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A Tutorial on Parametric Image Registration 

Leonardo Romero and Félix Calderón 
División de Estudios de Postgrado, Facultad de Ingeniería Eléctrica 

Universidad Michoacana de San Nicolás de Hidalgo 
Morelia, Michoacán, México 

1. Resume 

This chapter introduces the reader to the area of parametric image registration, from a 
beginner’s point of view. Given a model, an input image and a reference image, the 
parametric registration task is to find a set of parameters (of the model) that transform the 
input image into the reference image. This chapter reviews models of the general projective, 
affine, similarity and Euclidean transformations of images, and develop a full example for 
affine and projective transformation. It also describes two new methods of computing the 
set of image derivatives needed, besides the classical method reported in the literature. The 
new methods for computing derivatives are faster and more accurate than the classical 
method. 

2. Introduction 

Image registration is the process of overlaying two or more images of the same scene taken 
at different times, from different viewpoints or by different sensors [Zitova and Flusser, 
2003]. In this chapter, only two images are considered: a reference image and an input 
image. The idea is to find a way to convert the input image into another image, similar to 
the reference image. If the model, that transforms the input image, has a small set of 
parameters, the task is called parametric image registration. Otherwise, the task it is called 
non-parametric registration [Calderon and Marroquin, 2003] (e.g. a set of parameters for 
each pixel of the image). 
The literature is plenty of parametric registration techniques. Some of them are based on 
Spatiotemporal Energy [Adelson and Bergen, 1986], [Barman et al., 1986] and [Heeger, 
1987], other methods are based on correlation [Kaneko et al., 2002] [Kaneko et al., 2003], 
others are based on the minimization of the Sum of Squared Differences (SSD) [Lai and 
Vemuri, 98], [Szeliski and Coughlan, 1994] (also named radial basis function in [Zitova and 
Flusser, 2003]), and others are based on optical Flow [Barron et al., 1994]. 
This tutorial describes in detail a SSD technique which can be extended easily to the M 
Estimators (for different M estimators see [Huber, Peter J. 2003]). The literature on 
parametric images registration often reports only advanced applications of this technique, 
but research papers do not address details of the implementation of these kinds of methods. 
Also surveys have been writing for experts (e.g. [Zitova and Flusser, 2003]) and this area is 
not fully covered in computer vision books. To our knowledge there is not a tutorial of 

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007
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parametric image registration and this chapter tries to introduce beginners in computer 
vision into this area. 
The rest of this chapter is organized as follows. Section 3 describes the registration problem 
as an optimization problem and Section 4 introduces the bilinear interpolation to compute 
accurate transformations of images. Section 5 introduces some basic transformations, from 
Euclidean to general projective transformations. Section 6 shows three methods to compute 
the set of derivatives of images needed, two new methods and the classical method reported 
in the literature. The first new method is a fast method based on interpolation of derivatives 
of the input image. The second method is the classical method based on derivatives of the 
transformed image. The third method is a new one and it is a more accurate and complete 
method than the classical method. Section 7, gives minimization details for an error function 
and subsection 7.1 presents the well known Levenberg-Marquard non-linear optimization 
method [Nocedal and Wright, 1999], commonly used in many computer vision problems. 
Experimental results are shown in section 8 using the three methods of computing 
derivatives. Results confirm the accuracy of the third method of computing derivatives. 
Finally, some conclusions are given in Section 9. 

3. Parametric Registration Problem 

Let I(i,j) denote a gray level image (typically an integer value from 0 to 255), for integer 
coordinates <i,j>, I(i,j) gives the intensity value of the pixel associated to position <i,j> (see 
Figure 1), and Ir(i,j) denotes the reference image. 

