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A Tutorial on Parametric Image Registration
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Universidad Michoacana de San Nicolds de Hidalgo

Morelia, Michoacdin, México

1. Resume

This chapter introduces the reader to the area of parametric image registration, from a
beginner’s point of view. Given a model, an input image and a reference image, the
parametric registration task is to find a set of parameters (of the model) that transform the
input image into the reference image. This chapter reviews models of the general projective,
affine, similarity and Euclidean transformations of images, and develop a full example for
affine and projective transformation. It also describes two new methods of computing the
set of image derivatives needed, besides the classical method reported in the literature. The
new methods for computing derivatives are faster and more accurate than the classical
method.

2. Introduction

Image registration is the process of overlaying two or more images of the same scene taken
at different times, from different viewpoints or by different sensors [Zitova and Flusser,
2003]. In this chapter, only two images are considered: a reference image and an input
image. The idea is to find a way to convert the input image into another image, similar to
the reference image. If the model, that transforms the input image, has a small set of
parameters, the task is called parametric image registration. Otherwise, the task it is called
non-parametric registration [Calderon and Marroquin, 2003] (e.g. a set of parameters for
each pixel of the image).

The literature is plenty of parametric registration techniques. Some of them are based on
Spatiotemporal Energy [Adelson and Bergen, 1986], [Barman et al., 1986] and [Heeger,
1987], other methods are based on correlation [Kaneko et al., 2002] [Kaneko et al., 2003],
others are based on the minimization of the Sum of Squared Differences (SSD) [Lai and
Vemuri, 98], [Szeliski and Coughlan, 1994] (also named radial basis function in [Zitova and
Flusser, 2003]), and others are based on optical Flow [Barron et al., 1994].

This tutorial describes in detail a SSD technique which can be extended easily to the M
Estimators (for different M estimators see [Huber, Peter J. 2003]). The literature on
parametric images registration often reports only advanced applications of this technique,
but research papers do not address details of the implementation of these kinds of methods.
Also surveys have been writing for experts (e.g. [Zitova and Flusser, 2003]) and this area is
not fully covered in computer vision books. To our knowledge there is not a tutorial of

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007



168 Scene Reconstruction, Pose Estimation and Tracking

parametric image registration and this chapter tries to introduce beginners in computer
vision into this area.

The rest of this chapter is organized as follows. Section 3 describes the registration problem
as an optimization problem and Section 4 introduces the bilinear interpolation to compute
accurate transformations of images. Section 5 introduces some basic transformations, from
Euclidean to general projective transformations. Section 6 shows three methods to compute
the set of derivatives of images needed, two new methods and the classical method reported
in the literature. The first new method is a fast method based on interpolation of derivatives
of the input image. The second method is the classical method based on derivatives of the
transformed image. The third method is a new one and it is a more accurate and complete
method than the classical method. Section 7, gives minimization details for an error function
and subsection 7.1 presents the well known Levenberg-Marquard non-linear optimization
method [Nocedal and Wright, 1999], commonly used in many computer vision problems.
Experimental results are shown in section 8 using the three methods of computing
derivatives. Results confirm the accuracy of the third method of computing derivatives.
Finally, some conclusions are given in Section 9.

3. Parametric Registration Problem

Let I(i,j) denote a gray level image (typically an integer value from 0 to 255), for integer
coordinates <i,j>, I(i,j) gives the intensity value of the pixel associated to position <i,j> (see
Figure 1), and I(i,j) denotes the reference image.

