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1. Introduction 

As dense wavelength-division multiplexed (DWDM) systems push towards ever higher 

spectral capacities, the nonlinear Shannon’s limit is rapidly being approached (Essiambre et 

al., 2008). Much research has been devoted to nonlinear compensation (NLC) algorithms 

that can undo deterministic nonlinear impairments to increase nonlinear capacity. All NLC 

algorithms are ultimately based approximate solutions to the inverse nonlinear Schrödinger 

equation (NLSE) that describes signal propagation in fiber. In forward propagation, 

assuming the signal is sufficiently narrowband where the slowly varying envelope 

approximation holds, a signal evolves as a Manakov equation (Marcuse et al. 1997):  

  ˆ ˆ
z


 


u

D N u , (1) 

where      
T

, , ,x yz t u z t u z t   u  is the Jone’s representation of the slowly-varying 

baseband electric field envelope,  ,xu z t  and  ,yu z t  are the two polarization components. 

2 3

1 2 32 3

1 1 1ˆ
2 2! 3!

j
t t t

  
    

  
D ┙ ┚ ┚ ┚  and 

28ˆ
9

j N u   are the linear and nonlinear 

operators, with ┙ , 1┚ , 2┚ , and 3┚  being 22 matrices representing attenuation, 

polarization-mode dispersion, group velocity dispersion and dispersion slope of the fiber, 
and   being the fiber’s nonlinear parameter. In the absence of noise, the forward 

propagation equation in (1) can be inverted via (Li et al. 2008):  

 
   ˆ ˆ

z


 

 
u

D N u . (2) 

This operation is analogous to passing the received signal through a fictitious channel where 
each element in the fictitious channel exactly inverts the real elements in the forward-
propagating channel (Fig. 1). In the presence of optical noise arising from optical amplifiers, 
the inverse NLSE is inexact. As the behavior of the NLSE becomes chaotic at high power, 
relative signal distortion increases, causing the nonlinear Shannon’s limit to arise. All  

www.intechopen.com



 
Optical Fiber Communications and Devices 220 

 

Fig. 1. Channel inversion via backpropagation. 

nonlinear compensation (NLC) methods can be shown to be approximate solutions of the 
inverse NLSE. 

The most advanced nonlinear compensation method is “digital backpropagation” (DBP), 
where the electric field  ,z tu  is recovered by an optical-to-electrical downconverter and 
then sampled at the Nyquist rate (Ip & Kahn, 2010). The channel impairments are then 
inverted by numerically solving (2), usually via the split-step Fourier method (SSFM). The 
SSFM is an iterative algorithm that divides the fiber channel into small steps and then 
successively passing the signal through the linear and nonlinear operators at each step. For 
the SSFM algorithm to be accurate, the step size has to be small enough so that the phase 
rotation in time due to application of N̂  and the phase rotation in frequency due to 
application of D̂  are both sufficiently small. The step size requirement has been studied in 
(Sinkin et al. 2003, Zhang & Hayee 2008). 

To date, digital backpropagation has not been demonstrated in real-time due to its high 
algorithmic complexity. Much recent research effort has focused on finding approximate 
algorithms that can approach DBP in performance, but has significantly lower algorithmic 
complexity. Some promising results have recently been reported, such as by lowpass 
filtering the nonlinear operator (Du & Lowery, 2010, Li, et al. 2011). In comparison with the 
traditional SSFM, which is “frequency-flat,” filtered backpropagation exploits chromatic 
dispersion in fiber that causes different frequency components of a signal to propagate at 
different speeds. From the point of view of a given frequency component within a signal, 
the other frequency components “walkoff,” causing an averaging effect on their resulting 
nonlinear interaction thus reducing the variance of their nonlinear distortion. As walkoff 
increases with frequency separation, the frequencies that lie closest to the frequency 
component of interest will contribute greater nonlinear distortion than those frequencies 
that are far away. This effect can be fully exploited by using pre- and post-filters in the 
calculation of the nonlinear operator. 
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2, ,  
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G
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
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Forward Propagation

Backward Propagation
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We will explore an enhanced DBP algorithm, where the nonlinear perturbation ˆ N u  at each 
step is computed via multiple subbands: for each subband, different pre- and post-filters are 
used. Although the complexity required to compute ˆ N u  is increased, the greater accuracy 
of the estimate enables larger step sizes. Furthermore, performance can be traded off against 
complexity by varying either the number of steps or number of subbands. 