If the set of parameters is denoted by Θ, the parametric registration problem is to find a set 

Θ that minimizes an error function E, between the transformed input image It(i,j) and the 
reference image. Considering the SSD, E can be expressed in the following way: 

( ) ( )( ) ( )( )
>∈<∀

−ΘΘ=Θ
rIji r jiIjiyjixIE

,

2
,,,,,,)(  (1) 

For instance, given a position x=i+1 and y=j, one pixel Ir(i,j) is going to be compared with 
pixel I(i+1,j). This situation is equivalent to have a transformed input image, It(i,j)=I(i+1,j),
where all pixels of the input image, have moved to the next position upwards (see Figure 1). 
The error E compares each pixel, between It and Ir, at the same position <i,j>. With the right 

Θ∗, image It and Ir should be very similar and E should reach a minimum value. The new 
image It (i,j) can be computed by  

( ) ( ) ( )( )jiyjixIjiI t ,,,,,, ΘΘ=  (2) 

i

j

i

j

Image IImage It

Figure 1. Computing transformed image It from I 
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If x(Θ ,i,j) and y(Θ ,i,j) are outside of the image I, a common strategy is to assign zero value 

which represents a black pixel. But, What happen when x(Θ ,i,j) and y(Θ ,i,j) have real values 
instead of integer values?. Remember that image I(x,y) have only valid values when x and y
are integer values. An inaccurate method to solve this problem is to use their nearest integer 
values. Next section presents a much better method to solve this problem. 

4. Bilinear Interpolation 

If xi and xf are the integer and fractional part of x (x = xi+xf), and yi and yf the integer and 
fractional part of y (y = yi+yf), Figure 2 illustrates the bilinear interpolation method 
[Faugeras, 1993] to find I(xi+xf, yi+yf), given the four nearest pixels to position <xi+xf, yi+yf>:
I(xi, yi), I(xi+1, yi), I(xi, yi+1) and I(xi+1, yi+1) (image values at particular positions are 
represented by vertical bars in Figure 2). First two linear interpolations are used to compute 
two new values (Inew(xi, yi+yf) and Inew(xi+1, yi+yf)) and then another linear interpolation is 
used to compute the desired value I(xi+xf, yi+yf) from the new computed values: 

),1(),()1(),(

)1,1(),1()1(),1(

)1,(),()1(),(

fiinewffiinewffifi

iifiiffiinew

iifiiffiinew

yyxIxyyxIxyyxxI

yxIyyxIyyyxI

yxIyyxIyyyxI

++++−=++

++++−=++

++−=+

 (3) 

Using the bilinear interpolation, a smooth transformed image is computed. Next section 
introduces a hierarchy of transformations that maps lines, in the input image, to lines in the 
transformed image [Hartley and Zisserman, 2000]. 

Figure 2. Using the Bilinear Interpolation 

5. Basic Transformations 

In this section Euclidean, Similarity, Affine and Projective transformations are reviewed 
briefly. In order to have a uniform frame of reference for these transformations, 
homogeneous coordinates are going to be used [Hartley and Zisserman, 2000]. A point 
<x,y> in a plane is represented in homogeneous coordinates (HC) by a vector of 3 
coordinates, [xh, yh, wh]T, and both coordinates are related by x=xh/wh and y=yh/wh. In HC, a 
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vector v and κ v ( ℜ∈κ ) represent the same point, an important advantage of using 

homogeneous coordinates is that original and transformed positions, as well as composition 
of transformations, are related by matrix multiplications [Hartley and Zisserman, 2000]. 
Figure 3, illustrates the Euclidian, Similarity, Affine and Projective transformation. 

Figure 3. Linear Transformations in Homogeneous Coordinates: (a) Original, (b) Euclidean, 
(c) Similarity, (d) Affine and (e) Projective 

5.1 Euclidean Transformations 

In the case of Euclidian Transformation, angles and length of line segments are preserved, 
and only translations and rotations are allowed (see Figure 3(b)). This transformation have 

three parameters, Θ = {φ, ti, tj}, where φ is the rotation angle, and ti, tj are translation in 

directions i and j respectively. Using HC, x(Θ,i,j)=xh/wh and y(Θ,i,j)=yh/wh, can be represented 
by:

−

=

=

100

cossin

sincos

]1,,[],,[
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i

e

T

e
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hhh
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H

jiHwyx

φφ

φφ
 (4) 

5.2 Similarity Transformations 

Besides translations and rotations, an isotropic scaling given by s is allowed (the same in 
both directions). Under this transformation, objects can be bigger or smaller, but their 
original shape is preserved (see Figure 3 (c)). The matrix representation, Hs, for this 
transformation is given by 
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100
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 (5) 
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5.3 Affine Transformations 

An affine transformation is the most general transformation that preserves parallelism 
between lines (see Figure 3 (d)). This case is represented by Ha and has six parameters, 

=

=

100

]1,,[],,[

543

210

θθθ

θθθ

a

T

a

T

hhh

H

jiHwyx

 (6) 

Where θ2 and θ5 represent the translation in both directions. This transformation allows 
rotation, scaling, shearing, translation or combinations of these transformations. 

