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1. Introduction 

Study on shear velocity structure of the crust and the uppermost mantle around Antarctic 

continent was started in the 1960’s by using surface waves of the earthquakes occurred 

around Antarctic plate (Evison et al., 1960; Kovach and Press, 1961). Permanent seismic 

stations have been operated from the end of 1980’s at Antarctic margins except for the South 

Pole (SPA) on the continental ice sheet. A majority of the stations were established as the 

Federation of Digital Seismographic Networks (FDSN; Butler and Anderson, 2008). The 

FDSN was composed of several national and governmental organizations such as the Global 

Seismographic Network (GSN) organized by the Incorporated Research Institutions for 

Seismology (IRIS), the Australian Government (AG), GEOSCOPE by French, Geo 

Forschungs Netz (GEOFON) by Germany, MEDNET by Italy, PACIFIC21 (Tsuboi, 1995) by 

Japan, and others.  

In recent few years, surface wave tomography studies around Antarctic continent and 

surrounding oceans have been conducted by using the FDSN data (Roult et al., 1994; 

Ritzwoller et al., 2001; Danesi and Morelli, 2001; Kobayashi and Zhao, 2004). Enderby Land, 

particularly around the Napier Mountains, was one of the oldest Archaean cratons with a 

spatial extent about 500 km (Ellis, 1987; Black et al., 1987). However, surface wave analyses 

could not provide enough spatial resolution for detail discussion about fine crustal 

structure. Therefore, it is necessary to achieve smaller-scale heterogeneities in the specified 

area by using recently available broadband waveform data.  

In this chapter, precise shear velocity models of the crust and the uppermost mantle were 

investigated from teleseismic receiver functions beneath several FDSN stations in Antarctica 

(Fig. 1; MAW; 67.6°S, 62.9°E, SYO; 69.0°S, 39.6°E, DRV; 66.7°S, 140.0°E, VNDA; 77.5°S, 

161.9°E, PMSA; 64.8°S, 64.0°W). The obtained velocity models were discussed in 

relationship with the regional tectonics and crustal evolution of each terrain around the 

stations.  
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Fig. 1. Map showing the location of analyzed seismic stations by GA inversion (Solid 
triangles; SYO, MAW, DRV, PMSA and VNDA) in Antarctic continental margin and the 
related regional localities. Open triangle stations (CSY, SPA and SBA) are planned to be 
analyzed in future. Solid red circles are stations raveled in Von Frese et al. (1999). Alphabet 
numerals are location in Antarctica raveled after Von Frese et al., (1999), the same 
representation as in Fig. 8 

2. Methodology and data  

The coda parts of teleseismic P-waves contain a significant amount of information on the 
seismic structure in the vicinity of the recorded stations. The “receiver functions” were 
defined as the structural response and consisted of P-to-S converted waves and their 
reverberations, and were most sensitive to the shear velocity beneath the station (Fig. 2). To 
derive the structural response (receiver functions) beneath the recording station, the source-
equalization method (Langston, 1979) was generally applied for the coda part of teleseismic 
P-waves. The structural response could be isolated from that of the instrument and effective 
source function. The followings are the procedure to produce the receiver functions.  

Three components (V, R, T) of the total response at a station on a teleseismic P wave are 
expressed as, 
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where I(t) is the impulse response of the recording system, S(t) is the effective seismic source 
function, and E(t) implies the impulse response of the earth's structure. 

For a steeply incident P wave, source equalization method (Langston, 1979) assumes,  

 ( ) ( )VE t tδ=  (2) 

whereδ(t) is the Dirac delta function. From (1) and (2),  

 ( ) ( ) ( )   *  VD t I t S t=   (3)  

Thus the observed structual response ER(t) and ET(t) are available by deconvolving DV(t) 
from DR(t) and DT(t).  
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Fig. 2. (upper) The receiver functions (RF, the crustal response) are consist of P-to-S 
converted waves and their reverberations, which are most sensitive to the shear velocity 
beneath the station. (lower) the observed receiver functions (ER(t) and ET(t)) can be obtained 
by deconvolving the original waveforms DV(t) from DR(t) and DT(t) 
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Since the receiver functions are sensitive to P-to-S conversions through the interfaces 

beneath the recording station, the waveform inversion result could produce a shear velocity 

structure (Owens et al., 1984; Kind et al., 1995). By applying these conventional procedures, 

receiver functions were obtained at five permanent FDSN stations in Antarctica.  