The outline of this chapter will be as follows. In Section 2, the theory of filtered DBP will be 
introduced from the point of view of casting the NLSE as a third-order Volterra series. The 
equations for computing pre-filter will be derived. In Section 3, the DSP architecture needed 
to implement filtered DBP will be given, and we will revisit the physical intuition for FS-BP. 
Simulation results will be presented in Section 4. 

2. Theory 

2.1 Single-polarization 

2.1.1 Volterra series model 

We begin by considering the NLSE for a single-polarization signal. Let  ,u z t  be the scalar 
electric field in the signal polarization of interest. Ignoring pulse polarization-mode 
dispersion (PMD) in fiber, the inverse scalar NLSE is given by (Agrawal, 2001): 

 
 

2
22

22 2

u u
u j j u u

z t

   
   

  
 (3) 

Resolving    , kj t
k

k

u z t u z e   in terms of its spectral components  ku z , where the 

frequencies are evenly spaced k k  , we obtain a set of coupled equations:  

 
 

 

2
*2

, ,2 2
k k

k j l m
j l m
S k

du
j u j u u u

d z

  



 
       

 . (4) 

In the absence of nonlinearity ( 0  ), the right-hand side of (4) gives the chromatic dispersion 

compensation filter as      2 2

0
2 2

L

k k

z z
H j dz

 
    . When 0  , the set 

   , , :S k j l m j l m k     denote the frequencies that interact through the Kerr nonlinearity 

to produce a polarization at k . The term for which j m k   denotes intra-channel self-phase 

modulation (ISPM); the terms for which j m k   denotes intra-channel cross-phase 

modulation (IXPM); while the remaining terms are intra-channel four-wave mixing (IFWM). 
Using a third-order perturbation technique developed by (Nazarathy 2008), the signal can be 

expanded as          1 3
k k ku z u z u z  , where the first- and third-order terms satisfy:  

 
 

 
 

1 2
12

2 2
k k

k

du
j u

d z

  
      

, and (5) 
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 

 
       

 

3 2
3 1 1 1 *2

, ,2 2
k k

mjk l
j l m
S k

du
j u j u u u

d z

  



 
       

 . (6) 

Let         2
2' '

exp '
2 2

L
k

k k

z

z z
v z u z j dz

    
        
  be a distanced-normalized spectral 

components of the signal, where L is the step size. We can similarly decompose  kv z  as 

         1 3
k k kv z v z v z  , from which:  

 
 

 

1

0kdv

d z



, and (7) 

 
 

 
            

 

3 *
1 1 1

, ,

exp ' ' '
L

k
m jlmj l

j l m z
S k

dv
j v v v z z j z dz

d z
  



 
      
  . (8) 

where       2
2jlm z z l k j k     .  

We first assume the fiber parameters remain constant throughout this step, and there are no 
optical amplifiers in between. The nonlinear perturbation is then given by a third-order 
Volterra series: 

           
 

*
3 1 1 1

, ,

0 FWM
jlm mjk l

j l m
S k

v j D v v v



   , (9) 

where,  

      1 exp
exp

jlmFWM
jlm jlm

jlm

j L
D j L

j

 
  

 

  
  


, (10) 

We can define 
  1 exp jlmFWM

jlm
jlm

j L
L

j

 

 

  



 to be the “effective length” of the FWM 

process involving frequencies j , l  and m . We then have 
 jlmj LFWM FWM

jlm jlmD e L
 




  . 

Clearly, as l k  and j k  increases (i.e., frequencies far from k ), jlm  increases, and 

hence the strength of their nonlinear coupling on k  (i.e., FWM
jlmD ) decreases.  

More generally, we can also consider that in the integration from z L  to 0z  , there are 

sN  spans of fiber, with an optical amplifier after each span (Fig. 2). Let  n ,  
2

n  and  n
fL  

be the attenuation,  dispersion and length of the n-th fiber, and let  n
G  be the gain of the n-

th amplifier. Carrying out the integration inside the exponent in (8) we get: 
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 

 
      

 

 
      

 

 
       

3 *
1 1 1

, ,

1
' ''

'
' 1

exp

1
exp

s

n
nnk

m nj l jlmn
j l m
S k

N
n nn

jlm fn
n n

dv
j v v v j z z

d z G

j L
G

  
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



 

    


 
 

  





. (11) 

for 1n nz z z   . 