5.4 Projective Transformations 

This is the most general transformation that maps lines into lines, and it generalizes an 
affine transformation. The matrix Hp for this transformation has nine elements (actually only 
eight independent ratios among the nine elements of Hp, because in HC proportional vectors 
represent the same vector). An example of this transformation where parallelism is not 
preserved is shown in Figure 3(e). In most interesting cases, projective transformations Hp,
has the form: 

=

=

1

]1,,[],,[

76
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210

θθ

θθθ

θθθ

p

T

p

T

hhh

H

jiHwyx

 (7) 

Next section develops examples of finding the set of parameter for affine and projective 
transformations.

6. Finding the Set of Parameters 

In order to compute a set of parameter Θ, equation (1), can be rewritten as follows 

( )
( ) ( )( ) ( )jiIjiyjixIe

eIIE

rij

Iji ijr
r

,,,,,,

)),((
,

−ΘΘ=

=Θ
>∈<∀

ρ
 (8) 

ρ(e) is an error function which could be a quadratic function or any M-estimator (see 
[Huber, Peter J. 2003]).  In case of a quadratic function the solution is known as Least 

Squares. Given a set Θ = {θ0, … , θk, … , θK} of K parameters, E will have a minimum value 
when 0/ =∂∂ kE θ  for all k. The k-th element of the gradient value 

kk EG θ∂∂= / ,  can be 

computed as 
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In the literature, the derivative  
ijij ee ∂∂ /)(ρ  is called the influence function [Huber, Peter J. 

2003] and it is represented by ϕ(eij). In the case of a quadratic error function ϕ(eij) =2eij. If we 

introduced the gradient vector G(Θ)=[G0(Θ), G1(Θ), … GK(Θ)]T and the vector Jij(Θ) as 
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,,,
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 (10) 

G(Θ) can be written in a single one :  

( ) ( ) ( )
>∈<∀

ΘΘ=Θ
rIji ijij JG

,
ϕ  (11) 

Let’s develop an expression for each term of the vector Jij(Θ)=[Jij0(Θ),Jij1(Θ), … JijK(Θ)]T from 

equation (8) so an expression for Jijk(Θ) can be derived as:
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Using the chain rule from the differential calculus, the desired value can be computed as 
follows, 
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Using matrix notation ),(),,()( yxIjiMJ ij ∇Θ=Θ  with 
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M will called the Coordinate Matrix Model (CMM) which depends of the characteristics of 
the model and ),( yxI∇  the gradient vector respect to x and y (remember that the image only 

have integer coordinates values). Subsection 6.1 presents the CMM for affine and projective 
transformations and subsection 6.2 presents three methods of computing the gradient 
vector ),( yxI∇ .

6.1 Coordinate Matrix Model 

An affine transformation given by equation (6) can be rewritten as follows. 

543

210
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),,(

θθθ

θθθ

++=Θ

++=Θ

jijiy

jijix
 (16) 

By definition of CMM given by equation (14), the CMM, for affine transformation, has a 
simple form given by equation (17). 
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In a similar way, the projective transformation (eq. (7)), can be rewritten as  
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The CMM, in this case, is given by equation (19) 
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6.2 Computing Derivatives of Images 

Here we present three methods to compute the terms not previously described in eq. (14). In 
all the three methods, derivative of images are needed which can be approximated by the 
following central-difference approximations [Trucco and Verri, 1998]: 
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 (20) 

More accurate approximations consider more pixels in the neighborhood [Trucco and Verri, 
1998]:
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An even better method is called derivative of Gaussian Filters [Ma et al., 2004] [Romeny, 
1994], and it computes much smaller noise responses, compared with the previous ones. The 
Gaussian function and its derivative are given, respectively, by 
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The computation of image derivatives is accomplished as a pair of 1-D convolutions with 
filters obtained by sampling the continuous Gaussian function and its derivative, 
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σ (in pixels units) controls the Gaussian form, and usually w = 3 σ. If the window defined by 
w is bigger, then more pixels in the neighborhood are considered. In equation (23), the 
operator (*) represents convolution.  
Now three methods, to compute the gradient vector of the input image, ( ),( yxI∇  in eq. (15)) 

are presented in next section. Remember that x and y in general can be real numbers. 