If the set of parameters is denoted by 6, the parametric registration problem is to find a set
O that minimizes an error function E, between the transformed input image I;(i,j) and the
reference image. Considering the SSD, E can be expressed in the following way:

E©)= ZV<I',_/‘>€1,‘ (I(X(G)ai:j)’ y(@,i, ]))_ I, (i’j))z 1)

For instance, given a position x=i+1 and y=j, one pixel I,(i,j) is going to be compared with
pixel I(i+1,j). This situation is equivalent to have a transformed input image, I;(i,j)=I(i+1,j),
where all pixels of the input image, have moved to the next position upwards (see Figure 1).
The error E compares each pixel, between I; and I,, at the same position <i,j>. With the right
©', image I; and I, should be very similar and E should reach a minimum value. The new
image I; (i,j) can be computed by

1,(i, j) = 1(x(®,i, /). »(©,i, j)) @

*--0--0--0--0
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Figure 1. Computing transformed image I; from I
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If x(©,ij) and y(O,ij) are outside of the image I, a common strategy is to assign zero value
which represents a black pixel. But, What happen when x(0,i,j) and y(©,i,j) have real values
instead of integer values?. Remember that image I(x,y) have only valid values when x and y
are integer values. An inaccurate method to solve this problem is to use their nearest integer
values. Next section presents a much better method to solve this problem.

4. Bilinear Interpolation

If x; and xy are the integer and fractional part of x (x = xi+x), and y; and yy the integer and
fractional part of y (y = yityy), Figure 2 illustrates the bilinear interpolation method
[Faugeras, 1993] to find I(xi+x; yi+yp), given the four nearest pixels to position <x;+xj yi+y>:
I(xi, yi), I(xi+1, yy), I(x;, yi+1) and I(xj+1, yi+1) (image values at particular positions are
represented by vertical bars in Figure 2). First two linear interpolations are used to compute
two new values (Iew(x;, yityy) and Liw(xi+1, yi+yg) and then another linear interpolation is
used to compute the desired value I(x;+x; y;+yp from the new computed values:

L..(x, +yf):(1_yf)[(xi’yi)+yf1(xi>y; +1)
1., (x; +1,, +yf):(1_yf)l(xi +1’yi)+yfl(xi +Ly,+1) ®)
I(xi +xf9yi +yf):(1_xf)1new(xi9yi +yf)+xf]new(xi +1’yi +yf)

Using the bilinear interpolation, a smooth transformed image is computed. Next section
introduces a hierarchy of transformations that maps lines, in the input image, to lines in the
transformed image [Hartley and Zisserman, 2000].

{xﬂ)}l{»}f')
l | (Xl,y*'l)
xoy) b Lol
A
_____ i
(x+x,¥+y))
(x+1y) »H l I‘ (x+1y+1)
L ¥, »
' "(x ALy ty)

Figure 2. Using the Bilinear Interpolation

5. Basic Transformations

In this section Euclidean, Similarity, Affine and Projective transformations are reviewed
briefly. In order to have a uniform frame of reference for these transformations,
homogeneous coordinates are going to be used [Hartley and Zisserman, 2000]. A point
<x,y> in a plane is represented in homogeneous coordinates (HC) by a vector of 3
coordinates, [x;, yi, wi]T, and both coordinates are related by x=x3/wy, and y=yy/wy. In HC, a
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vector v and x v (ke RN) represent the same point, an important advantage of using
homogeneous coordinates is that original and transformed positions, as well as composition
of transformations, are related by matrix multiplications [Hartley and Zisserman, 2000].
Figure 3, illustrates the Euclidian, Similarity, Affine and Projective transformation.

(b) (c) (d) (e)

()
Figure 3. Linear Transformations in Homogeneous Coordinates: (a) Original, (b) Euclidean,
(c) Similarity, (d) Affine and (e) Projective
5.1 Euclidean Transformations

In the case of Euclidian Transformation, angles and length of line segments are preserved,

and only translations and rotations are allowed (see Figure 3(b)). This transformation have

three parameters, ©@= {g t, tj/, where ¢ is the rotation angle, and t;, ; are translation in

directions 7 and j respectively. Using HC, x(8i,j)=xi/wy and y(6O,i,j)=yi/wy, can be represented
by:

T . T

X4, v w1 = H. [0, 1]

cos¢ —sing

H,=|sing cos¢ ¢

0 0 1

5.2 Similarity Transformations

Besides translations and rotations, an isotropic scaling given by s is allowed (the same in
both directions). Under this transformation, objects can be bigger or smaller, but their
original shape is preserved (see Figure 3 (c)). The matrix representation, H, for this
transformation is given by
T YA
X4, Vw1 = H [1, /1]

scos¢ —ssing st
H =|s sing scos¢ st

0 0 1
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5.3 Affine Transformations

An affine transformation is the most general transformation that preserves parallelism
between lines (see Figure 3 (d)). This case is represented by H, and has six parameters,

[xhayh’wh]T :H [i:jal]T

Q

H =

a

o D 2
o B
— D O

Where 6 and 6 represent the translation in both directions. This transformation allows
rotation, scaling, shearing, translation or combinations of these transformations.

5.4 Projective Transformations

This is the most general transformation that maps lines into lines, and it generalizes an
affine transformation. The matrix H, for this transformation has nine elements (actually only
eight independent ratios among the nine elements of H,, because in HC proportional vectors
represent the same vector). An example of this transformation where parallelism is not
preserved is shown in Figure 3(e). In most interesting cases, projective transformations Hy,
has the form:

[xhayhawh]T:Hp[iajal]T

6, 6, 6, .
H,=|6, 6, 6

6, 6, 1

Next section develops examples of finding the set of parameter for affine and projective
transformations.

6. Finding the Set of Parameters

In order to compute a set of parameter 6, equation (1), can be rewritten as follows
E(](Q)’I") = ZV</’,./‘>EI,, p(elj)
€; = I(X(G),l',j),y(@,l',j))—[r (i’j)

ple) is an error function which could be a quadratic function or any M-estimator (see
[Huber, Peter J. 2003]). In case of a quadratic function the solution is known as Least
Squares. Given a set @= {6, ..., 6, ..., 6} of K parameters, E will have a minimum value
when 9E/ 26, =0 for all k. The k-th element of the gradient value G, =0E/d6,, can be

®)

computed as
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oE dple; ) de;
Gk(@)_ _2v<i,j>e1, p(ej) =

== L k=01,..K )
96, de, 06,

In the literature, the derivative Bp(ej/.) /aei,, is called the influence function [Huber, Peter J.

2003] and it is represented by ¢(e;;). In the case of a quadratic error function ¢(e;;) =2e;;. If we
introduced the gradient vector G(6)=[Go(6), G1(6), ... Gx(O)]T and the vector J;(6) as

de.. Oe.. oe.. !
J.(®)= U B
(@) {aeo 26, aeJ o

G(6) can be written in a single one :

GO)=3 . ... 9(©),0) )

Let’s develop an expression for each term of the vector Ji{(@)=[J;jo(6),Ji1(6), ... Jix(O)]T from
equation (8) so an expression for Jix(6) can be derived as:

aeij — aI(X(G, l,_]),y(@, i) .]))
26, 96,

J(©)= (12)

Using the chain rule from the differential calculus, the desired value can be computed as
follows,

) (@): 81(x(®,1,]),y(®,1,])) ax(G),z,]) + a[(x(@,l,]),y(@,l,])) ay(@,l,]) (13)
o 0x(0, 1, /) 20, (0,1, j) 00,

Using matrix notation Jij(®) =M(0,i, j))VI(x,y) with

[0x(0,i,/) (©,i,))]
06, 006,

M(©.ij)=| i Lo
x(©,i,j) (O, ))

26, 96,
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9l (x(8,1, /), (8,1, j))
0x(0,i, j)

ol (x(8,1, /), (8,1, j))
(0,1, )

M will called the Coordinate Matrix Model (CMM) which depends of the characteristics of
the model and V/(x,y) the gradient vector respect to x and y (remember that the image only

VIi(x,y)= (15)

have integer coordinates values). Subsection 6.1 presents the CMM for affine and projective
transformations and subsection 6.2 presents three methods of computing the gradient
vectorVI(x,y)-