Here, we introduce the actual procedure to create receiver functions as an example for the 

station MAW. Before the inversion, we used the stacked receiver functions for all 20 radial 

components in the backazimuth group within 70°. The incoherent noise could be suppressed 

by stacking the waveforms, while the coherent signals were enhanced. Dataset of teleseismic 

waveforms for the other four stations were the same as used in the linearlized inversion 

analyses by Kanao et al. (2002).  

Inversion of the receiver functions to recover crustal and uppermost mantle structure have 

been widely recognized as sensitive to the starting model if a conventional linearization 

scheme was employed (Ammon et al., 1990). Prior to this study, a linearlized time domain 

inversion was applied to determine the velocity model for several Antarctic stations (Kanao, 

1997; Kanao et al., 2002). The starting model dependency might be excluded by employing a 

non-linear inversion scheme based on a Genetic Algorithm (GA; Sambridge and Drijkoningen, 

1992; Shibutani et al., 1996). 

 What is genetic algorithm ? 

GA in non-linear optimization include three 

steps:  
 

(i) Selection (tournament selection)  

 

(ii) Crossover (exchange at the discontinuities  

 of model parameters; pink colored arrow)  

 

(iii) Mutation (reversed at 1 bit at a string ;  

 pink colored bit )  

 

Suppose the binary string representation of the three parameter decimal models;  

(18,28,6)  

(16,30,3)
 

An example of crossover between the two models in (a)  

1

0 

(a)

(b)

 

Fig. 3. Schematic illustration for Genetic Algorithm (GA). GA in non-linear optimization 

include three steps; (i) Selection (tounament selection), (ii) Crossover (exchange at the 

discontinuities of model parameters) and (iii) Mutation (reversed at 1 bit at a string), 

respectively. (modified after Sambridge and Drijkoningen (1992)) 
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The GA approach makes use of a ‘cloud’ or ‘population’ of the models to minimize the 
dependence on a starting model; a set of ‘biological’ analogues are used to produce new 
generations of the models from previous generations, with preferential development of the 
models with a good fit between observed and theoretical receiver functions. Figure 3 shows 
a schematic illustration for GA. GA in non-linear optimization included three steps; (i) 
Selection (tounament selection), (ii) Crossover (exchange at the discontinuities of model 
parameters) and (iii) Mutation (reversed at 1 bit at a string), respectively.  

 
 

Flow chart of GA  
for RF  

 
Forward modeling 
 - Generalized Ray Theory 
  
Misfit - Σ (Ο−Χ)2 for RF  
 
Threshold probability 
 - Selection: 0.75 
 - Crossover: 0.85 
 - Mutation: 0.009 
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Fig. 4. Flow chart of Genetic Algorithm (GA) for receiver function inversion. Beginning with 
a randomly generated initial population and corresponding misfit values which are defined 
by square sum of the difference between the receiver function predicted for each model and 
that obtained from observed waveforms, succeeding populations are created by selection, 
crossover and mutation 

In this study, a non-linear GA was applied for the stacked radial receiver functions of each 
station. Figure 4 represented a flow chart of GA for receiver function inversion. Beginning 
with a randomly generated initial population and corresponding misfit values, which were 
defined by the square sum of the difference between the receiver function predicted for each 
model and that obtained from observed waveforms, succeeding populations were created 
by selection, crossover and mutation procedures. 

The approach provided a good sampling of the model space, and enabled the estimation of 
the shear-wave speed distribution within the crust, along with an indication of the ratio 
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between Vp and Vs. Many models with an acceptable fit to the data were generated during 
the inversion, and a stable crustal model was produced by employing a weighted average of 
the best 1,000 models encountered in the development of GA. The weighting criterion was 
based on the inverse of the misfit for each model, so that the best-fitting model could have 
the greatest influence.  