6.2.1 Method 1: Using derivatives of the input image 

Considering that 2, Nji >∈< and 2, Ryx >∈< , if ijiI ∂∂ /),(  and jjiI ∂∂ /),(  are computed 

using one of the previous methods, a simple and fast method to compute xyxI ∂∂ /),(  is to 

use bilinear interpolation from ijiI ∂∂ /),(  to get an approximate value. In a similar way, 

yyxI ∂∂ /),(  can be estimated from jjiI ∂∂ /),( .

6.2.2 Method 2: Using approximate derivatives of the transformed image 

Considering the transformed image It and from equation (2), another approximation is given 
by
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Because this approximation is reported in many papers, we named it the classical method. 

6.2.3 Method 3: Using derivatives of the transformed image 

Method 2 considers It(i,j) = I(x(Θ ,i,j),y(Θ ,i,j)), and also considers derivatives given by 
equation (24). The first one is correct, but not the second one, because increments in x does 
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not necessarily correspond to the same increments of i (and the same argument with y and 
j). The right derivatives can be computed using the chain rule, as follows: 
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Using matrix notation equation (25) can be rewritten as 
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Lets define N(Θ,x,y) as the Derivative Correction Matrix (DCM) and ( )jiI t ,∇  as the gradient 

vector image of Image It and it can be computed using, for instance, the derivative of 
Gaussian Filter previously mentioned.   
Now a closed expression for the matrix N, in case of a projective transformation, is 
developed. To compute the elements of DCM matrix, explicit formulas for i and j are 
needed, for this reason equation (18) is rewritten as follows: 
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Then the system of equation given by (27) is solved using the well known Cramer’s rule 
from linear algebra and its solution for i and j are given as:
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From equation (28) the elements of matrix N are derived by definition given in equation (26) 
and after a little algebra the DCM matrix is given as: 

( )
( ) ( )

( ) ( )−−−

−−−
=Θ

0617

3647
,,

θθθθ

θθθθ

xx

yy
FyxN  (29) 

With



A Tutorial on Parametric Image Registration 177
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When the projective transformation is only an affine transformation the vector parameter 

can be written as Θ = [θ0, θ1, θ2, θ3, θ4, θ5, 0, 0] and the DCM, in this case, is 
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In the translation transformation case, the parameter vector can be written as Θ = [1, 0, θ2,

0,  1, θ5, 0, 0] and its DCM is 

( ) =Θ
10

01
,, yxN  (32) 

Note, that only for translation model, this method and method 2 are the same. 

7. Minimization procedure 

Let ( ) k

n

k EG θ∂∂=Θ / , (k=0, …, K), Θ n be an initial set of parameter values, and Θ n+1 an 

improved set of parameter values, where n
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all k). To compute the set of increments, functions 
kG  can be approximate using the Taylor 

expansion using only first order derivatives: 
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Next we can compute the set of increments, doing ( ) 01 =Θ +n
kG  and solving the system of K

equations of the form: 
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 In matrix form we have, 

GH =∆Θ  (35) 

Where
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

[ ]
( ) ( ) ( )[ ]Tn

K

nn

Tn

K

nn

K

n

K

n

K

n

K

K

nnn
K

nnn

n

GGGG

GGG

GGG

GGG

H

Θ−Θ−Θ−=

=∆Θ

∂

Θ∂

∂

Θ∂

∂

Θ∂

∂

Θ∂

∂

Θ∂

∂

Θ∂

∂

Θ∂

∂

Θ∂

∂

Θ∂

=Θ

,,,

,,,

10

10

10

1

1

1

0

1

0

1

0

0

0

δθδθδθ

θθθ

θθθ

θθθ

(36)