6.1 Coordinate Matrix Model
An affine transformation given by equation (6) can be rewritten as follows.
X(0,i, /) =6,i+6,j+6,
. : : (16)
y(0B,i,j)=6,i+6,j+06;

By definition of CMM given by equation (14), the CMM, for affine transformation, has a
simple form given by equation (17).

o o]
a6, 96,
ox dy | -
87491 8761 i 0
ox dy J 0
.\ _ |06, d86 10
Me.i.j)= i; iyz "o i (17)
206, 96, 0
o | o]
90, d96,| - -
o dy
| 06, 06 |

In a similar way, the projective transformation (eq. (7)), can be rewritten as
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X0, ) = 6)i+6,j+0,
” w(®,i, )
y(©.i,jy= A0 0 as)
w(0,1i, )
w(B,i, j)=6,i+6,j+1
The CMM, in this case, is given by equation (19)
- 0]
i 0
1 0
0 i
M©ij)=" . (19)
wl 0 J
0 1
—ix —iy
—Jx =]

6.2 Computing Derivatives of Images

Here we present three methods to compute the terms not previously described in eq. (14). In
all the three methods, derivative of images are needed which can be approximated by the
following central-difference approximations [Trucco and Verri, 1998]:

aI(i, ) I(i+1,/)-1(i-1)

0i 2 0
a1(i,j) _ 1(i,j+1)-1(i,j-1) @
9j 2

More accurate approximations consider more pixels in the neighborhood [Trucco and Verri,
1998]:

ol(i,j) —1(i+2,7)+81(i+1,7)-81(i—1,7)+1(i-2,/)

0i 12
(i, j) _ =10, j+2)+81(,j+1)-81(i, j—1)+1(i,j—2) e
0j 12

An even better method is called derivative of Gaussian Filters [Ma et al., 2004] [Romeny,
1994], and it computes much smaller noise responses, compared with the previous ones. The
Gaussian function and its derivative are given, respectively, by
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1 —
g(n)= Tﬂaez"

g'()= d‘zgt) T

_t2

—t i

o2

The computation of image derivatives is accomplished as a pair of 1-D convolutions with
filters obtained by sampling the continuous Gaussian function and its derivative,

a[(l, ]) w/2 w/2
di

=1G,))*g' () xg()= Y. DG )Heg'i-k)g(ji-1)]

k=—w/21=—w/2

o wi2 w2 )
Eﬂg}ﬂ:](i’j)*g(i)*g'(j): _z _Z[](i,j)g(i—k)g'(j—l)]

6 (in pixels units) controls the Gaussian form, and usually w = 3 o If the window defined by
w is bigger, then more pixels in the neighborhood are considered. In equation (23), the
operator (*) represents convolution.

Now three methods, to compute the gradient vector of the input image, (VI(x, y) in eq. (15))

are presented in next section. Remember that x and y in general can be real numbers.

6.2.1 Method 1: Using derivatives of the input image

Considering that <, j >e N*and < x,y >e R*, if 9I(i, j)/9i and 9I(i, j)/9j are computed
using one of the previous methods, a simple and fast method to compute 9/(x, y)/dx is to
use bilinear interpolation from 9/(i, j)/di to get an approximate value. In a similar way,
dI(x,y)/dy can be estimated fromo/(i, j)/dj -

6.2.2 Method 2: Using approximate derivatives of the transformed image
Considering the transformed image I; and from equation (2), another approximation is given
by

I (x(8,1,/),1(8,i, 7)) _ 0L, ))

ox(0,i, ) di
Ay )1 | | (24)
A (x(©,i, /), ¥(©.i, /) _ 01,3, ))
(0,1, 1) Jj

Because this approximation is reported in many papers, we named it the classical method.