For the inversion, the crust and the uppermost mantle down to 60 km were assumed to be 
composed from five major layers (Table 1). The model parameters in each layer were the 
thickness, Vs at the upper and the lower boundaries, in addition to the Vp/Vs ratio. The Vs 
for each layer was constructed by linearly connecting the values at the upper and the lower 
boundaries, so as to give a sequence of constant velocity-gradient segments separated by 
velocity discontinuities. The thickness and the upper and the lower limit in each layer were 

defined after the averaged continental crust. ‘Qα’and ‘Qβ’ values were assumed to be fixed in 
each layer on the basis of Coda-Q inversion results after Kanao and Akamatsu (1995). A 
smoothness constraint in the inversion was implemented by minimizing a roughness norm 
of the velocity model (Ammon et al., 1990).  

 

  Basement Crust Mantle 

   upper middle lower  

Thickness lower 0.0 5.0 5.0 5.0 5.0 

(km) upper 5.0 20.0 20.0 20.0 20.0 

Vs (upper) lower 2.90 3.10 3.40 3.70 4.00 

(km/s) upper 3.90 4.10 4.40 4.70 5.00 

Vs (lower) lower 2.90 3.10 3.40 3.70 4.00 

(km/s) upper 3.90 4.10 4.40 4.70 5.00 

Vp/Vs lower 1.65 1.65 1.65 1.65 1.70 

 upper 2.00 1.80 1.80 1.80 1.90 

Qα  200 300 500 800 1360 

Qβ  80 120 200 300 600 

Table 1. Model parameters in GA receiver function inversion. ‘Vs (upper)’ and ‘Vs (lower)’ 
are the S wave velocity at the upper and the lower boundaries of each layer. The ‘Lower’ 
and the ‘upper’ for four variables indicate the lower and the upper bounds. The thickness 
and the upper and the lower limit in each layer were defined after the averaged continental 

crust. ‘Qα’and ‘Qβ’ were assumed to be fixed in each layer by referring from Coda-Q 
inversion results after Kanao and Akamatsu (1995) 

After examining the trade-off curves between the model roughness and waveform-fit 
residuals, we selected the most suitable pair of the above parameters. A number of iterations 
up to 200 times were conducted in the inversion in order to reduce the waveform-fit 
residuals (misfit-values) to an acceptable value, and the most stable solutions were adopted 
as the final models (Fig. 5). We obtained 50 population models for the every iteration. In 
total, we selected 10,000 models to determine the best fitted.  

The waveform fits between synthetic and observed receiver functions were generally 
adopted, implying the adequate inversion procedures with reasonable smoothness 
constrained. Figure 6 represented the synthetic radial receiver functions by assuming the 
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Fig. 5. Misfit values vs. the number of iteration during the GA inversion for an example of 
MAW. Variations in the mean, the minimum and the maximum misfit values for each 
population are drawn to be reached into the stable values 

 

Fig. 6. Synthetic radial receiver functions by assuming the S-wave models and the Vp/Vs 
ratio determined by the averaged one for the best 1,000 models in the GA inversion (broken 
traces) compared with the observed mean (upper solid trace) and +/-1 standard error 
bounding (lower two solid traces) of the stacked receiver functions at MAW 
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S-wave models and the Vp/Vs ratio determined by the averaged one for the best 1,000 
models in GA inversion (broken traces), compared with the observed mean (upper solid 
trace) and +/-1 standard error bounding (lower two solid traces) of the stacked receiver 
functions. 

There were several noticeable later phases for all traces after the P-arrival. For example, 
large amplitudes were identified around 4-5 s, which were considered to be the directly 
converted Ps at the Moho discontinuity. Intra-crustal converted phases were identified 
around 1-2 s and 2.5-3.5 s, implying the mid-crustal velocity discontinuities. Later phases, 
after around 7 s, had a rather worse waveform fitting compared with the earlier phases, 
because of relatively poor signal-to-noise ratios for these later phases. 