Once this system of equation is solved, a new set of parameter Θ n+1 can be computed, and 

using the same procedure another set of parameter Θ n+2 is estimated, and so on. The 
iterative process ends when all the increments are very small. 
In the literature matrix H is known like the Hessian matrix. If full derivatives for the 

elements ( ) ( ) c

n

r

n

rc GH θ∂Θ∂=Θ /  of the Hessian matrix (where r and c represents the row 

and column of H) are computed from equation (9), then results the Newton's method 
[Nocedal and Wright, 1999]. But, if we discard second order derivatives, the method is 
called Gauss-Newton (GN) [Nocedal and Wright, 1999], and it is commonly used due to its 
simple form and because it warranties to have a semi positive defined matrix H. The Matrix 
H for the GN method is presented in equation (37)  
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Where 
ijijij eee 22 /)()( ∂∂= ρψ  and for a quadratic error function ψ(eij)=2. In matrix form, the 

equation (37) can be rewritten as 

( ) [ ] [ ]
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rIji

Tn

ij

n

ijij

n JJeH
,

)()()( ψ  (38) 

Unfortunately, the Newton or Gauss-Newton not always reaches a minimum value for the 
error E, because only first order derivatives in the Taylor Expansion are used. More robust 
and better methods, like the one presented in subsection 0, expand the Newton or Gauss-

Newton to avoid the case when E(Θ n+1) > E(Θ n).

7.1 The Levenberg-Marquard Method 

The Levenberg-Marquard method (LM) [Nocedal and Wright, 1999] is a non-linear iterative 
technique specifically designated for minimizing functions which has the form of Sum of 

Square functions, like E. At each iteration, the increment of parameters ∆Θ, is computed 
solving the following linear matrix equation: 
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( ) GH =∆ΘΛ+  (39) 

Where G and H are defined by equation (11) and (38) respectively for GN, Λ is a diagonal 

matrix Λ=diag(λ, λ, ..., λ), and λ is a variable parameter at each iteration. 
The process starts with the input image, I, and the reference image, Ir, and initial values for 

parameters Θ 0. The
Algorithm 1 describes the LM method. 

1. Pick a small value for λ (say λ=0.001), an initial value for Θ 0, an error function (for 

instance ρ(e) = e2 ) and set n=0.

2. For a given Θ n, compute the transformed image Itn (eq. (2)) applying bilinear 
interpolation to improve the quality of the image using equation (3). 

3. Compute the total error, E(Θ n) using equation (1). 
4. Compute a new set of parameter using the following steps 

a. Compute M(Θ n,i,j) and N(Θ n,x,y) using, the equation (19) and  (29)  for 
projective transformation or the equation (17) and (31) for affine 
transformation, respectively. 

b. Compute the Gradient vector image ),( jiI nt∇  applying a derivative of 

Gaussian Filter (eq. (23)) 

c. Compute the matrix ( )jiIyxNjiMJ n

t

nnn

ij ,),,(),,()( ∇ΘΘ=Θ

d. Compute the Gradient vector G(Θ n) and Hessian matrix H(Θ n) by equation 
(11) and (38) respectively. 

e. Solve the linear system of equations given by (39) for ∆Θ, and then calculate 

E(Θ n + ∆Θ)
5. If E(Θ n + ∆Θ) >= E(Θ n), increase λ by a factor of 10, and go to step 4. If λ grows very 

large, it means that there is no way to improve the solution Θ n and the algorithm ends 

with this solution Θ * = Θ n.

6. If E(Θ n + ∆Θ) < E(Θ n), decrease λ by a factor of 10. Set Θ n+1 = Θ n + ∆Θ , n=n+1 and go 
to the step 2. 

Algorithm 1. The Levenberg-Marquard Method 

 Note when λ = 0, the LM method is a Gauss-Newton method, and when λ tends to infinity, 

∆Θ  turns to so called steepest descent direction and the size of increments in ∆Θ  tends to 
zero.

8. Experimental results 

To test the methods previously described, a computer program was built under the Redhat 9 
Linux operating System, using the C language. All the experiments were running in a PC 
Pentium 4, 2.26 Ghz. and we use standard routines from the Free Gnu Scientific library 
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(GSL) to solve the linear system of equations. The error function was defined as a quadratic 

function (ρ(e) = e2 with ϕ(e) = 2e and ψ(e) =2).
The PGM image format was selected because its simplicity to load and save gray level 
images with 256 gray levels, from 0 to 255. The PGM format is as follows, 

P5 {nl} 
# CREATOR: The GIMP's PNM Filter Version 1.0 {nl} 
640 480 {nl} 
255
<I(0,0)><I(0,1)>...<I(0,639)><I(1,0)><I(1,1)> ...