6.2.3 Method 3: Using derivatives of the transformed image
Method 2 considers I(i,j) = I(x(© ,ij),y(O ,i,j)), and also considers derivatives given by
equation (24). The first one is correct, but not the second one, because increments in x does
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not necessarily correspond to the same increments of i (and the same argument with y and
7). The right derivatives can be computed using the chain rule, as follows:

oI(x,y) _ LG, ) di 31, ))

ox di Ox Jdj Ox
A (x,y)_ 3L, )) 3 AL,(0)) Y at
ady di dy Jd dy
Using matrix notation equation (25) can be rewritten as
dl(x,y) di 9 || 9dI,(i,))
o |_|ox | _ ai
A(x,y) || di 9| dl3G,)) (26)

dy W Jj
VI(x,y)=N(©,x,y)VI(i, )

Lets define N(6x,y) as the Derivative Correction Matrix (DCM) and V 1, (i, j) as the gradient

vector image of Image I; and it can be computed using, for instance, the derivative of
Gaussian Filter previously mentioned.

Now a closed expression for the matrix N, in case of a projective transformation, is
developed. To compute the elements of DCM matrix, explicit formulas for i and j are
needed, for this reason equation (18) is rewritten as follows:

(xgs —90)i+(x07 -6, )] = (‘92 _x)
(v0;=6,)i+(v6,-6,);=(6;~y)

Then the system of equation given by (27) is solved using the well known Cramer’s rule
from linear algebra and its solution for i and j are given as:

(04 - 6,6, )x + (0207 -6 )y + (9165 - 0294)
(9397 — 6,6 )x + (0106 - 6,6, )y + (60‘94 - 0193)

(9596 -0, )x + (60 — 6,6, )y + (‘92‘93 1 6095)
(9397 — 06,06 )x + (9196 - 6,6, )y + (9094 A 9193)

From equation (28) the elements of matrix N are derived by definition given in equation (26)
and after a little algebra the DCM matrix is given as:

_(‘97)’_04) (06)’_93) }
(97)6—(91) —(96)6—90)

(27)

N(©,x,y)= F{ (29)

With
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F = 6, (04 - 06,6, )_ 6, (03 —0:6, )+ 0, (0397 — 0496) (30)
[(9307 —6,0,)x+(6,6, - 6,6 )y +(6,6, - 6,6, )]2

When the projective transformation is only an affine transformation the vector parameter
can be written as @= [, 6, &, &, 6, 65, 0, 0] and the DCM, in this case, is

o, -6
e ] o
Y4 Y3 LT 0

In the translation transformation case, the parameter vector can be written as @ = [/, ( 6,
0 1, 6, 0 0] and its DCM is

1 0
N (®,x,y)={0 J (32)

Note, that only for translation model, this method and method 2 are the same.

7. Minimization procedure

LetGk( ”):aE /98, (k=0, ..., K), ©n be an initial set of parameter values, and @"*! an
improved set of parameter values, where 9:” =6, + 6, - The condition to reach an
optimum @"*! is to find a set of increments 00 ,(k=0,.K), such that the G, (@”*‘ ): 0 (for
all k). To compute the set of increments, functions G, can be approximate using the Taylor

expansion using only first order derivatives:

+ n a ! n a ! n a ! n
G,em)=a6,(e )+Ga"é)®)500 +C;a’“(91®)561 +...+(;"£K®)5¢9K
k=0,1, .K (33)

Next we can compute the set of increments, doing G, (@"“ ) =0 and solving the system of K

equations of the form:

aGél(go )69(;1 + aGa"; )6491” +..+ aGa";K@ )56?,’2 -—G,(0")
k=0,1, .K (34)
In matrix form we have,
HA® =G (35)

Where
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aGler) aler) | ale)]
96, 26, 96,
oG (e') aGe) | aGle)

HO")=| 50 26, 26,

0G,(0") aG(e")  aG.(e)
06, 26, 06,

re=lsgr,s0",-.00"
G=l-6,0")-6(0") -G ("

(36)

Once this system of equation is solved, a new set of parameter @"*! can be computed, and
using the same procedure another set of parameter @7+? is estimated, and so on. The
iterative process ends when all the increments are very small.

