this set into a different
mathematical object with the aids of an abstract mapping, and see what happens: which
properties of the original set are conserved, which are transformed and how, what can we
say about one of the mathematical representations just by looking at the other... This exercise
is of mathematical interest by itself. In addition, it turns out that time series or signals is a
universal method of extracting information from dynamical systems in any field of science.
Therefore, the preceding mathematical game gains some unexpected practical interest as it
opens the possibility of analyzing a time series (i.e. the outcome of a dynamical process)
from an alternative angle. Of course, the information stored in the original time series
should be somehow conserved in the mapping. The motivation is completed when the new
representation belongs to a relatively mature mathematical field, where information encoded
in such a representation can be effectively disentangled and processed. This is, in a nutshell,
a first motivation to map time series into networks.

This motivation is increased by two interconnected factors: first, although a mature field,
time series analysis has some limitations, when it refers to study the so called complex
signals. Beyond the linear regime, there exist a wide range of phenomena (not exclusive to
physics) which are usually embraced in the field of the so called Complex Systems. Under
this vague definition lies a common feature: the relevant effect of nonlinearities in their
mathematical representation. This feature can be reflected in the temporal evolution of (at
least one of) the variables describing the system and necessitates the use of specific tools for
nonlinear analysis 1. Dynamical phenomena such as chaos, long-range correlated stochastic
processes, intermittency, multifractality, etc... are examples of complex phenomena where
time series analysis is pushed to its own limits. Nonlinear time series analysis develops
from techniques such as nonlinear correlation functions, embedding algorithms, multrifractal
spectra, projection theorems... tools that increase in complexity parallel to the complexity of
the process/series under study. New approaches, new paradigms to deal with complexity
are not only welcome, but needed. Approaches that deal with the intrinsic nonlinearity

1 We should note that nonlinearity is not the only feature that characterize a complex system; many
interacting parts, randomness and emergence could also be cited but, as we are going to see later,
nonlinearity will be sufficient for our purposes in this chapter
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by being intrinsically nonlinear, that deal with the possible multiscale character of the
underlying process by being designed to naturally incorporate multiple scales. And such
is the framework of networks, of graph theory. Second, the technological era brings us the
possibility of digitally analyze myriads of data in a glimpse. Massive data sets can nowadays
be parsed, and with the aid of well suited algorithms, we can have access and filter data from
many processes, let it be of physical, technological or even social garment. It is now time to
develop new approaches to filter such plethora of information.

It is in this context that the network approach for time series analysis was born. The family
of visibility algorithms constitute one of other possibilities to map a time series into a graph
and subsequently analyze the structure of the series through the set of tools developed in the
graph /complex network theory. In this chapter we will review some of its basic properties
and show some of its first applications.

1.2 Different methods to map time series into graphs

The idea of mapping time series into graphs seems attractive because it lays a bridge between
two prolific fields of modern science as Nonlinear Signal Analysis and Complex Networks
Theory, so much so that it has attracted the attention of several research groups which have
contributed to the topic with different strategies of mapping. While an exhaustive list of such
strategies is beyond the scope of this work, we shall briefly outline some of them.

Zhang & Small (2006) developed a method that mapped each cycle of a pseudoperiodic
time series into a node in a graph. The connection between nodes was established by a
distance threshold in the reconstructed phase space when possible or by the linear correlation
coefficient between cycles in the presence of noise. Noisy periodic time series mapped into
random graphs while chaotic time series did it into scale-free, small-world networks due to the
presence of unstable periodic orbits. This method was subsequently applied to characterize
cardiac dynamics.

Xu et al. (2008) concentrated in the relative frequencies of appearance of four-node motifs
inside a particular graph in order to classify it into a particular superfamily of networks which
corresponded to specific underlying dynamics of the mapped time series. In this case, the
method of mapping consisted in embedding the time series in an appropiated phase space
where each point corresponded to a node in the network. A threshold was imposed not only
in the minimum distance between two neighbours to be eligible (temporal separation should
be greater than the mean period of the data) but also to the maximum number of neighbours
a node could have. Different superfamilies were found for chaotic, hyperchaotic, random
and noisy periodic underlying dynamics, unique fingerprints were also found for specific
dynamical systems within a family.

Donner et al. (2010; 2011) presented a technique which was based on the properties of
recurrence in the phase space of a dynamical system. More precisely, the recurrence matrix
obtained by imposing a threshold in the minimum distance between two points in the
phase space (as in Xu et al. (2008)) was interpreted as the adjacency matrix of an undirected,
unweighted graph. Properties of such graphs at three different scales (local, intermediated
and global) were presented and studied on several paradigmatic systems (Hénon map,
Rossler system, Lorenz system, Bernoulli map). The variation of some of the properties of
the graphs with the distance threshold was analyzed, the use of specific measures like the
local clustering coefficient was proposed as a way for detecting dynamically invariant objects

120 New Frontiers in Graph Theory

www.intechopen.com



Visibility Algorithms: A Short Review 3

(saddle points or unstable periodic orbits) and studying the graph properties dependent on
the embedding dimension was suggested as a means to distinguish between chaotic and
stochastic systems.

Campanharo et al. (2011) contributed with an idea along the lines of Shirazi et al. (2009),
Strozzi et al. (2009) and Haraguchi et al. (2009) of a surjective mapping which admits an
inverse opperation. This approach opens the reciprocal possibility of benefiting from time
series analysis to study the structure and properties of networks. Time series are treated
as Markov processes, values are grouped in quantiles which will correspond to nodes in
the associated graph. Weighted and directed connections are stablished between nodes as
a function of the probability of transition between quantiles. An inverse operation can be
defined without any a priori knowledge of the correspondance between nodes and quantiles
just by imposing a continuity condition in the time series by means of a cost function defined
on the weighted adjacency matrix of the graph. A random walk is performed on the network
and a time series with properties equivalent to the original one is recovered. This method
was applied to a battery of cases which included a periodic-to-random family of processes
parametrized by the probability of transition p, a pair of chaotic systems (Lorentz and Rossler
attractors) and two human heart rate time series. Reciprocally, the inverse map was applied
to the metabolic network of Arabidopsis Thaliana and to the ’97 year Internet Network. Time
series obtained were demostrated to exhibit different dynamics.

Among all these methods of mapping, in this chapter we are going to concentrate our
attention on the one developed in Lacasa et al. (2008) and subsequent works. To cite some
of its most relevant features, we will stress its intrinsic nonlocality, its low computational
cost, its straightforward implementation and its quite ’simple’ way of inherit the time series
properties in the structure of the associated graphs. These features are going to make it easier
to find connections between the underlying processes and the networks obtained from them
by a direct analysis of the latter. In what follows we will firstly present different versions
of the algorithm along with its most notable properties, that in many cases can be derived
analytically (theorems are reported when possible). Based on these latter properties, several
applications are addressed.

2. Visibility algorithms: Theory

2.1 Natural visibility algorithm: definition

Let {x(ti)}i=1..N be a time series of N data. The natural visibility algorithm (Lacasa et al.,
2008) assigns each datum of the series to a node in the natural visibility graph (from now on
NVg). Two nodes i and j in the graph are connected if one can draw a straight line in the time
series joining x(ti) and x(tj) that does not intersect any intermediate data height x(tk) (see
figure 1 for a graphical illustration). Hence, i and j are two connected nodes if the following
geometrical criterion is fulfilled within the time series:

x(tk) < x(ti) + (x(tj)− x(ti))
tk − ti

tj − tk
. (1)

It can easily checked that by means of the present algorithm, the associated graph extracted
from a time series is always:
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(i) connected: each node sees at least its nearest neighbors (left-hand side and right-hand side).
(ii) undirected: the way the algorithm is built up, there is no direction defined in the links.
(iii) invariant under affine transformations of the series data: the visibility criterium is
invariant under rescaling of both horizontal and vertical axis, as well as under horizontal
and vertical translations.
(iv) “lossy“: some information regarding the time series is inevitably lost in the mapping
from the fact that the network structure is completely determined in the (binary) adjacency
matrix. For instance, two periodic series with the same period as T1 = ..., 3, 1, 3, 1, ... and
T2 = ..., 3, 2, 3, 2, ... would have the same visibility graph, albeit being quantitatively different.

Fig. 1. Illustrative example of the visibility algorithm. In the upper part we plot a periodic
time series and in the bottom part we represent the graph generated through the visibility
algorithm. Each datum in the series corresponds to a node in the graph, such that two nodes
are connected if their corresponding data heights fulfill the visibility criterion of equation 1.
Note that the degree distribution of the visibility graph is composed by a finite number of
peaks, much in the vein of the Discrete Fourier Transform of a periodic signal. We can thus
interpret the visibility algorithm as a geometric transform.

One straightforward question is: what does the visibility algorithm stand for? In order to
deepen on the geometric interpretation of the visibility graph, let us focus on a periodic series.
It is straightforward that its visibility graph is a concatenation of a motif: a repetition of a
pattern (see figure 1). Now, which is the degree distribution P(k) of this visibility graph? Since
the graph is just a motif’s repetition, the degree distribution will be formed by a finite number
of non-null values, this number being related to the period of the associated periodic series.
This behavior reminds us the Discrete Fourier Transform (DFT), which for periodic series is
formed by a finite number of peaks (vibration modes) related to the series period. Using
this analogy, we can understand the visibility algorithm as a geometric (rather than integral)
transform. Whereas a DFT decomposes a signal in a sum of (eventually infinite) modes, the
visibility algorithm decomposes a signal in a concatenation of graph’s motifs, and the degree
distribution simply makes a histogram of such ’geometric modes’. While the time series is
defined in the time domain and the DFT is defined on the frequency domain, the visibility
graph is then defined on the ’visibility domain’. At this point we can mention that whereas a
generic DFT fails to capture the presence of nonlinear correlations in time series (such as the
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presence of chaotic behavior), we will see that the visibility algorithm can distinguish between
stochastic and chaotic series. Of course this analogy is, so far, a simple metaphor to help our
intuition (this transform is not a reversible one for instance).