 

Fig. 2. Solving the NLSE with step size equal to sN  heterogeneous spans of fiber. 

At the output of the step, the perturbation term have a third-order Volterra series:  

           
 

*
3 1 1 1

, ,

0 FWM
jlm mjk l

j l m
S k

v j D v v v



    , (12) 

where  

 

 

 
         

 
       

1

0

1
' ''

'
' 1

exp

1
exp

s

s

nN
n n FWM nnFWM

jlm jlm f jlmn
n

N
n nn

jlm fn
n n

D j L L
G

j L
G

  
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





 

  

 
 

  




, and (13) 

 
       

 

1 exp
n nn

jlm fFWM n
jlm nn

jlm

j L
L

j

 

 

  



 is the “effective length” of the FWM process 

involving frequencies j , l  and m  in the n-th fiber.  

For the special case where all sN  spans are identical and the amplifier gains 

      exp
n n n

G L   exactly equalize the loss of the previous span, (13) can be simplified to: 

 
 
 

sin 21
exp

2 sin 2

jlm f sFWM FWM s
jlm jlm jlm f

jlm f

L NN
D L j L

L


 


   

 
. (14) 
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fL  1sN
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
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z
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One Step: Forward Propagation
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One Step: Backward Propagation
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2.1.2 Time-domain approximation 

The numerical complexity of evaluating the Volterra series in (9) or (12) is  3O M , where M 

is the total number of spectral components in (4). However, suppose it is possible to define 

an approximate set of Volterra coefficients FWM FWM
jlm jlmD D :  

           
 

*
3 1 1 1

, ,

' 0 FWM
jlm mjk l

j l m
S k

v j D v v v



    , (15) 

where      1 1
'm k m mv W v  is obtained by passing the spectral components  1

mv  through a 
carefully designed frequency-shaping pre-filter  k mW   whose coefficients are such that:  

      * FWM
k j k l k m jlmW W W D     , for    , ,j l m S k  (16) 

It can be shown that:  

                    
2

2
3 1 13 1 1

' 0, ' 0 ' ' ' 'k k kj t j t j t
k k k

k k k

v t v e j v e v e j v t v t   
     

 
   , (17) 

where        3 3
' 0, 0,v t v t  approximates the actual nonlinear perturbation. As according to 

(16), the filter coefficients are chosen to approximate FWM
jlmD  at the frequency index k, 

       3 3
' 0, 0,v t v t  therefore has the highest accuracy around k . The procedure indicated 

by (17) is as follows:― 

1. Multiply the input signal by the pre-filter      1 1
'm k m mv W v . 

2. Take the inverse Fourier transform of  1
'kv  to obtain    1

'v t . 

3. Compute    3
' 0,v t  using (17) 

4. Take the Fourier transform    3
' 0,v t  to obtain the coefficient  3

'kv . 

5. Repeat steps #1 to #4, using different pre-filters for each frequency index k, until the 
nonlinear perturbation at all frequency indices are obtained. 

Since the fast Fourier transform can be solved efficiently in  logO M M  operations, the 

above procedure has lower numerical complexity  2 logO M M  than the corresponding 

Volterra series in (9) or (12), which have complexity  3O M . 

It is possible to obtain even greater complexity savings – at the expense of accuracy – if 

instead of using a different pre-filter each time for #1 to #4, the N frequency indices are 

partitioned into “subbands” (Weidenfeld et al. 2011). Suppose we modify (16) to:  

      * FWM
b j b l b m jlmW W W D     , for     , , : k bj l m S k    . (16b) 
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i.e., we design the frequency-shaping      *
b j b l b mW W W    that approximates FWM

jlmD  at 

all frequency indices k where k  lies within the subband b . We invoke the same steps #1 

to #3 above replacing kW  with bW , and for step #4, we use: ― 

4b. Take the Fourier transform    3
' 0,v t  to obtain the coefficients  3

' : k bkv   . 