In the literature matrix H is known like the Hessian matrix. If full derivatives for the
elements H, (@”): aGr( ")/aau of the Hessian matrix (where r and c represents the row

and column of H) are computed from equation (9), then results the Newton's method
[Nocedal and Wright, 1999]. But, if we discard second order derivatives, the method is
called Gauss-Newton (GN) [Nocedal and Wright, 1999], and it is commonly used due to its
simple form and because it warranties to have a semi positive defined matrix H. The Matrix
H for the GN method is presented in equation (37)

J’E(@") de, de,
H G)n — — - i l 3
~O0="50 00 v;, vle, )ae, 26, 7

Where wie,) = 9?2 P(e,-j)/az@,-,- and for a quadratic error function y(e;)=2. In matrix form, the

equation (37) can be rewritten as

HEH= Ywle,) @] @] @8)

V<i,j>el,

Unfortunately, the Newton or Gauss-Newton not always reaches a minimum value for the
error E, because only first order derivatives in the Taylor Expansion are used. More robust
and better methods, like the one presented in subsection 0, expand the Newton or Gauss-
Newton to avoid the case when E(@7+1) > E(@n).

7.1 The Levenberg-Marquard Method

The Levenberg-Marquard method (LM) [Nocedal and Wright, 1999] is a non-linear iterative
technique specifically designated for minimizing functions which has the form of Sum of
Square functions, like E. At each iteration, the increment of parameters 46, is computed
solving the following linear matrix equation:
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(H+A)A® =G (39)

Where G and H are defined by equation (11) and (38) respectively for GN, A is a diagonal
matrix A=diag(A, 4, ..., 4), and Ais a variable parameter at each iteration.

The process starts with the input image, I, and the reference image, I,, and initial values for
parameters @0. The

Algorithm 1 describes the LM method.

1. Pick a small value for A (say 4=0.001), an initial value for @9, an error function (for
instance p(e) = €2 ) and set n=0.
2. For a given ©n, compute the transformed image I (eq. (2)) applying bilinear
interpolation to improve the quality of the image using equation (3).
Compute the total error, E(@") using equation (1).
4. Compute a new set of parameter using the following steps
a. Compute M(On,ij) and N(Onxy) using, the equation (19) and (29) for
projective transformation or the equation (17) and (31) for affine
transformation, respectively.
b. Compute the Gradient vector image V/'(i,j) applying a derivative of

Gaussian Filter (eq. (23))
Compute the matrix J;(©")=M(0",i, ) )N(©",x,y)VI/ (i,))

d. Compute the Gradient vector G(@") and Hessian matrix H(@") by equation
(11) and (38) respectively.

e. Solve the linear system of equations given by (39) for 46, and then calculate
E(@n+ 406)

5. If E(@" + AQ)>= E(O"), increase A by a factor of 10, and go to step 4. If 4 grows very
large, it means that there is no way to improve the solution @ and the algorithm ends
with this solution @*= O

6. IfE(G"+ ABQ)< E(On), decrease A by a factor of 10. Set @1 = @n + AO, n=n+1 and go
to the step 2.

@

Algorithm 1. The Levenberg-Marquard Method

Note when 4 = 0, the LM method is a Gauss-Newton method, and when A tends to infinity,
AO turns to so called steepest descent direction and the size of increments in 4@ tends to
Zero.

8. Experimental results

To test the methods previously described, a computer program was built under the Redhat 9
Linux operating System, using the C language. All the experiments were running in a PC
Pentium 4, 2.26 Ghz. and we use standard routines from the Free Gnu Scientific library
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(GSL) to solve the linear system of equations. The error function was defined as a quadratic
function (p(e) = e2 with ¢(e) = 2e and (e) =2).

The PGM image format was selected because its simplicity to load and save gray level
images with 256 gray levels, from 0 to 255. The PGM format is as follows,

p5 {nl}

# CREATOR: The GIMP's PNM Filter Version 1.0 {nl}
640 480 {nl}

255

<I(0,0)><I(0,1)>...<I(0,639)><I(1,0)><I(1,1)> ...