2.2 Horizontal visibility algorithm: definition

An alternative criterion for the construction of the visibility graph is defined as follows: let
{xi}i=1..N be a time series of N data. The so called horizontal visibility algorithm (Luque et al.,
2009) assigns each datum of the series to a node in the horizontal visibility graph (from now
on HVg). Two nodes i and j in the graph are connected if one can draw a horizontal line
in the time series joining xi and xj that does not intersect any intermediate data height (see
figure 2 for a graphical illustration). Hence, i and j are two connected nodes if the following
geometrical criterion is fulfilled within the time series:

xi , xj > xn for all n such that i < n < j (2)

This algorithm is a simplification of the NVa. In fact, the HVg is always a subgraph of its
associated NVg for the same time series (see figure 2). Beside this, the HVg graph will also
be (i) connected, (ii) undirected, (iii) invariant under affine transformations of the series and
(iv) “lossy“. Some concrete properties of these graphs can be found in Gutin et al. (2011);
Lacasa et al. (2010); Luque et al. (2009; 2011). In the next sections we are going to focus on
properties of this particular method as it is a quite more analytically tractable version.

2.3 Topological properties of the HVg associated to periodic series: mean degree

Theorem 2.1. The mean degree of an horizontal visibility graph associated to an infinite periodic series
of period T (with no repeated values within a period) is

k̄(T) = 4

(

1 − 1

2T

)

(3)

A proof can be found in Núñez et al. (2010).

An interesting consequence of the previous result is that every time series extracted from
a dynamical system has an associated HVG with a mean degree 2 ≤ k̄ ≤ 4, where the
lower bound is reached for constant series, whereas the upper bound is reached for aperiodic
(random or chaotic) series (Luque et al., 2009).

2.4 Topological properties of the HVg associated to random time series

Let {xi} be a bi-infinite sequence of independent and identically distributed random variables
extracted from a continous probability density f (x), and consider its associated HVg. In the
following sections we outline some theorems regarding the topological properties of these
graphs.

2.4.1 Degree distribution of the visibility graph associated to a random time series

Theorem 2.2. The degree distribution of its associated horizontal visibility graph is

P(k) =
1

3

(

2

3

)k−2

, k = 2, 3, 4, ... (4)
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Fig. 2. Illustrative example of the natural and horizontal visibility algorithms. We plot the
same time series and we represent the graphs generated through both visibility algorithms
below. Each datum in the series corresponds to a node in the graph, such that two nodes are
connected if their corresponding data heights fulfill respectively the visibility criteria of
equations 1 and 2 respectively.

A lengthy constructive proof can be found in Luque et al. (2009) and alternative, shorter proofs
can be found in Núñez et al. (2010).

Observe that the mean degree k̄ of the horizontal visibility graph associated to an uncorrelated
random process is then:

k̄ = ∑ kP(k) =
∞

∑
k=2

k

3

(

2

3

)k−2

= 4 (5)

in good agreement with the prediction of eq. 3 in the limit T → ∞, i.e. an aperiodic series.

2.4.2 Degree versus height

An interesting aspect worth exploring is the relation between data height and the node degree,
that is, to study whether a functional relation between the height of a datum and the degree
of its associated node holds. In this sense, let us define P(k|x) as the conditional probability
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that a given node has degree k provided that it has height x. P(k|x) is easily deduced in
Luque et al. (2009), resulting in

P(k|x) =
k−2

∑
j=0

(−1)k−2

j!(k − 2 − j)!
[1 − F(x)]2 · [ln(1 − F(x))]k−2 (6)

The average value of the degree of a node associated to a datum of height x, K(x), in then

K(x) =
∞

∑
k−2

kP(k|x) = 2 − 2 ln(1 − F(x)) (7)

where F(x) =
∫ x
−∞

f (x′)dx′.

Since F(x) ∈ [0, 1] and ln(x) are monotonically increasing functions, K(x) will also be
monotonically increasing. We can thus conclude that graph hubs (that is, the most connected
nodes) are the data with largest values, that is, the extreme events of the series.

2.4.3 Local clustering coefficient distribution

The local clustering coefficient C (Boccaletti et al., 2006; Newmann, 2003) of an horizontal
visibility graph associated to a random series can be easy deduced by means of geometrical
arguments (Luque et al., 2009):

C(k) =
k − 1

(k
2)

=
2

k
(8)

what indicates a so called hierarchical structure (Ravasz et al., 2002). This relation between k
and C allows us to deduce the local clustering coefficient distribution P(C):

P(k) =
1

3

(

2

3

)k−2

= P(2/C)

P(C) =
1

3

(

2

3

)2/C−2

(9)

2.4.4 Long distance visibility, mean degree and mean path length

The probability P(n) that two data separated by n intermediate data be two connected nodes
in the graph can be demostrated to be (see Luque et al. (2009))

P(n) =

(

1

n
− 1

)

∫ 1

0
f (x0)Fn(x0)dx0 +

∫ 1

0
f (x0)Fn−1(x0)dx0

=
2

n(n + 1)
(10)

where P(n) is independent of the probability distribution f(x) of the random variable. Notice
that the latter result can also be obtained, alternatively, with a purely combinatorial argument:
take a random series with n + 1 data and choose its two largest values. This latter pair can
be placed with equiprobability in n(n + 1) positions, while only two of them are such that
the largest values are placed at distance n, so we get P(n) = 2

n(n+1)
on agreement with the

previous development.
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2.4.5 Small World property

If we looked the adjacency matrix (Newmann, 2003) of the horizontal visibility graph
associated to a random series (Luque et al., 2009), we would see that every data xi has
visibility of its first neighbors xi−1, xi+1, every node i will be connected by construction
to nodes i − 1 and i + 1: the graph is thus connected. The graph evidences a typical
homogeneous structure: the adjacency matrix is predominantly filled around the main
diagonal. Furthermore, the matrix evidences a superposed sparse structure, reminiscent
of the visibility probability P(n) = 2/(n(n + 1)) that introduces some shortcuts in the
horizontal visibility graph, much in the vein of the Small-World model (Strogatz, 2001).
Here the probability of having these shortcuts is given by P(n). Statistically speaking,
we can interpret the graph’s structure as quasi-homogeneous, where the size of the local
neighborhood increases with the graph’s size. Accordingly, we can approximate its mean
path length L(N) as:

L(N) ≈
N−1

∑
n=1

nP(n) =
N−1

∑
n=1

2

n + 1
= 2 log(N) + 2(γ − 1) + O(1/N) (11)

where we have made use of the asymptotic expansion of the harmonic numbers and γ is
the Euler-Mascheroni constant. As can be seen, the scaling is logarithmic, denoting that the
horizontal visibility graph associated to a generic random series is Small-World (Newmann,
2003).

2.5 Topological properties of the HVg associated to other stochastic and chaotic processes

It was proved that P(k) = (1/3)(2/3)k−2 for uncorrelated random series. To find out a
similar closed expression in the case of generic chaotic or stochastic correlated processes is
a very difficult task, since variables can be long-range correlated and hence the probabilities
cannot be separated (lack of independence). This leads to a very involved calculation which
is typically impossible to solve in the general case. However, some analytical developments
can be made in order to compare them with our numerical results. Concretely, for Markovian
systems global dependence is reduced to a one-step dependence. We will make use of such
property to derive exact expressions for P(2) and P(3) in some Markovian systems (both
deterministic and stochastic).

2.5.1 Ornstein-Uhlenbeck process: degree distribution

Suppose a short-range correlated series (exponentially decaying correlations) of infinite size
generated through an Ornstein-Uhlenbeck process (Van Kampen, 2007), and generate its
associated HVg. Let us consider the probability that a node chosen at random has degree
k = 2. This node is associated to a datum labelled x0 without lack of generality. Now, this
node will have degree k = 2 if the datum first neighbors, x1 and x−1 have values larger than
x0:

P(k = 2) = P(x−1 > x0 ∩ x1 > x0) (12)

In this case the variables are correlated, so in general we should have

P(2) =
∫ ∞

−∞
dx0

∫ ∞

x0

dx−1

∫ ∞

x0

dx1 f (x−1, x0, x1) (13)

126 New Frontiers in Graph Theory
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We use the Markov property f (x−1, x0, x1) = f (x−1) f (x0|x−1) f (x1|x0), that holds for an
Ornstein-Uhlenbeck process with correlation function C(t) ∼ exp(−t/τ) (Van Kampen,
2007):

f (x) =
exp(−x2/2)√

2π
f (x2|x1) =

exp(−(x2 − Kx1)
2/2(1 − K2))

√

2π(1 − K2)
, (14)

where K = exp(−1/τ).

Numerical integration allows us to calculate P(2) for every given value of the correlation time
τ. A procedure to compute P(3) can also be found in Lacasa et al. (2010).