In other words, since    3
' 0,v t  has good accuracy around the center frequency of the 

subband for which bW  was designed, we keep multiple frequency indices at a time. The 

algorithmic complexity then scales as  logO BM M , where B is the total number of 

subbands used. 

With    3
' 0,v t  computed, the spectral components of the backpropagated signal can now 

be found by:  

              2
1 3 2

0

' '
' 0 ' 0 exp '

2 2

L
k

k k k

z z
u v v j dz

  


  
        
 , (18) 

where    1
kkv u L . The parameter   denotes the overall nonlinear perturbation is scaled, 

and its value should be optimized for a given launch power level and system dispersion 

map.  It is noted that (18) represents an asymmetric split-step solution, since the nonlinear 

operator (addition by    3
' 0,v t ) is computed first, followed by the linear operator 

(multiplication by dispersion compensation filter). 

2.1.3 Calculating the pre-filter 

To find an appropriate frequency-shaping pre-filter, we decompose (16b) into amplitude 

and phase equations: 

      log log log log FWM
b j b l b m jlmW W W D     , and (19) 

       FWM
b j b l b m jlmW W W D       , (20) 

where     , , : k bj l m S k    . These are linear systems of  3O M B  equations and M 

unknowns, and are thus highly over-determined. However, (18) and (19) can be solved via a 

“best fit” method such as the Moore-Penrose pseudoinverse.1  

If N is large, the systems of equations may be intractable to solve. Typically, a large N is 

required when the frequency response      2 2

0
2 2

L

k k

z z
H j dz

 
      has large 

                                                                 
1 Care should be taken to ensure that the phase of FWM

jlmD
 
is properly unwrapped over the indices of 

interest, before matrix inversion. Note this is a three-dimensional phase-unwrapping procedure. 
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dispersion over the step size taken. This may be encountered in dispersion-unmanaged 

transmission for example: if   2
2cd L     changes rapidly with frequency, the signal 

must be decomposed with fine spectral resolution in order for each component to remain 

“frequency-flat” over the step size considered. If (19) and (20) has too many equations to be 

solved numerically, it is possible to derive the pre-filter heuristically. Consider (14), which 

gives the Volterra coefficients for a step size equal to N identical fiber spans. Assume the 

spans are sufficiently long ( 1fL  ). Then, it can be shown that for realistic fiber 

parameters, 1FWM
jlmL   in the neighborhood of bl m k  , where bk  is the frequency index 

of the center of the subband. This neighborhood also contains the strongest components of 

    : , , :FWM
jlm k bD j l m S k    . Hence, 

  2 2 2 2 221 1

2 2 2
FWM s s
jlm jlm f f

N N
D L L j l m k

 
 

       . (21) 

Noting that phase is quadratic due to dispersion, suppose we choose:  

    2 22 1

2 2
s

b k b f

N
W k k L

 


    , (22) 

which centers the quadratic characteristic about 
bk  in the middle of the subband. Similarly 

for the amplitude equation:  

 

 
 
   

 
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2
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3

2 2

2 2 2

2 2 2

2
2 4 2 2 2 2 2 2
2

1 2

1 2

1 1
1 2 1 2

3 3

1
1 1

12

1
exp 1

12

1
exp 1

48

jlm s fFWM s
jlm

jlm f

s
jlm s f jlm f

s
jlm s f

s
jlm s f

s
s f

N LN
D

L

N
N L L

N
N L

N
N L

N
j l m k N L


 


 












 







           
     

    
 
       
 

. (23) 

We thus pick a fourth-order amplitude characteristic about 
bk :  

      
1 3

42 4 2 2
2

1
exp 1

48
s

b k b s f

N
W k k N L

  


        
  

. (24) 

The pre-filter bW  can now be found by combining (22) and (24): 

      expb b bW W j W    . 
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2.2 Dual-polarization 

For dual-polarization systems, an identical derivation can be carried replacing (3) with the 

Manakov equation in (2). As before, let         2
2' '

exp '
2 2

L
k

k k

z

z z
z z j dz

    
        
v u  be the 

distanced-normalized spectral components of the signal, and let          1 3
k k kz z z v v v . It 

can be shown that the nonlinear perturbation term            
T

3 3 3
, ,k x k y kz v z v z    

v  satisfies:  