Where P5 means gray level images (P6 is reserved for color images), # starts a comment, 640 
and 480 is the width and height of the image respectively, and {nl} is the new line character. 
<I(i,j)> is a single byte (an unsigned char in C) and they are ordered from left to right of the 
first row of pixels, then the second row of pixels, and so on. 
Figure 4 shows two binary input images (Figure 4 (a) and Figure 4 (b)) and the associated 
reference image (Figure 4 (c)). Sequences of images for the three methods, to compute 
derivatives, are shown in Figures 5, 6 and 7; the number, below each Figure, indicates the 
number of iteration for Algorithm 1.  In these cases the input image was the image shown in 

Figure 4 (a) and derivative of Gaussian Filter with σ = 6 was used. The numerical results for 
Algorithm 1, are presented in Table 1.  The results of this Table show us, that methods 1 and 
3 find the right transformation (a very low error), method 2 have the highest error and 
method 1 is the fastest. 

Figure 4. Input images (I1 and I2) and the reference image Ir. Images are of dimension 300 X 
300

Method Time (seconds) Iteration Error 

1 11 88 3.78 E-9 

2 18 41 1902.6 

3 18 49 3.22 E-9 

Table 1. Comparing the three derivative methods for the test case of Figure 4(a) and (c) 
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Figure 5. Comparing method 1, sequence a-b-c-d-e. The number of iteration of each image is 
shown

Figure 6. Comparing method 2, sequence a-b-c-d-e. The number of iteration of each image is 
shown

Figure 7. Comparing method 3, sequence a-b-c-d-e. The number of iteration of each image is 
shown
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Numerical results for images of Figure 4 (b) and (c) are shown in Table 2. Again Methods 1 
and 3 find the right transformation (a low error), but Method 2 have a higher error. In this 
case Method 1 is also the fastest. 

Method Time (seconds) Iteration Error 

1 12 70 1.59 

2 26 59 51.51 

3 27 44 1.59 

Table 2. Comparing the three derivative methods for the test case of  Figure 4(b) and (c) 

Figure 8(a) and 8(b) shown an input image and the associated reference image respectively, 
with dimensions 256 X 256. In this case, the case, the Algorithm 1, was applied two times; at 

first with derivatives of a Gaussian function with σ = 10  and then with σ = 1. In the first 

case with σ = 10, derivatives include information of a big window around the desired pixel 
value and so the derivatives are good enough to guide the search near to the right set of 

parameters. In the second, with σ = 1, derivatives are more accurate, given the previous set 
of parameters, and the final error, E, gets smaller values than in the first case.  Final results 
for the three methods are shown in Figure 9. In this case only method 3 was able to find the 
right transformation. 

(a)

(b)

Figure 8. Another case of test. a) Input image and b) Image Reference 
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(a) 1                  (b) 2  

(c) 3 

Figure 9.  Final results of the three methods for image of Figure 8 

9. Conclusions 

A tutorial, with all the details related to the parametric image registration task, has been 
presented. Also two new methods (Method 1 and Method 3) are presented besides the 
classical method to compute derivatives of images. 
Method 1 computes the image derivatives faster than the other two methods, but it does not 
give accurate estimations. Methods 2 and 3 take more time because they compute 
derivatives of the transformed image (at each iteration) while method 1 computes 
derivatives of the input image only once. 
Method 3 is an improved version of method 2 because it takes into account the exact 
derivatives needed. However the classical method 2, reported in the literature is the same as 
the method 3 under translations. Experiments confirm the poor estimation computed by 
method 2 when rotations, scaling, or an affine transformation are involved. 

In general, derivatives of images with big σ values are recommended when the right 
transformation is far away from identity, in other words, when big translations, rotations, 

scaling, etc., are involved. In contrast, small values of σ are recommended to get more 
accurate results. In fact, we mixed both strategies, big values at first and then small values. 
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