2.5.2 Logistic map: degree distribution

A chaotic map of the form xn+1 = F(xn) does also have the Markov property, and therefore a
similar analysis can be applied (even if chaotic maps are deterministic). For chaotic dynamical
systems whose trajectories belong to the attractor, there exists a probability measure that
characterizes the long-run proportion of time spent by the system in the various regions of
the attractor. In the case of the logistic map F(xn) = µxn(1 − xn) with parameter µ = 4, the
attractor is the whole interval [0, 1] and the probability measure f (x) corresponds to the beta
distribution with parameters a = 0.5 and b = 0.5:

f (x) =
x−0.5(1 − x)−0.5

B(0.5, 0.5)
(15)

Now, for a deterministic system, the transition probability is

f (xn+1|xn) = δ[xn+1 − F(xn)], (16)

where δ(x) is the Dirac delta distribution. Departing from equation 12, for the logistic map
F(xn) = 4xn(1 − xn) and xn ∈ [0, 1], we have

P(2) =
∫ 1

0
dx0

∫ 1

x0

f (x−1) f (x0|x−1)dx−1

∫ 1

x0

f (x1|x0)dx1 =

∫ 1

0
dx0

∫ 1

x0

f (x−1)δ(x0 − F(x−1))dx−1

∫ 1

x0

δ(x1 − F(x0))dx1. (17)

Now, notice that, using the properties of the Dirac delta distribution,
∫ 1

x0
δ(x1 − F(x0))dx1

is equal to one iff F(x0) ∈ [x0, 1], what will happen iff 0 < x0 < 3/4, and zero otherwise.
Therefore the only effect of this integral is to restrict the integration range of x0 to be [0, 3/4].

On the other hand,

∫ 1

x0

f (x−1)δ[x0 − F(x−1)]dx−1 = ∑
x∗

k |F(x∗
k )=x0

f (x∗k )/|F′(x∗k )|,

that is, the sum over the roots of the equation F(x) = x0, iff F(x−1) > x0. But since x−1 ∈
[x0, 1] in the latter integral, it is easy to see that again, this is verified iff 0 < x0 < 3/4 (as
a matter of fact, if 0 < x0 < 3/4 there is always a single value of x−1 ∈ [x0, 1] such that
F(x−1) = x0, so the sum restricts to the adequate root). It is easy to see that the particular

127Visibility Algorithms: A Short Review
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value is x∗ = (1 +
√

1 − x0)/2. Making use of these piecewise solutions and equation 15, we
finally have

P(2) =
∫ 3/4

0

f (x∗)
4
√

1 − x0
dx0 = 1/3, (18)

Note that a similar development can be fruitfully applied to other chaotic maps, provided that
they have a well defined natural measure. Analytical and numerical developments for P(3)
can be found in Lacasa et al. (2010).

2.6 Directed horizontal visibility graph

So far, undirected visibility graphs have been considered, as visibility did not have a
predefined temporal arrow. However, such a directionality can be made explicit by making
use of directed networks or digraphs (Newmann, 2003).

Let a directed horizontal visibility graph (DHVg, Lacasa et al. (2011)) be a horizontal visibility
graph, where the degree k(xi) of the node xi is now splitted in an ingoing degree kin(xi), and
an outgoing degree kout(xi), such that k(xi) = kin(xi) + kout(xi). The ingoing degree kin(xi)
is defined as the number of links of node xi with other past nodes associated with data in the
series (that is, nodes with j < i). Conversely, the outgoing degree kout(xi), is defined as the
number of links with future nodes (i < j).

Fig. 3. Graphical illustration of the method. In the top we plot a sample time series {x(t)}.
Each datum in the series is mapped to a node in the graph. Arrows, describing allowed
directed visibility, link nodes. The associated directed horizontal visibility graph is plotted
below. In this graph, each node has an ingoing degree kin, which accounts for the number of
links with past nodes, and an outgoing degree kout, which in turn accounts for the number of
links with f uture nodes. The asymmetry of the resulting graph can be captured in a first
approximation through the invariance of the outgoing (or ingoing) degree series under time
reversal.

For a graphical illustration of the method, see figure 3. The degree distribution of a graph
describes the probability of an arbitrary node to have degree k (i.e. k links, Newmann (2003)).
We define the in and out (or ingoing and outgoing) degree distributions of a DHVg as the
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probability distributions of kout and kin of the graph which we call Pout(k) ≡ P(kout = k) and
Pin(k) ≡ P(kin = k), respectively.

2.6.1 Uncorrelated stochastic series: degree distribution

Theorem 2.3. Let {xt}t=−∞,...,∞ be a bi-infinite sequence of independent and identically distributed
random variables extracted from a continuous probability density f (x). Then, both the in and out
degree distributions of its associated directed horizontal visibility graph are

Pin(k) = Pout(k) =

(

1

2

)k

, k = 1, 2, 3, ... (19)

Proof. (out-distribution) Let x be an arbitrary datum of the aforementioned series. The
probability that the horizontal visibility of x is interrupted by a datum xr on its right is
independent of f (x),

Φ1 =
∫ ∞

−∞

∫ ∞

x
f (x) f (xr)dxrdx =

∫ ∞

−∞
f (x)[1 − F(x)]dx =

1

2
,

The probability P(k) of the datum x being capable of exactly seeing k data may be expressed
as

P(k) = Q(k)Φ1 =
1

2
Q(k), (20)

where Q(k) is the probability of x seeing at least k data. Q(k) may be recurrently calculated
via

Q(k) = Q(k − 1)(1 − Φ1) =
1

2
Q(k − 1), (21)

from which, with Q(1) = 1, the following expression is obtained

Q(k) =

(

1

2

)k−1

, (22)

which together with equation (20) concludes the proof.

An analogous derivation holds for the in case. This result is independent of the underlying
probability density f (x): it holds not only for Gaussian or uniformly distributed random
series, but for any series of independent and identically distributed (i.i.d.) random variables
extracted from a continuous distribution f (x).

3. Towards a graph theory of time series?

In the preceding section, specific properties of the visibility graphs (either NVg, HVg or the
directed version of HVg) associated to different time series have been considered. Relying on
the aforementioned dualities between time series structure and network topological features,
we proceed here to make the first steps for a graph theoretical analysis of time series and
dynamical systems, addressing several nontrivial problems of time series analysis through
the visibility algorithm apparatus.
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3.1 Estimating the Hurst exponent with NVg

Self-similar processes such as fractional Brownian motion (fBm, Mandelbrot & Van Ness
(1968)) are currently used to model fractal phenomena of different nature, ranging from
Physics or Biology to Economics or Engineering (see Lacasa et al. (2009) and references
therein). A fBm BH(t) is a non-stationary random process with stationary self-similar
increments (fractional Gaussian noise) that can be characterized by the so called Hurst
exponent, 0 < H < 1. The one-step memory Brownian motion is obtained for H = 1

2 ,

whereas time series with H >
1
2 shows persistence and anti-persistence if H <

1
2 . While

different fBm generators and estimators have been introduced in the last years, the community
lacks consensus on which method is best suited for each case. This drawback comes from
the fact that fBm formalism is exact in the infinite limit, i.e. when the whole infinite series
of data is considered. However, in practice, real time series are finite. Accordingly, long
range correlations are partially broken in finite series, and local dynamics corresponding
to a particular temporal window are overestimated. The practical simulation and the
estimation from real (finite) time series is consequently a major issue that is, hitherto,
still open. An overview of different methodologies and comparisons can be found in
Carbone (2007); Kantelhardt (2008); Karagiannis et al. (2004); Mielniczuk & Wojdyllo (2007);
Pilgram & Kaplan (1998); Podobnik & Stanley (2008); Simonsen et al. (1998); Weron (2002) and
references therein.
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Fig. 4. Degree distribution of three visibility graphs, namely (i) triangles: extracted from a
fBm series of 105 data with H = 0.3, (ii) squares: extracted from a fBm series of 105 data with
H = 0.5, (iii) circles: extracted from a fBm series of 105 data with H = 0.8. Note that
distributions are not normalized. The three visibility graphs are scale-free since their degree
distributions follow a power law P(k) ∼ k−γ with decreasing exponents γ0.3 > γ0.5 > γ0.8.

Here we address the problem of estimating the Hurst exponent of a fBm series via the NVg. If
we map a fBm time series by means of the NVa, what we get is a scale-free graph (Lacasa et al.,
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2008; 2009), see figure 4. As a matter of fact, that fBm yields scale free visibility graphs is not
that surprising; the most highly connected nodes (hubs) are the responsible for the heavy
tailed degree distributions. Within fBm series, hubs are related to extreme values in the series,
since a datum with a very large value has typically a large connectivity (a fact reminiscent of
eq. 7). It can be proved (Lacasa et al., 2009) that the degree distribution of a NVg extracted
from a fBm with Hurst exponent H shows a power law shape P(k) ∼ k−γ, such that

γ(H) = 3 − 2H. (23)

Numerical analysis corroborated this theoretical relation in Lacasa et al. (2009).