                
 

* *
1 1 1 11 12

, , ,, ,, ,
, ,

FWM
x k jlm x m y mx j x jx l y l

j l m
S k

v L j D v v v v v v



    
 

 , and (25a) 

                
 

* *
1 1 1 11 12

, , ,, ,, ,
, ,

FWM
y k jlm y m x my j y jy l x l

j l m
S k

v L j D v v v v v v



 
   

 
 . (25b) 

where the Volterra coefficients FWM
jlmD  are almost identical to those derived for the single-

polarization case, with a scaling factor of  1 3
8 9  to absorb the factor of 8/9 in the Manakov 

equation. Hence for step sizes (i) less than one fiber span, (ii) equal to sN  heterogeneous 

fibers spans, and (iii) equal to sN  identical fiber spans, FWM
jlmD  is given by (10), (13) or (14). 

Thus, the reduced-complexity procedure outlined previously can also be used to find 

       3 3
'k kz zv v , with the subband filters given by  (19) and (20) using the analytical 

method, or (22) and (24) using the heuristic method: 

              
2 2

3 1 1 13
, , , ,' 0, ' 0 ' ' 'k k k kj t j t j t j t

x x k x k y k x k
k k k k

v t v e j v e v e v e   
           

    , (26a) 

              
2 2

3 1 1 13
, , , ,' 0, ' 0 ' ' 'k k k kj t j t j t j t

y y k x k y k y k
k k k k

v t v e j v e v e v e   
           

    ,  (26b) 

which can be simplified as:  

            
2

3 1 1
' 0, ' 't j t t v v v . (27) 

3. Digital signal processing architecture 

The digital signal processing architecture that implements multi-subband, frequency-shaped 
backpropagation (FS-BP) is shown in Fig. 3(a) (Ip & Bai 2011). It is assumed that a coherent 
receiver recovers the in-phase (I) and quadrature (Q) components of the electric field in the 
two signal polarizations, which are synchronously sampled with digital-to-analog 
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converters (DAC). Shown on the left-hand side of Fig. 3(a) are the received samples 

 ,tot t nT
z L t


u , where totL  is the total length of the system, and T is the sampling interval. 

The input signal is processed in block sizes of M samples. For single-carrier (SC) 
transmission, overlap-and-save is used (Oppenheim & Schafer 2009); for orthogonal 
frequency-division multiplexing (OFDM) transmission, non-overlapping blocks are taken at 
the input, with the cyclic prefix of the OFDM symbol (block) stripped at the output. In both 
cases, the signal processing has the canonical model shown in Fig. 3(a). In the absence of 
nonlinearity, the operations enclosed between the fast Fourier transform (FFT) and inverse 
FFT (IFFT) performs frequency-domain linear equalization (LE) of chromatic dispersion. In 
digital backpropagation, the single “linear step” is replaced with a concatenation of 
nonlinear and linear steps, as outlined in Section 2. 

Fig. 3(b) shows a generalized model of the nonlinear step. The input signal is multiplied by 
the pre-filter derived in Section 2. To avoid aliasing, we upsample the input signal by 
padding with zeros in the frequency domain, before taking a 2M–point inverse FFT (IFFT). 
The nonlinear perturbation is then computed in the time-domain. After taking a 2M–point 
FFT to recover the frequency components, we downsample by stripping the high-frequency 
components, followed by multiplication by a “post-filter.” These operations are repeated for 
the B subbands. Summing their outputs yield an overall nonlinear perturbation, which is 
then scaled and summed with the through signal.  

 

 
 

Fig. 3. (a) Digital Backpropagation using overlap-and-save, (b) Enhanced nonlinearity 
computation using subbanding and frequency shaping by pre- and post-filters. 
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Note that we have not discussed a method of calculating the post-filter. In Section 2, it was 

assumed that after computing  3
'kv  in (17) or (27), we keep only the spectral components 

 : k bk    in the neighborhood of 
bk . This corresponds to multiplying  3

'kv  by a 

rectangular filter whose support spans the bandwidth b . It is possible to use other filter 

shapes for the post-filters, which may have better performance than simple rectangular 
filters. However, this is not covered by the current work. 