Where P5 means gray level images (P6 is reserved for color images), # starts a comment, 640
and 480 is the width and height of the image respectively, and {nl} is the new line character.
<I(i,j)> is a single byte (an unsigned char in C) and they are ordered from left to right of the
first row of pixels, then the second row of pixels, and so on.

Figure 4 shows two binary input images (Figure 4 (a) and Figure 4 (b)) and the associated
reference image (Figure 4 (c)). Sequences of images for the three methods, to compute
derivatives, are shown in Figures 5, 6 and 7; the number, below each Figure, indicates the
number of iteration for Algorithm 1. In these cases the input image was the image shown in
Figure 4 (a) and derivative of Gaussian Filter with o= 6 was used. The numerical results for
Algorithm 1, are presented in Table 1. The results of this Table show us, that methods 1 and
3 find the right transformation (a very low error), method 2 have the highest error and
method 1 is the fastest.

(a) Il (b) Ig ((‘) I’r

Figure 4. Input images (I; and I;) and the reference image I,. Images are of dimension 300 X
300

Method Time (seconds) Iteration Error
1 11 88 3.78 E-9
2 18 41 1902.6
3 18 49 3.22E9

Table 1. Comparing the three derivative methods for the test case of Figure 4(a) and (c)
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(a) 15 (b) 30 (c) 45 (d) 60 (e) 75

Figure 5. Comparing method 1, sequence a-b-c-d-e. The number of iteration of each image is
shown

(a) 8 (b) 16 (c) 24 (d) 32 (e) 42

Figure 6. Comparing method 2, sequence a-b-c-d-e. The number of iteration of each image is
shown

(a) 8 (b) 16 (c) 24 (d) 32

(e) 40

Figure 7. Comparing method 3, sequence a-b-c-d-e. The number of iteration of each image is
shown
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Numerical results for images of Figure 4 (b) and (c) are shown in Table 2. Again Methods 1
and 3 find the right transformation (a low error), but Method 2 have a higher error. In this
case Method 1 is also the fastest.

Method Time (seconds) Iteration Error
1 12 70 1.59
2 26 59 51.51
3 27 44 1.59

Table 2. Comparing the three derivative methods for the test case of Figure 4(b) and (c)

Figure 8(a) and 8(b) shown an input image and the associated reference image respectively,
with dimensions 256 X 256. In this case, the case, the Algorithm 1, was applied two times; at
first with derivatives of a Gaussian function with o= 10 and then with o = 1. In the first
case with o= 10, derivatives include information of a big window around the desired pixel
value and so the derivatives are good enough to guide the search near to the right set of
parameters. In the second, with o = 1, derivatives are more accurate, given the previous set
of parameters, and the final error, E, gets smaller values than in the first case. Final results
for the three methods are shown in Figure 9. In this case only method 3 was able to find the
right transformation.

(b)

Figure 8. Another case of test. a) Input image and b) Image Reference
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(©3

Figure 9. Final results of the three methods for image of Figure 8

9. Conclusions

A tutorial, with all the details related to the parametric image registration task, has been
presented. Also two new methods (Method 1 and Method 3) are presented besides the
classical method to compute derivatives of images.

Method 1 computes the image derivatives faster than the other two methods, but it does not
give accurate estimations. Methods 2 and 3 take more time because they compute
derivatives of the transformed image (at each iteration) while method 1 computes
derivatives of the input image only once.

Method 3 is an improved version of method 2 because it takes into account the exact
derivatives needed. However the classical method 2, reported in the literature is the same as
the method 3 under translations. Experiments confirm the poor estimation computed by
method 2 when rotations, scaling, or an affine transformation are involved.

In general, derivatives of images with big ¢ values are recommended when the right
transformation is far away from identity, in other words, when big translations, rotations,
scaling, etc., are involved. In contrast, small values of ¢ are recommended to get more
accurate results. In fact, we mixed both strategies, big values at first and then small values.
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