It is well known that fBm has a power spectra that behaves as 1/ f β, where the exponent β is
related to the Hurst exponent of an fBm process through the well known relation

β(H) = 1 + 2H. (24)

Now according to eqs. 23 and 24, the degree distribution of the visibility graph corresponding
to a time series with f−β noise should be again power law P(k) ∼ k−γ where

γ(β) = 4 − β. (25)

The theoretical prediction eq. 25 was also corroborated numerically in Lacasa et al. (2009).
Finally, eq. 24 holds for fBm processes, while for the increments of an fBm process, known as
a fractional Gaussian noise (fGn), the relation between β and H turns to be

β(H) = −1 + 2H, (26)

The relation between γ and H for a fGn (where fGn is a series composed by the increments of
a fBm) can be deduced to be

γ(H) = 5 − 2H. (27)

In order to illustrate this latter case, we address a realistic and striking dynamics where
long range dependence has been recently described. Gait cycle (the stride interval in
human walking rhythm) is a physiological signal that has been shown to display fractal
dynamics and long range correlations in healthy young adults (Goldenberger et al., 2002;
Hausdorff et al., 1996). In the upper part of fig. 5 we have plotted to series describing
the fluctuations of walk rhythm of a young healthy person, for slow pace (bottom series
of 3304 points) and fast pace (up series of 3595 points) respectively (data available
in www.physionet.org/physiobank/database/umwdb/ (Goldberger et al., 2000)). In the
bottom part we have represented the degree distribution of their visibility graphs. These
ones are again power laws with exponents γ = 3.03 ± 0.05 for fast pace and γ = 3.19 ± 0.05
for slow pace (derived through MLE). According to eq. 25, the visibility algorithm predicts
that gait dynamics evidence f −β behavior with β = 1 for fast pace, and β = 0.8 for slow
pace, in perfect agreement with previous results based on a Detrended Fluctuation Analysis
(Goldenberger et al., 2002; Hausdorff et al., 1996). These series record the fluctuations of walk
rhythm (that is, the increments), so according to eq. 27, the Hurst exponent is H = 1 for fast
pace and H = 0.9 for slow pace, that is to say, dynamics evidences long range dependence
(persistence) (Goldenberger et al., 2002; Hausdorff et al., 1996).
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Fig. 5. Black signal: time series of 3595 points from the stride interval of a healthy person in
fast pace. Red signal: time series of 3304 points from the stride interval of a healthy person in
slow pace. Bottom: Degree distribution of the associated visibility graphs (the plot is in
log-log). These are power laws where γ = 3.03 ± 0.05 for the fast movement (black dots) and
γ = 3.19 ± 0.05 for the slow movement (red dots), what provides β = 1 and β = 0.8 for fast
and slow pace respectively according to eq.25, in agreement with previous results
(Goldenberger et al., 2002; Hausdorff et al., 1996).

3.2 Discriminating stochastic vs. chaotic series via HVg

Both stochastic and chaotic processes share many features, and the discrimination between
them is indeed very subtle. The relevance of this problem is to determine whether the
source of unpredictability (production of entropy) has its origin in a chaotic deterministic
or stochastic dynamical system, a fundamental issue for modeling and forecasting purposes.
Essentially, the majority of methods (Cecini et al., 2010; Kants H. & Schreiber, 2003) that
have been introduced so far rely on two major differences between chaotic and stochastic
dynamics. The first difference is that chaotic systems have a finite dimensional attractor,
whereas stochastic processes arise from an infinite-dimensional one. Being able to reconstruct
the attractor is thus a clear evidence showing that the time series has been generated
by a deterministic system. The development of sophisticated embedding techniques
(Kants H. & Schreiber, 2003) for attractor reconstruction is the most representative step
forward in this direction. The second difference is that deterministic systems evidence, as
opposed to random ones, short-time prediction: the time evolution of two nearby states will
diverge exponentially fast for chaotic ones (finite and positive Lyapunov exponents) while
in the case of a stochastic process such separation is randomly distributed. Whereas some
algorithms relying on the preceding concepts are nowadays available, the great majority
of them are purely phenomenological and often complicated to perform, computationally
speaking. These drawbacks provide the motivation for a search for new methods that can
directly distinguish, in a reliable way, stochastic from chaotic time series. We show here that
the horizontal visibility algorithm offers a different, conceptually simple and computationally
efficient method to distinguish between deterministic and stochastic dynamics, since the
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degree distribution of HVGs associated to stochastic and chaotic processes are exponential
P(k) ∼ exp(−λk), where for stochastic dynamics λ > λun and for chaotic dynamics λ < λun

(Lacasa et al., 2010), λun being the uncorrelated case, (theorem 2.2).

3.2.1 Correlated stochastic series

In order to analyze the effect of correlations between the data of the series, we focus
on two generic and paradigmatic correlated stochastic processes, namely long-range
(power-law decaying correlations) and Ornstein-Uhlenbeck (short-range exponentially
decaying correlations) processes. We have computed the degree distribution of the HVg
associated to different long-range and short-range correlated stochastic series (the method for
generating the associated series is explained in Lacasa et al. (2010)) with correlation function
C(t) = t−γ for different values of the correlation strength γ ∈ [10−2 − 101] and with an
exponentially decaying correlation function C(t) = exp(−t/τ). In both cases the degree
distribution of the associated HVG can be fitted for large k by an exponential function
exp(−λk). The parameter λ depends on γ or τ and is, in each case, a monotonic function that
reaches the asymptotic value λ = λun = ln(3/2) in the uncorrelated limit γ → ∞ or τ → 0,
respectively. Detailed results of this phenomenology can be found in (Lacasa et al., 2010). In
all cases, the limit is reached from above, i.e. λ > λun (see figure 6). Interestingly enough, for
the power-law correlations the convergence is slow, and there is still a noticeable deviation
from the uncorrelated case even for weak correlations (γ > 4.0), whereas the convergence
with τ is faster in the case of exponential correlations.

3.2.2 Chaotic maps

Poincaré recurrence theorem suggests that the degree distribution of HVgs associated to
chaotic series should be asymptotically exponential (Luque et al., 2009). Several deterministic
time series generated by chaotic maps have been analyzed:

(1) the α-map f (x) = 1 − |2x − 1|α, that reduces to the logistic and tent maps in their fully
chaotic region for α = 2 and α = 1 respectively, for different values of α,
(2) the 2D Hénon map (xt+1 = yt + 1 − ax2

t , yt+1 = bxt) in the fully chaotic region (a = 1.4,
b = 0.3);
(3) a time-delayed variant of the Hénon map: xt+1 = bxt−d + 1 − ax2

t in the region (a = 1.6,
b = 0.1), where it shows chaotic behavior with an attractor dimension that increases linearly
with the delay d (Sprott, 2006). This model has also been used for chaos control purposes
(Buchner & Zebrowski, 2000), although here we set the parameters a and b to values for which
we find high-dimensional chaos for almost every initial condition (Sprott, 2006);
(4) the Lozi map, a piecewise-linear variant of the Hénon map given by xt+1 = 1 + yn −
a|xt |, yt+1 = bxt in the chaotic regime a = 1.7 and b = 0.5;
(5) the Kaplan-Yorke map xt+1 = 2xt mod (1), yt+1 = λyt + cos(4πxt) mod (1); and
(6) the Arnold cat map xt+1 = xt + yt mod (1), yt+1 = xt + 2yt mod (1), a conservative
system with integer Kaplan-Yorke dimension. References for these maps can be found in
Sprott & Rowlands (2001).

We find that the tails of the degree distribution can be well approximated by an exponential
function P(k) ∼ exp(−λk). Remarkably, we find that λ < λun in every case, where λ seems
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to increase monotonically as a function of the chaos dimensionality 2, with an asymptotic
value λ → ln(3/2) for large values of the attractor dimension (see fig. 6 where we plot the
specific values of λ as a function of the correlation dimension of the map (Sprott & Rowlands,
2001)). Again, we deduce that the degree distribution for uncorrelated series is a limiting case
of the degree distribution for chaotic series but, as opposed to what we found for stochastic
processes, the convergence flow towards λun is from below, and therefore λ = ln(3/2) plays
the role of an effective frontier between correlated stochastic and chaotic processes.
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Fig. 6. Plot of the values of λ for several processes, namely: (i) for power-law correlated
stochastic series with correlation function C(t) = t−γ, as a function of the correlation γ, (ii)
for Ornstein-Uhlenbeck series with correlation function C(t) = exp(−t/τ), as a function of
the correlation time τ, and (iii) for different chaotic maps, as a function of their correlation
dimension D. Errors in the estimation of λ are incorporated in the size of the dots. Notice
that stochastic processes cluster in the region λ > λun whereas chaotic series belong to the
opposite region λ < λun, evidencing a convergence towards the uncorrelated value
λun = ln(3/2) (Luque et al., 2009) for decreasing correlations or increasing chaos
dimensionality respectively.

In the following section we provide some heuristic arguments supporting our findings, for
additional details, numerics and analytical developments we refer the reader to Lacasa et al.
(2010).

3.2.3 Heuristics

We argue first that correlated series show lower data variability than uncorrelated ones, so
decreasing the possibility of a node to reach far visibility and hence decreasing (statistically
speaking) the probability of appearance of a large degree. Hence, the correlation tends to
decrease the number of nodes with large degree as compared to the uncorrelated counterpart.

2 This functional relation must nonetheless be taken in a cautious way, indeed, other chaos indicators
(such as the Lyapunov spectra) may also play a relevant role in the final shape of P(k) and such issues
should be investigated in detail
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Indeed, in the limit of infinitely large correlations (γ → 0 or τ → ∞), the variability reduces
to zero and the series become constant. The degree distribution in this limit case is, trivially,

P(k) = δ(k − 2) = lim
λ→∞

λ

2
exp(−λ|k − 2|),

that is to say, infinitely large correlations would be associated to a diverging value of λ. This
tendency is on agreement with the numerical simulations (figure 6) where we show that λ
monotonically increases with decreasing values of γ or increasing values of τ respectively.
Having in mind that in the limit of small correlations the theorem previously stated implies
that λ → λun = ln(3/2), we can therefore conclude that for a correlated stochastic process
λstoch > λun.

Concerning chaotic series, remember that they are generated through a deterministic process
whose orbit is continuous along the attractor. This continuity introduces a smoothing effect
in the series that, statistically speaking, increases the probability of a given node to have a
larger degree (uncorrelated series are rougher and hence it is more likely to have more nodes
with smaller degree). Now, since in every case we have exponential degree distributions (this
fact being related with the Poincaré recurrence theorem for chaotic series and with the return
distribution in Poisson processes for stochastic series (Luque et al., 2009)), we conclude that
the deviations must be encoded in the slope λ of the exponentials, such that λchaos < λun <

λstoch, in good agreement with our numerical results.