Algorithmic complexity can be determined directly from Fig. 3(b). Assume the use of 

overlap-and-save in Fig. 3(a) where adjacent blocks overlap by 0M  samples. We assume a K 

steps in the backpropagation, and that the post-filters are rectangular filters (no 
multiplications required). It can be shown that the complexity for FS-BP for single-
polarization signals is:  

        ,1 2 2 04 2 log 2 12 4 4 log 1FS BP polC M M M B M K M M M M         . (28) 

For dual-polarization signals, the complexity of FS-BP is: 

        ,2 2 2 08 2 log 2 24 8 8 log 1FS BP polC M M M B M K M M M M         . (29) 

We note that standard backpropagation is merely a special case of FS-BP where the 
nonlinearity perturbation is computed without pre- and post-filters (frequency-flat), and 

only 1B   subband is used. Hence the complexity of standard backpropagation (Std.BP) for 
single- and dual-polarization signals are:  

 
      . ,1 2 2 04 2 log 2 8 4 log 1Std BP polC M M M K M M M M        , and (30) 

 
      . ,2 2 2 08 2 log 2 16 8 log 1Std BP polC M M M K M M M M        . (31) 

Finally, for linear equalization (LE), the complexities for single- and dual-polarization 

signals are:  

 
   ,1 2 04 4 log 1LE polC M M M M M   

, and (32) 

 
   ,2 2 08 8 log 1LE polC M M M M M   

. (33) 

The motivation for the use of sub-banding, pre-filtering and post-filtering can be understood 
as follows: in a dispersive fiber, different frequency components of a signal propagate at 
different speeds. From the point of view of a particular frequency component, the other 
frequencies walk off. Walk-off has an averaging effect on their mutual nonlinear interaction. 
Hence, a frequency component of interest experiences stronger nonlinear effects from 
frequencies closer to it than frequencies further away. To compute nonlinear perturbation at 
a particular frequency 

bk , therefore, one should weight the input signal with a pre-filter 
that emphasizes the frequencies close to it, while suppressing frequencies farther away (Fig. 
4). The nonlinearity computed using this method will be accurate around 

bk . To compute 
nonlinearity accurately around other frequencies, different pre- and post-filters are needed.  
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Fig. 4. Physical interpretation of enhanced nonlinearity computation. 

4. Results 

In this section, we will investigate the efficacy of FS-BP by numerical simulation for two 
systems (Fig. 5):― 

a. OFDM transmission over 1280-km spans of single-mode fiber (SSMF) (Attenuation = 
0.2 dB/km, Dispersion = 17 ps/nm/km and Nonlinear parameter 0.0013 W−1), with full 
dispersion management after each span using dispersion compensation fiber (DCF) 
(Attenuation = 0.5 dB/km, Dispersion = −85 ps/nm/km and Nonlinear parameter 
0.0053 W−1). The launch power into DCF is assumed to be 6 dB lower than that into 
SSMF. For the signal, 112-Gb/s OFDM is assumed. The total number of subcarriers (FFT 
size) is 128. Of these, 102 are modulated with dual-polarization 16-QAM (DP-QAM). A 
cyclic prefix of 20 is appended for each block. 

b. SC transmission over 2480-km spans of low-dispersion fiber (Attenuation = 0.2 
dB/km, Dispersion = 2 ps/nm/km and Nonlinear parameter 0.0013 W−1), with no 
inline dispersion management. The signal is assumed to be 112-Gb/s DP-16QAM. 

For both systems and for all algorithms to be compared, it is assumed that the received signal 

 ,L tu  is oversampled by a factor of two relative to the chip rate. i.e., For System A, T = 

1/[(112109/8)((128+20)/102)2] = 24.6 ps; for System B, T = 1/[(112109/8)2] = 35.7 ps. 

Overlap-and-save is assumed (Fig. 3(a)). The block size used varies depending on the amount 

of dispersion to be compensated per step, but the smallest power-of-two is chosen subject to 

the condition that there be minimal loss of performance due to frequency discretization. 

Fig. 6 shows the amplitude and phase of the Volterra coefficients FWM
jlmD  for System A at DC 

( 0k  ), assuming a step size equal to four spans (i.e., 3K   steps for the entire link). As 

expected, the largest coefficients are found around 0l   and 0m  , as the corresponding 

frequencies l  and m  are closest to k  of interest, therefore contributing to the most 

nonlinear effects.  
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Fig. 5. Simulation setup for (a) System A and (b) System B, showing the signal spectrum, 
dispersion map, power profile, and fiber & EDFA parameters. 

 

 

Fig. 6. (a) Amplitude and (b) Phase of FWM
jlmD  at 0k   for System A. 

We assume that a block size of 128M   is used, and the signal is partitioned into 3B   
subbands of equal bandwidth. Using (13), (19), and (20), the pre-filter for each subband is 
computed, and their amplitude and phase responses are shown in Fig. 7. Subband filter #1 
is used to compute the nonlinear perturbation at the lowest frequencies (frequency indices 

64 22k    ); subband filter #2 is use for the frequencies near DC ( 21 21k   ), and 
subband filter #3 for the highest frequencies ( 22 63k  ). As expected, the amplitude 
response of each subband filter has a maximum at the center of each subband. In addition, 
the phases of the pre-filters are approximately quadratic, accounting for the effect of fiber 
dispersion. 
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Fig. 7. (a) Amplitude and (b) Phase responses of subband pre-filters for System A. 

To see how well the FS-BP technique emulates the actual Volterra coefficients, we evaluate 

     *FWM
jlm k k kD W j W l W m  at 0k  , since these are the “approximate” Volterra coefficients 

that will result from the application of (17). Fig. 8 shows the amplitude and phase of FWM
jlmD  

at 0k  . Compared with Fig. 6, we observe good match between the amplitude and phase 

of FWM
jlmD  and FWM

jlmD  around 0l m   where most of the energy is located. This indicates 

the effectiveness of FS-BP to mimic the  3O M  complexity Volterra series. 

 

Fig. 8. (a) Amplitude and (b) Phase of FWM
jlmD  at 0k   for System A. 

We repeated the results for System B in Figs. 7−9. The block size and number of subband are 

again assumed to be 128M   and 3B  , and the step size is set to four spans (i.e., 6K   for 

the entire link). The amplitude and phase of the actual Volterra coefficients FWM
jlmD  at 0k   

are shown in Fig. 9. We use the “heuristic” model (22) and (24) to compute the pre- filters.  
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Fig. 9. (a) Amplitude and (b) Phase of FWM
jlmD  at 0k   for System B. 

The phase and amplitude responses of the pre- filters are shown in Fig. 10, with their 

corresponding FWM
jlmD  at 0k   shown in Fig. 11. While excellent match between the phases 

of Fig. 9(b) and Fig. 11(b) is observed, the amplitudes in Fig. 11(a) of the “approximate” 

Volterra coefficients are larger than the actual Volterra coefficients. Thus, using the pre-

filters in Fig. 10 will overestimate the nonlinearity perturbation at each step. In the 

nonlinearity computation block shown in Fig. 3(b) (also equation (18)),   will need to be 

adjusted to optimize system performance for each power level. 

To see how much FS-BP improves system performance across the frequencies, Fig. 12 
compares FS-BP with LE for System A, assuming a launch power of P0 = −2 dBm. We use 
the notation FS-BP[K:B] to denote that K backpropagation steps are used, and in each step, 
the signal is partitioned into B equal subbands for nonlinearity computation. We evaluate 
system performance by the Q-factor, which is defined as the mean signal power divided  
by the mean signal distortion after compensation, i.e., Q is the inverse of error vector  

 

Fig. 10. (a) Amplitude and (b) Phase responses of subband pre-filters for System B. 
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Fig. 11. (a) Amplitude and (b) Phase of FWM
jlmD  at 0k   for System B. 

 

Fig. 12. Q vs. Frequency for System A, comparing different impairment compensation 
algorithms. 

magnitude (EVM). For both LE and FS-BP, it is observed that the outer subcarriers have 
higher Q than the inner subcarriers, due to reduced number of neighboring subcarriers 
carrying data contributing to nonlinearity. The use of FS-BP improves the performance for 
all of the subcarriers. However, the improvement is not uniform. It is observed that the 
subcarriers around 15 GHz have the best performance because they correspond to the 
center of subbands 1 and 3, about which the pre-filters #1 and #3 were optimized. 