3.3 Noise filtering using HVg: periodic series polluted with noise

In this section we address the task of filtering a noisy signal with a hidden periodic component
within the horizontal visibility formalism, that is, we explore the possibility of using the
method for noise filtering purposes (see (Núñez et al., 2010) for details). Periodicity detection
algorithms (see for instance (Parthasarathy et al., 2006)) can be classified in essentially two
categories, namely the time domain (autocorrelation based) and frequency domain (spectral)
methods. Here we make use of the horizontal visibility algorithm to propose a third category:
graph theoretical methods.

If we superpose a small amount of noise to a periodic series (a so-called extrinsic noise), while
the degree of the nodes with associated small values will remain rather similar, the nodes
associated to higher values will eventually increase their visibility and hence reach larger
degrees. Accordingly, the delta-like structure of the degree distribution (associated with
the periodic component of the series) will be perturbed, and an exponential tail will arise
due to the presence of such noise (Lacasa et al., 2010; Luque et al., 2009). Can the algorithm
characterize such kind of series? The answer is positive, since the degree distribution can be
analytically calculated resulting in:

P(2) = 1/2,

P(3) = 0,

P(k + 2) =
1

3

(

2

3

)k−2

, k ≥ 2,

or P(k) =
1

4

(

2

3

)k−3

, k ≥ 4, (28)
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that is to say, introducing a small amount of extrinsic uncorrelated noise in a periodic signal
introduces an exponential tail in the HVG’s degree distribution with the same slope as the one
associated to a purely uncorrelated process. The mean degree k̄ reads

k̄ =
∞

∑
k=2

kP(k) = 4,

which, according to equation 3, suggests aperiodicity, as expected.

3.3.1 A graph-theoretical noise filter

Let S = {xi}i=1,...,n be a periodic series of period T (where n >> T) polluted by a certain
amount of extrinsic noise (without loss of generality, suppose a white noise extracted from
a uniform distribution U[−0.5, 0.5]), and define the filter f as a real valued scalar such that
f ∈ [min xi, max xi]. The so called filtered Horizontal Visibility Graph (f-HVg) associated to S
is constructed as it follows:
(i) each datum xi in the time series is mapped to a node i in the f-HVg, (ii) two nodes i and j
are connected in the f-HVg if the associated data fulfill

xi, xj > xn + f , ∀ n | i < n < j . (29)

The procedure of filtering the noise from a noisy periodic signal goes as follows: one generates
the f-HVg associated to S for increasing values of f , and in each case proceeds to calculate the
mean degree k̄. For the proper interval fmin < f < fmax, the f-HVg of the noisy periodic
series S will be equivalent to the noise free HVg of the pure (periodic) signal, which has a well
defined mean degree as a function of the series period. In this interval, the mean degree will
therefore remain constant, and from equation 3 the period can be inferred. As an example, we

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  20  30  40  50  60  70  80  90 100

x
(
t
)

t

noisy series with hidden period T=2

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

<
k
>

f

mean degree

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0  10  20  30  40  50

A
C
F
(

τ)

τ

Autocorrelation

Fig. 7. Left: Periodic series of period T = 2 polluted with extrinsic noise extracted from a
uniform distribution U[−0.5, 0.5] of amplitude 0.1. Middle: Values of the HVg’s mean degree
k̄ as a function of the amplitude of the graph theoretical filter. The first plateau is found for
k̄ = 3, which renders a hidden period T = (2 − k̄/2)−1 = 2. The second plateau
corresponding to k̄ = 2 is found when the filter is large enough to screen each datum with its
first neighbors, such that the mean degree reaches its lowest bound. Right: Autocorrelation
function of the noisy periodic series, which is itself an almost periodic series with period
T = 2, as it should.

have artificially generated a noisy periodic series of hidden period T = 2 (see figure 7). The
results of the graph filtering technique yielded a net decreases of the mean degree, which has
an initial value of 4 (as expected for the HVg ( f = 0) of an aperiodic series such as a noisy
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periodic signal) and an asymptotic value of 2 (lower bound of the mean degree). The plateau
is clearly found at k̄ = 3, which according to equation 3 yields a period

T =

(

2 − k̄

2

)−1

= 2,

as expected.

3.3.2 Noisy periodic versus chaotic

Let us now consider a simple case of chaotic map with disconnected attractors.The Logistic
map

xt+1 = µxt(1 − xt),

with x ∈ [0, 1] and µ ∈ [3.6, 3.67] has an attractor that is partitioned in two disconnected
chaotic bands, and the chaotic orbit makes an alternating journey between both bands (see

fig. f̊igintro). The map is ergodic, but the attractor is not the whole interval, as there is a gap
between both chaotic bands. In this situation, the chaotic series is by definition not periodic,
however, an autocorrelation function analysis indeed suggests the presence of periodicity,
what is reminiscent of the disconnected two-band structure of the attractor. Interestingly
enough, applying the aforementioned noise filter technique, at odds with the autocorrelation
function, the results suggests that the method does not find any periodic structure, as it
should (see Núñez et al. (2010) for details). Furthermore, information of both the phase space
structure and the chaotic nature of the map becomes accessible from an analysis of the HVg’s
degree distribution. First, we find P(2) = 1/2, that indicates that half of the data are located
in the bottom chaotic band, in agreement with the alternating nature of the chaotic orbit. This
is reminiscent of the misleading result obtained from the autocorrelation function. Second, the
tail of the degree distribution is exponential, with an asymptotic slope smaller than the one
obtained rigorously (Luque et al., 2009) for a purely uncorrelated process. This is, according
to Lacasa et al. (2010), characteristic of an underlying chaotic process.

3.4 The period-doubling route to chaos via HVg: Feigenbaum graphs

In low-dimensional dissipative systems chaotic motion develops out of regular motion in
a small number of ways or routes, and amongst which the period-doubling bifurcation
cascade or Feigenbaum scenario is perhaps the better known and most famous mechanism
(Peitgen et al., 1992; Schuster, 1988). This route to chaos appears an infinite number of times
amongst the family of attractors spawned by unimodal maps within the so-called periodic
windows that interrupt stretches of chaotic attractors. In the opposite direction, a route out
of chaos accompanies each period-doubling cascade by a chaotic band-splitting cascade, and
their shared bifurcation accumulation points form transitions between order and chaos that
are known to possess universal properties (Peitgen et al., 1992; Schuster, 1988; Strogatz, 1994).
Low-dimensional maps have been extensively studied from a purely theoretical perspective,
but systems with many degrees of freedom used to study diverse problems in physics, biology,
chemistry, engineering, and social science, are known to display low-dimensional dynamics
(Marvel et al., 2009).

In this section, we offer a distinct view of the Feigenbaum scenario through the specific HVg
formalism, and provide a complete set of graphs, which we call Feigenbaum graphs, that
encode the dynamics of all stationary trajectories of unimodal maps. We first characterize their
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topology via the order-of-visit and self-affinity properties of the maps. We will additionally
define a renormalization group (RG) procedure that leads, via its flows, to or from network
fixed-points to a comprehensive view of the entire family of attractors. Furthermore, the
optimization of the entropy obtained from the degree distribution coincides with the RG fixed
points and reproduces the essential features of the map’s Lyapunov exponent independently
of its sign. A general observation is that the HV algorithm extracts only universal elements of
the dynamics, free of the peculiarities of the individual unimodal map, but also of universality
classes characterized by the degree of nonlinearity. Therefore all the results presented in
this section, while referring to the specific Logistic map for illustrative reasons apply to any
unimodal map.

3.4.1 Feigenbaum graphs

According to the HV algorithm, a time series generated by the Logistic map for a specific value
of µ (after an initial transient of approach to the attractor) is converted into a Feigenbaum
graph (Luque et al., 2011). Notice that this is a well-defined subclass of HV graphs where
consecutive nodes of degree k = 2, that is, consecutive data with the same value, do not
appear, what is actually the case for series extracted from maps (besides the trivial case of a
constant series). While for a period T there are in principle several possible periodic orbits,
and therefore the set of associated Feigenbaum graphs is degenerate, it can be proved that the
mean degree k̄(T) and normalized mean distance d̄(T) of all these Feigenbaum graphs fulfill
k̄(T) = 4(1 − 1

2T ) and d̄(T) = 1
3T respectively, yielding a linear relation d̄(k̄) = (4 − k̄)/6 that

is corroborated in the inset of figure 8. Aperiodic series (T → ∞) reach the upper bound mean
degree k̄ = 4.

3.4.2 Period-doubling cascade

A deep-seated feature of the period-doubling cascade is that the order in which the positions
of a periodic attractor are visited is universal (Schroeder, 1991), the same for all unimodal
maps. This ordering turns out to be a decisive property in the derivation of the structure
of the Feigenbaum graphs. A plot the graphs for a family of attractors of increasing period
T = 2n, that is, for increasing values of µ < µ∞ can be found in (Luque et al., 2011). This basic
pattern also leads to the expression for their associated degree distributions,

P(n, k) =
(

1
2

)k/2
, k = 2, 4, 6, ..., 2n, (30)

P(n, k) =
(

1
2

)n
, k = 2(n + 1),

and zero for k odd or k > 2(n + 1). At the accumulation point µ∞ the period diverges (n → ∞)
and the distribution is exponential for all even values of the degree,

P(∞, k) =

(

1

2

)k/2

, k = 2, 4, 6, ..., (31)

and zero for k odd. Observe that these relations are independent of the order of the map’s
nonlinearity: the HV algorithm sifts out every detail of the dynamics except for the basic
storyline.
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Fig. 8. Feigenbaum graphs from the Logistic map xt+1 = f (xt) = µxt(1 − xt). The main
figure portrays the family of attractors of the Logistic map and indicates a transition from
periodic to chaotic behavior at µ∞ = 3.569946... through period-doubling bifurcations. For
µ ≥ µ∞ the figure shows merging of chaotic-band attractors where aperiodic behavior
appears interrupted by windows that, when entered from their left-hand side, display
periodic motion of period T = m · 20 with m > 1 (for µ < µ∞, m = 1) that subsequently
develops into m period-doubling cascades with new accumulation points µ∞(m). Each
accumulation point µ∞(m) is in turn the limit of a chaotic-band reverse bifurcation cascade
with m initial chaotic bands, reminiscent of the self-affine structure of the entire diagram. All
unimodal maps exhibit a period-doubling route to chaos with universal asymptotic scaling
ratios between successive bifurcations that depend only on the order of the nonlinearity of
the map, the Logistic map belongs to the quadratic case. Adjoining the main figure, we show
time series and their associated Feigenbaum graphs according to the HV mapping criterion
for several values of µ where the map evidences both regular and chaotic behavior (see the
text). Inset: numerical values of the mean normalized distance d̄ as a function of mean degree
k̄ of the Feigenbaum graphs for 3 < µ < 4 (associated to time series of 1500 data after a
transient and a step δµ = 0.05), in good agreement with the theoretical linear relation (see the
text).

3.4.3 Period-doubling bifurcation cascade of chaotic bands

We turn next to the period-doubling bifurcation cascade of chaotic bands that takes place
as µ decreases from µ = 4 towards µ∞. For the largest value of the control parameter, at
µ = 4, the attractor is fully chaotic and occupies the entire interval [0, 1] (see figure 8). This
is the first chaotic band n = 0 at its maximum amplitude. As µ decreases in value within
µ∞ < µ < 4 band-narrowing and successive band-splittings (Peitgen et al., 1992; Schroeder,
1991; Schuster, 1988; Strogatz, 1994) occur. In general, after n reverse bifurcations the phase
space is partitioned in 2n disconnected chaotic bands, which are self-affine copies of the first
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chaotic band (Crutchfield et al., 1982). The values of µ at which the bands split are called
Misiurewicz points (Schroeder, 1991), and their location converges to the accumulation point
µ∞ for n → ∞. Significantly, while in the chaotic zone orbits are aperiodic, for reasons of
continuity they visit each of the 2n chaotic bands in the same order as positions are visited in
the attractors of period T = 2n (Schroeder, 1991). A plot of the Feigenbaum graphs generated
through chaotic time series at different values of µ that correspond to an increasing number of
reverse bifurcations can be found in(Luque et al., 2011). Since chaotic bands do not overlap,
one can derive the following degree distribution for a Feigenbaum graph after n chaotic-band
reverse bifurcations by using only the universal order of visits

Pµ(n, k) =
(

1
2

)k/2
, k = 2, 4, 6, ..., 2n,

Pµ(n, k ≥ 2(n + 1)) =
(

1
2

)n
, (32)

and zero for k = 3, 5, 7, ..., 2n + 1. We note that this time the degree distribution retains some
dependence on the specific value of µ, concretely, for those nodes with degree k ≥ 2(n + 1), all
of which belong to the top chaotic band. The HV algorithm filters out chaotic motion within
all bands except for that taking place in the top band whose contribution decreases as n → ∞

and appears coarse-grained in the cumulative distribution Pµ(n, k ≥ 2(n + 1)). As would
be expected, at the accumulation point µ∞ we recover the exponential degree distribution
(equation 31), i.e. limn→∞ Pµ(n, k) = P(∞, k).

3.4.4 Renormalization group

Before proceeding to interpret these findings via the consideration of renormalization group
(RG) arguments, we recall that the Feigenbaum tree shows a rich self-affine structure: for
µ > µ∞ periodic windows of initial period m undergo successive period-doubling bifurcations
with new accumulation points µ∞(m) that appear interwoven with chaotic attractors. These
cascades are self-affine copies of the fundamental one. The process of reverse bifurcations
also evidences this self-affine structure, such that each accumulation point is the limit of
a chaotic-band reverse bifurcation cascade. Accordingly, we label G(m, n) the Feigenbaum
graph associated with a periodic series of period T = m · 2n , that is, a graph obtained
from an attractor within window of initial period m after n period-doubling bifurcations.
In the same fashion, Gµ(n, m) is associated with a chaotic attractor composed by m · 2n

bands (that is, after n chaotic band reverse bifurcations of m initial chaotic bands). Graphs
corresponding to G(1, n) and Gµ(1, n) respectively can be found in (Luque et al., 2011). For
the first accumulation point G(1, ∞) = Gµ(1, ∞) ≡ G∞. Similarly, in each accumulation point
µ∞(m), the identity G(m, ∞) = Gµ(m, ∞) is fulfilled.

In order to recast previous findings in the context of the renormalization group, let us define an
RG operation R on a graph as the coarse-graining of every couple of adjacent nodes where one
of them has degree k = 2 into a block node that inherits the links of the previous two nodes.
This is a real-space RG transformation on the Feigenbaum graph (Newmann & Watts, 1999),
dissimilar from recently suggested box-covering complex network renormalization schemes
(Radicchi et al., 2008; Song et al., 2005; 2006). This scheme turns out to be equivalent for µ <

µ∞ to the construction of an HV graph from the composed map f (2) instead of the original
f , in correspondence to the original Feigenbaum renormalization procedure (Strogatz, 1994).
We first note that R{G(1, n)} = G(1, n − 1), thus, an iteration of this process yields an RG
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flow that converges to the (1st) trivial fixed point R(n){G(1, n)} = G(1, 0) ≡ G0 = R{G0}.
This is the stable fixed point of the RG flow ∀µ < µ∞. We note that there is only one relevant
variable in our RG scheme, represented by the reduced control parameter ∆µ = µ∞ − µ,
hence, to identify a nontrivial fixed point we set ∆µ = 0 or equivalently n → ∞, where the
structure of the Feigenbaum graph turns to be completely self-similar under R. Therefore
we conclude that G(1, ∞) ≡ G∞ is the nontrivial fixed point of the RG flow, R{G∞} = G∞.
In connection with this, let Pt(k) be the degree distribution of a generic Feigenbaum graph
Gt in the period-doubling cascade after t iterations of R, and point out that the RG operation,
R{Gt} = Gt+1, implies a recurrence relation (1− Pt(2))Pt+1(k) = Pt(k+ 2), whose fixed point
coincides with the degree distribution found in equation 31. This confirms that the nontrivial
fixed point of the flow is indeed G∞.

Next, under the same RG transformation, the self-affine structure of the family of attractors
yields R{Gµ(1, n)} = Gµ(1, n − 1), generating a RG flow that converges to the Feigenbaum

graph associated to the 1st chaotic band, R(n){Gµ(1, n)} = Gµ(1, 0). Repeated application
of R breaks temporal correlations in the series, and the RG flow leads to a 2nd trivial

fixed point R(∞){Gµ(1, 0)} = Grand = R{Grand}, where Grand is the HV graph generated
by a purely uncorrelated random process. This graph has a universal degree distribution
P(k) = (1/3)(2/3)k−2 , independent of the random process underlying probability density
(see (Lacasa et al., 2010; Luque et al., 2009)).

Fig. 9. Illustrative cartoon incorporating the RG flow of Feigenbaum graphs in the whole
Feigenbaum diagram: aperiodic (chaotic or random) series generate graphs whose RG flow
converge to the trivial fixed point Grand, whereas periodic series (both in the region µ < µ∞

and inside windows of stability) generate graphs whose RG flow converges to the trivial
fixed point G(0, 1). The nontrivial fixed point of the RG flow G(∞, 1) is only reached through
the critical manifold of graphs at the accumulation points µ∞(m).

Finally, let us consider the RG flow inside a given periodic window of initial period m. As
the renormalization process addresses nodes with degree k = 2, the initial applications of
R only change the core structure of the graph associated with the specific value m. The RG

flow will therefore converge to the 1st trivial fixed point via the initial path R(p){G(m, n)} =
G(1, n), with p ≤ m, whereas it converges to the 2nd trivial fixed point for Gµ(m, n)

via R(p){Gµ(m, n)} = Gµ(1, n). In the limit of n → ∞ the RG flow proceeds towards
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the nontrivial fixed point via the path R(p){G(m, ∞)} = G(1, ∞). Incidentally, extending
the definition of the reduced control parameter to ∆µ(m) = µ∞(m) − µ, the family of
accumulation points is found at ∆µ(m) = 0. A complete schematic representation of the
RG flows can be seen in figure 9.

Interestingly, and at odds with standard RG applications to (asymptotically) scale-invariant
systems, we find that invariance at ∆µ = 0 is associated in this instance to an exponential
(rather than power-law) function of the observables, concretely, that for the degree
distribution. The reason is straightforward: R is not a conformal transformation (i.e. a scale
operation) as in the typical RG, but rather, a translation procedure. The associated invariant
functions are therefore non homogeneous (with the property g(ax) = bg(x)), but exponential
(with the property g(x + a) = cg(x)).