Next, we investigate system performance versus launch power, and how algorithmic 
complexity trades off with system performance. We compare (i) linear equalization only 
(LE), (ii) FS-BP, and (iii) standard backpropagation (Std. BP) with one or more steps per fiber 
span.  

Figs. 13 and 14 show the results for System A and System B. In Figs. 11(a) and 12(a), it is 
observed that as the number subbands and/or BP sections used is increased, system 
performance improves as expected. Standard BP with one step per span outperforms the  
FS-BP algorithms with multi-span step sizes, but has significantly higher algorithmic  
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Fig. 13. (a) Performance vs. Launch Power (b) Performance vs. Complexity for System A, 
comparing different impairment compensation algorithms. 

 

 
 

Fig. 14. (a) Performance vs. Launch Power (b) Performance vs. Complexity for System B, 
comparing different impairment compensation algorithms. 

complexity. Figs. 11(b) and 12(b), shows Q versus algorithmic complexity as defined by 
(28)−(33). The curves labeled “FS-BP K steps” denotes using FS-BP with K DBP steps and 
varying number of subbands. As the number of subbands is increased from left to right, 
complexity increases and performance improves. The curve labeled Std. BP denotes 
standard DBP (frequency-flat) with varying number of steps per span. As the total number 
of steps increases from left to right, complexity increases and performance improves. Both 
Systems A and B confirm the performance vs. complexity tradeoff, but they differ on the 
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optimal nonlinearity compensation strategy for a given complexity. For System A, it is 
observed that for a given complexity, better performance is obtained using fewer steps and 
more subbands. Conversely, for System B, it is better to employ more steps, but to use only 
one subband for nonlinearity calculation at each step. This result is intuitively meaningful. 
In dispersion managed transmission, the signal will have the same amplitude profile after 
every span (except for noise and nonlinearity, which are small). Hence, dividing the link 
into larger number of steps will have little performance improvement. By contrast, dividing 
the signal into subbands will improve the accuracy of the nonlinearity computation, hence 
better performance. In dispersion unmanaged transmission, the signal profile change 
rapidly after each step. It is therefore better to use larger number of steps, with strong 
filtering of the nonlinear perturbation since these will experience strong averaging effect 
with dispersion. Fig. 10(a) (and equation (24)) confirmed the second-order Gaussian 
steepness of the amplitude pre-filter. The small dip in Q in Fig. 14(b) at two subbands for FS-
BP with 2 and 3 steps is due to the nature of single-carrier signals, where frequencies near 
DC are the most important. When using one subband, nonlinearity is well compensated 
near DC, but when using two subbands, the center of the subbands will straddle DC, so 
nonlinearity is slightly less-well compensated at the most critical frequency. 

Finally, Figs. 13(b) and 14(b) indicates that by selecting an optimal number of steps and 
subbands, FS-BP can provide around 2.5 dB improvement over LE at ten times the 
algorithmic complexity for both Systems A and B, which is significant savings compared 
with frequency-flat BP at one step per span. This may make FS-BP an attractive candidate 
for real-time implementation. 

5. Conclusions 

In dispersive optical fiber, a given frequency component of a signal experiences stronger 
nonlinear interactions from frequencies closer to it than frequencies far away. This walkoff 
effect can be exploited by multiplying the signal with a set of pre-filters, each designed to 
enable nonlinear perturbation be calculated accurately around a design frequency. By 
combining the different estimates together, nonlinear perturbation can be calculated 
accurately across the entire signal bandwidth, allowing backpropagation to use larger step 
sizes. This muti-subband frequency-shaped backpropagation (FS-BP) approach allows 
flexible tradeoff between performance and complexity as the number of steps and the 
number of subbands can be independently varied. We simulated FS-BP for two systems: 
OFDM transmission over a dispersion-managed link, and single-carrier transmission over a 
dispersion-unmanaged link. It was found that a dispersion-managed link favors using fewer 
steps but larger number of subbands; whereas a dispersion-unmanaged link favors using 
more steps at one subband per step. For both systems, it was found that FS-BP can improve 
system performance by as much as 2.5 dB at a computational cost ten times that of linear 
equalization only. This makes FS-BP a potentially candidate for real-time implementation 
where low algorithmic complexity is essential. 
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