3.4.5 Network entropy

Finally, we derive, via optimization of an entropic functional for the Feigenbaum graphs, all
the RG flow directions and fixed points directly from the information contained in the degree
distribution. Amongst the graph theoretical entropies that have been proposed we employ
here the Shannon entropy of the degree distribution P(k), that is h = − ∑

∞
k=2 P(k) log P(k). By

making use of the Maximum Entropy formalism, it is easy to prove that the degree distribution
P(k) that maximizes h is exactly P(k) = (1/3)(2/3)k−2 , which corresponds to the distribution
for the 2nd trivial fixed point of the RG flow Grand. Alternatively, with the incorporation of the
additional constraint that allows only even values for the degree (the topological restriction for
Feigenbaum graphs G(1, n)), entropy maximization yields a degree distribution that coincides
with equation 31, which corresponds to the nontrivial fixed point of the RG flow G∞. Lastly,
the degree distribution that minimizes h trivially corresponds to G0, i.e. the 1st trivial fixed
point of the RG flow. Remarkably, these results indicate that the fixed-point structure of the RG
flow are obtained via optimization of the entropy for the entire family of networks, supporting
a suggested connection between RG theory and the principle of Maximum Entropy (Robledo,
1999).

The network entropy h can be calculated exactly for G(1, n) (µ < µ∞ or T = 2n), yielding
h(n) = log 4 · (1 − 2−n). Because increments of entropy are only due to the occurrence
of bifurcations h increases with µ in a step-wise way, and reaches asymptotically the value
h(∞) = log 4 at the accumulation point µ∞. For Feigenbaum graphs Gµ(1, n) (in the chaotic
region), in general h cannot be derived exactly since the precise shape of P(k) is unknown
(albeit the asymptotic shape is also exponential (Luque et al., 2011)). Yet, the main feature
of h can be determined along the chaotic-band splitting process, as each reverse bifurcation
generates two self-affine copies of each chaotic band. Accordingly, the decrease of entropy
associated with this reverse bifurcation process can be described as hµ(n) = log 4 + hµ(0)/2n ,
where the entropy hµ(n) after n reverse bifurcations can be described in terms of the entropy
associated with the first chaotic band hµ(0). The chaotic-band reverse bifurcation process
takes place in the chaotic region in the direction of decreasing µ’s, and therefore leads in
this case to a decrease of entropy with an asymptotic value of log 4 for n → ∞ at the
accumulation point. These results suggest that the graph entropy behaves qualitatively as
the map’s Lyapunov exponent λ, with the peculiarity of having a shift of log 4, as confirmed
in figure 10. This unexpected qualitative agreement is reasonable in the chaotic region in view
of the Pesin theorem (Peitgen et al., 1992), that relates the positive Lyapunov exponents of
a map with its Kolmogorov-Sinai entropy (akin to a topological entropy) that for unimodal

142 New Frontiers in Graph Theory

www.intechopen.com



Visibility Algorithms: A Short Review 25

µ3.6 3.7 3.8 3.9 4
-2

-1

0

1

2

h

λ

log 4

Fig. 10. Horizontal visibility network entropy h and Lyapunov exponent λ for the Logistic
map. We plot the numerical values of h and λ for 3.5 < µ < 4 (the numerical step is
δµ = 5 · 10−4 and in each case the processed time series have a size of 212 data). The inset
reproduces the same data but with a rescaled entropy h − log(4). The surprisingly good
match between both quantities is reminiscent of the Pesin identity (see text). Unexpectedly,
the Lyapunov exponent within the periodic windows (λ < 0 inside the chaotic region) is also
well captured by h.

maps reads hKS = λ, ∀λ > 0, since h can be understood as a proxy for hKS. Unexpectedly,
this qualitative agreement seems also valid in the periodic windows (λ < 0), since the graph
entropy is positive and varies with the value of the associated (negative) Lyapunov exponent
even though hKS = 0, hinting at a Pesin-like relation valid also out of chaos which deserves
further investigation. The agreement between both quantities lead us to conclude that the
Feigenbaum graphs capture not only the period-doubling route to chaos in a universal way,
but also inherits the main feature of chaos, i.e. sensitivity to initial conditions.

3.5 Measuring irreversibility via HVg

A stationary process xt is said to be statistically time reversible (hereafter time reversible) if for
every n, the series {x1, · · · , xn} and {xn, · · · , x1} have the same joint probability distributions
(Weiss, 1975). Roughly, this means that a reversible time series and its time reversed are,
statistically speaking, equally probable. Reversible processes include the family of Gaussian
linear processes (as well as Fourier-transform surrogates and nonlinear static transformations
of them), and are associated with processes at thermal equilibrium in statistical physics.
Conversely, time series irreversibility is indicative of the presence of nonlinearities in the
underlying dynamics, including non-Gaussian stochastic processes and dissipative chaos,
and are associated with systems driven out-of-equilibrium in the realm of thermodynamics
(Kawai et al., 2007; Parrondo et al., 2009). Time series irreversibility is an important topic in
basic and applied science. From a physical perspective, and based on the relation between
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statistical reversibility and physical dissipation (Kawai et al., 2007; Parrondo et al., 2009), the
concept of time series irreversibility has been used to derive information about the entropy
production of the physical mechanism generating the series, even if one ignores any detail of
such mechanism (Roldan & Parrondo, 2011). In a more applied context, it has been suggested
that irreversibility in complex physiological series decreases with aging or pathology, being
maximal in young and healthy subjects (Costa et al., 2005; 2008; Yang et al., 2003), rendering
this feature important for noninvasive diagnosis. As complex signals pervade natural and
social sciences, the topic of time series reversibility is indeed relevant for scientists aiming to
understand and model the dynamics behind complex signals.

The definition of time series reversibility is formal and therefore there is not an a priori
optimal algorithm to quantify it in practice. Several methods to measure time irreversibility
have been proposed (Andrieux et al., 2007; Cammarota & Rogora, 2007; Costa et al., 2005;
Daw et al., 2000; Diks et al., 1995; Gaspard, 2004; Kennel, 2004; Wang et al., 2005; Yang et al.,
2003). The majority of them perform a time series symbolization, typically making an
empirical partition of the data range (Daw et al., 2000) (note that such a transformation
does not alter the reversible character of the output series (Kennel, 2004)) and subsequently
analyze the symbolized series, through statistical comparison of symbol strings occurrence in
the forward and backwards series or using compression algorithms (Cover & Thomas, 2006;
Kennel, 2004; Roldan & Parrondo, 2011). The first step requires an extra amount of ad hoc
information (such as range partitioning or size of the symbol alphabet) and therefore the
output of these methods eventually depend on these extra parameters. A second issue is that
since typical symbolization is local, the presence of multiple scales (a signature of complex
signals) could be swept away by this coarse-graining: in this sense multi-scale algorithms have
been proposed recently (Costa et al., 2005; 2008). The time directed version of the horizontal
visibility algorithm is proposed in this section as a simple and well defined tool for measuring
time series irreversibility (see Lacasa et al. (2011) for details).

3.5.1 Quantifying irreversibility: DHVg and Kullback-Leibler divergence

The main conjecture of this application is that the information stored in the in and out
distributions take into account the amount of time irreversibility of the associated series. More
precisely, we claim that this can be measured, in a first approximation, as the distance (in
a distributional sense) between the in and out degree distributions (Pin(k) and Pout(k)). If
needed, higher order measures can be used, such as the corresponding distance between the in
and out degree-degree distributions (Pin(k, k′) and Pout(k, k′)). These are defined as the in and
out joint degree distributions of a node and its first neighbors (Newmann, 2003), describing
the probability of an arbitrary node whose neighbor has degree k′ to have degree k.

The Kullback-Leibler divergence (Cover & Thomas, 2006) is used as the distance between the
in and out degree distributions. Relative entropy or Kullback-Leibler divergence (KLD) is
introduced in information theory as a measure of distinguishability between two probability
distributions. Given a random variable x and two probability distributions p(x) and q(x),
KLD between p and q is defined as follows:

D(p||q) ≡ ∑
x∈X

p(x) log
p(x)

q(x)
, (33)
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which vanishes if and only if both probability distributions are equal p = q and it is bigger
than zero otherwise.

We compare the outgoing degree distribution in the actual (forward) series
Pkout

(k|{x(t)}t=1,...,N) = Pout(k) with the corresponding probability in the time-reversed (or
backward) time series, which is equal to the probability distribution of the ingoing degree in
the actual process Pkout

(k|{x(t)}t=N,...,1) = Pin(k). The KLD between these two distributions
is

D[Pout(k)||Pin(k)] = ∑
k

Pout(k) log
Pout(k)

Pin(k)
. (34)

This measure vanishes if and only if the outgoing and ingoing degree probability distributions
of a time series are identical, Pout(k) = Pin(k), and it is positive otherwise. We will apply it to
several examples as a measure of irreversibility.

Notice that previous methods to estimate time series irreversibility generally proceed by
first making a (somewhat ad hoc) local symbolization of the series, coarse-graining each
of the series data into a symbol (typically, an integer) from an ordered set. Then, they
subsequently perform a statistical analysis of word occurrences (where a word of length n
is simply a concatenation of n symbols) from the forward and backwards symbolized series
(Andrieux et al., 2007; Wang et al., 2005). Time series irreversibility is therefore linked to the
difference between the word statistics of the forward and backwards symbolized series. The
method presented here can also be considered as a symbolization if we restrict ourselves to the
information stored in the series {kout(t)}t=1,...,N and {kin(t)}t=1,...,N. However, at odds with
other methods, here the symbolization process (i) lacks ad hoc parameters (such as number of
symbols in the set or partition definition), and (ii) it takes into account global information: each
coarse-graining xt → (kin(t), kout(t)) is performed using information from the whole series,
according to the mapping criterion of fig. 3. Hence, this symbolization naturally takes into
account multiple scales, which is desirable if we want to tackle complex signals (Costa et al.,
2005; 2008).

3.5.2 Results for correlated stochastic series

The first example of a reversible series with D[Pout(k)||Pin(k)] = 0 are uncorrelated stochastic
series which were considered in 2.6.1. As a further validation, linearly correlated stochastic
processes have also been considered as additional examples of reversible dynamics (Weiss,
1975). An explanation of the method employed to generate the series can be consulted in
(Lacasa et al., 2010), and results are summarized in table 1.

3.5.3 Results for a discrete flashing ratchet

A discrete flashing ratchet is an example of thermodynamic system which can be smoothly
driven out of equilibrium by modifying the value of a physical parameter (the peak value V
of an asymmetric potencial). We make use of a time series generated by a discrete flashing
ratchet model introduced in (Roldan & Parrondo, 2010). For V = 0 detailed balance condition
is satisfied, the system is in equilibrium and trajectories are statistically reversible. In this
case both D[Pout(k)||Pin(k)] and D[Pout(k, k′)||Pin(k, k′)] using degree distributions and
degree-degree distributions vanish. On the other hand, if V is increased, the system is driven
out of equilibrium, what introduces a net statistical irreversibility which increases with V
(Roldan & Parrondo, 2010). The amount of irreversibility estimated with KLD increases with
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V for both measures, therefore the results produced by the method are qualitatively correct
(see (Lacasa et al., 2011) for details). Interestingly enough, the tendency holds even for high
values of the potential, where the statistics are poor and the KLD of sequences of symbols
usually fail when estimating irreversibility (Roldan & Parrondo, 2010). However the values
of the KLD obtained are far below the KLD per step between the forward and backward
trajectories, which is equal to the dissipation as reported in (Roldan & Parrondo, 2010).

The degree distributions capture the irreversibility of the original series but it is difficult to
establish a quantitative relationship between eq. (34) and the KLD between trajectories. The
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Fig. 11. Irreversibility measures D[Pout(k)||Pin(k)] and D[Pout(k, k′)||Pin(k, k′)] in the flashing
ratchet (r = 2, V = 2kT) as a function of FL/kT. Here, F is the applied force and L is the
spatial period of the ratchet, which in this case is equal to 1. For each value of the force, we
make use of a single stationary series of size N = 106 containing partial information (the
state information is removed).

measure based on the degree-degree distribution D[Pout(k, k′)||Pin(k, k′)] takes into account
more information of the visibility graph structure than the KLD using degree distributions,
providing a closer bound to the physical dissipation as it is expected by the chain rule
(Cover & Thomas, 2006), D[Pout(k, k′)||Pin(k, k′)] ≥ D[Pout(k)||Pin(k)]. The improvement is
even qualitatively significant in some situations. For instance, when a force opposite to the
net current on the system is present (Roldan & Parrondo, 2010), the current vanishes for a
given value of the force usually termed as stalling force. When the force reaches this value, the
system is still out of equilibrium (V > 0) and it is therefore time irreversible, but no current of
particles is observed if we describe the dynamics of the ratchet with partial information given
by the position x. D[Pout(k)||Pin(k)] tends to zero when the force approaches to the stalling
value (see figure 11). Therefore, our measure of irreversibility (34) fails in this case, as do
other KLD estimators based on local flows or currents (Roldan & Parrondo, 2010). However,
D[Pout(k, k′)||Pin(k, k′)] captures the irreversibility of the time series, and yields a positive
value at the stalling force(Roldan & Parrondo, 2011).
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Series description D[Pout(k)||Pin(k)] D[Pout(k, k′)||Pin(k, k′)]
Reversible Stochastic Processes

U[0, 1] uncorrelated 3.88 · 10−6 2.85 · 10−4

Ornstein-Uhlenbeck (τ = 1.0) 7.82 · 10−6 1.52 · 10−4

Long-range correlated

stationary process (γ = 2.0) 1.28 · 10−5 2.0 · 10−4

Dissipative Chaos

Logistic map (µ = 4) 0.377 2.978
α map (α = 3) 0.455 3.005
α map (α = 4) 0.522 3.518

Henon map (a = 1.4, b = 0.3) 0.178 1.707
Lozi map 0.114 1.265

Kaplan Yorke map 0.164 0.390

Conservative Chaos

Arnold Cat map 1.77 · 10−5 4.05 · 10−4

Table 1. Values of the irreversibility measure associated to the degree distribution
D[Pout(k)||Pin(k)] and the degree-degree distribution D[Pout(k, k′)||Pin(k, k′)] respectively, for
the visibility graphs associated to series of 106 data generated from reversible and
irreversible processes. In every case chain rule is satisfied, since
D[Pout(k, k′)||Pin(k, k′)] ≥ D[Pout(k)||Pin(k)]. Note that that the method correctly
distinguishes between reversible and irreversible processes, as KLD vanishes for the former
and it is positive for the latter.

3.5.4 Results for chaotic series

This method was applied to several chaotic series and found that it is able to distinguish
between dissipative and conservative chaotic systems. Dissipative chaotic systems are those
that do not preserve the volume of the phase space, and they produce irreversible time
series. This is the case of chaotic maps in which entropy production via instabilities in the
forward time direction is quantitatively different to the amount of past information lost.
In other words, those whose positive Lyapunov exponents, which characterize chaos in
the forward process, differ in magnitude with negative ones, which characterize chaos in
the backward process (Kennel, 2004). Several chaotic maps have been analyzed and the
degree of reversibility of their associated time series has been estimated using using KLD,
showing that for dissipative chaotic series it is positive while it vanishes for an example of
conservative chaos. A summary of results cann be checked in table 1. In every case, we find
an asymptotic positive value, in agreement with the conjecture that dissipative chaos is indeed
time irreversible.

Finally, we also consider the Arnold cat map: xt+1 = xt + yt mod(1), yt+1 = xt +
2yt mod(1). At odds with previous dissipative maps, this is an example of a
conservative (measure-preserving) chaotic system with integer Kaplan-Yorke dimension
(Sprott & Rowlands, 2001). The map has two Lyapunov exponents which coincide in

magnitude λ1 = ln(3 +
√

5)/2 = 0.9624 and λ2 = ln(3 −
√

5)/2 = −0.9624. This implies
that the amount of information created in the forward process (λ1) is equal to the amount of
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information created in the backwards process (−λ2), therefore the process is time reversible.
D[Pout(k)||Pin(k)] for a time series of this map asymptotically tends to zero with series size,
and the same happens with the degree-degree distributions (see table 1). This correctly
suggests that albeit chaotic, the map is statistically time reversible.

3.5.5 Robustness: Irreversible chaotic series polluted with noise

Standard time series analysis methods evidence problems when noise is present in chaotic
series. Even a small amount of noise can destroy the fractal structure of a chaotic attractor and
mislead the calculation of chaos indicators such as the correlation dimension or the Lyapunov
exponents (Kostelich & Schreiber, 1993). In order to check if our method is robust, we add an
amount of white noise (measurement noise) to a signal extracted from a fully chaotic Logistic
map (µ = 4.0). The results for the KLD of the signal polluted with noise is significantly greater
than zero, as it exceeds the one associated to the noise in four orders of magnitude, even when
the noise reaches the 100% of the signal amplitude (Lacasa et al., 2011). Therefore our method
correctly predicts that the signal is irreversible even when adding a large amount of noise.

4. Summary, perspectives and open problems

In this chapter a review on the state of the art of visibility algorithms as a method to make
time series analysis through network theory has been presented. We have reported the
properties of natural and horizontal visibility algorithms, and have explored their ability
in several problems such as the estimation of Hurst exponent in self-similar (fractal series),
the discrimination between uncorrelated, correlated stochastic and chaotic processes, the
problem of noise filtering, the problem of determining the amount of irreversibility (i.e.
entropy production) of a system, or the generic study of nonlinear systems as they undergo a
period-doubling route to chaos.
Before commenting on the plethora of applications and challenging open problems to be
faced, a few words on how to be cautious and make good science should be stated. The
simplicity and straightforwardness of a method can be tricky, since they could convey the
wrong impression to directly produce results when applied to concrete problems. From a
physical point of view, the practical interest of this method lies in its ability to reveal properties
of the system under study, i.e. to reveal hidden structures in a given series. But this capacity
is intimately linked to the strength and extent of the theory behind the method. That is why,
before venturing to study complex systems in nature, a method should provide a sufficient
theoretical support. In the case under study, it should be clearly stated what information and
which properties we are mapping into what and how, before attempting to measure all kind
of features in a visibility graph.
According to this, the first general open problem lies just there: to generate a mathematically
sound, rigorous theory that explains and shows how time series/dynamical systems
properties are mapped into the associated visibility graph. In this review we have outlined
the first steps in this direction, but a broad and general theory is still to be completely
developed. This theory should deal with questions such as (i) what concrete information
are the algorithms mapping? and (ii) how they do so? Once we know this, we can understand
what network features are behind multifractality, spatio-temporal chaos, intermittency,
quasi-periodicity, and many other complex dynamical processes.
Only when these questions have been rigorously responded, this tool could be ready to be
unambigously used by practitioners, since visibility algorithms will be a new and universal
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method to extract information from complex signals. Moreover, the possibility of defining
mesoscale measures, which are typically network-based (for instance, modularity, community
structure, etc), could be of interest to analyze non-local / multiscale dynamics. The potentials
of the method could then apply to study long standing problems in Physics and Society, such
as turbulence, stock market dynamics, or physiological signals such as electro-encephalogram,
electro-cardiograms, and so on. On this respect, the initial naive approaches in those directions
(turbulence (Liu et al., 2009), financial series (Liu et al., 2009; Yang et al., 2009), cardiac series
(Shao, 2010)) are nowadays inconclusive because the theory behind the method is not fully
developed. Eventually.
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