3. Results and discussion 

In this section, we discussed the resultant shear velocity models for the individual FDSN 
station. Here, the averaged Vs models for the best 1000 misfits in GA inversion were mainly 
discussed (red lines in Figs. 7a, 7b and 7c).  

MAW  

S-velocity model 

- Searched all 10,000 models:  

 light gray shaded area  

  

- The best 1,000 models: 

  yellow to green area 

 

- The best model: 

 blue line 

 

- The averaged model: 

 red line 

 

- The averaged Vp/Vs: 

 light blue line  
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Fig. 7a. Seismic S-velocity models for MAW by GA inversion. For the S-wave velocity, all 
10,000 models searched in GA inversion are shown as the light gray shaded area. The best 
1,000 models are represented by the yellow to green area. The best model and the averaged 
model for the best 1,000 are shown by the blue line and the red line, respectively. For the 
Vp/Vs ratio, the light blue solid line corresponds to the averaged model 
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The inverted velocity model beneath MAW had a very sharp Moho discontinuity at a depth 
of 44 km (Fig. 7a). A discontinuity between the middle and the lower crust were recognized 
at 34 km depth. In Mac. Robertson Land, where MAW is located (Fig. 1), late-Proterozoic 
metamorphic events generated the granulite facies rocks in upper part of the crust (Tingey, 
1982; Sheraton et al., 1987). The sharp and fairly deeper Moho around 44 km depth might 
have a relationship with the metamorphism of the Rayner Complex besides the Archaean 
Napier Complex. The intrusion of charnockites around MAW was an evidence of the 
compression tectonic setting in the Proterozoic mobile belt (Young and Ellis, 1991). 
Depletions of heavy rare-earth elements in the low-Ti charnockites suggested that garnet 
was a residual phase in partial melting, which required high pressures and an over-
thickened crust. The deeper crustal thickness obtained from GA inversion at MAW 
appeared to be correspond with a signature of the crustal root what now have been 
remained as the deepened architecture comparing with the adjacent areas in Enderby Land.  

The resultant velocity model around DRV (Fig. 7b, left) indicated a fairly sharp Moho at 
depths of 28 km. A high-velocity zone appeared in the upper and the lower crustal depths. 
A relatively lower velocity zone was obtained at depths around 20 km, which lied between 
the above two high-velocity zones. The velocities of the topmost mantle had lower values of 
about 4.2 km/s. In Adelie Land, where DRV is belonging (Fig. 1), a metamorphic event 
occurred in early-Proterozoic age (Bellair and Delbos, 1962). A rather sharp Moho and 
fluctuations of the crustal velocities might had been developed during the metamorphic 
event of the Adelie Land. In addition, high velocity zones in the upper crust together with a 
low-velocity discontinuity in the middle crust might be related to the early-Proterozoic 
tectonothermal activities.  

A sharp Moho discontinuity was determined approximately at 40 km beneath SYO (Fig. 7b, 
right), in the Lüzow-Holm Bay region. The Moho depth was consistent with that obtained 
from previous large scale deep refraction / wide-angle reflection surveys around the region 
(Ikami and Ito, 1986; Yoshii et al., 2004). Velocity jumps were identified at 12 km and 20 km 
depths, which corresponded to the discontinuities between the upper-middle crust and 
middle-lower crust, respectively. The latter discontinuity between the middle and the lower 
crust significantly coincided with the depths by the recent refraction / wide-angle reflection 
study around the SYO (Miyamachi et al., 2003). High velocity zones in the upper crust were 
presumably corresponding to the granulite facies metamorphic rocks appeared in surface 
geology. The obtained velocities in the upper part of the crust were consistent with the 
velocities of granulite facies rocks found from high-pressure laboratory measurements 
(Christensen and Mooney, 1995; Kitamura et al., 2001). The considerable crustal evolution 
models to explain the velocity variations within the crust might be related to the 
compressional stress during the early-Paleozoic metamorphism in the Lützow-Holm Bay 
region (Hiroi et al., 1991; Shiraishi et al., 1994). 

As for the Antarctic Peninsular, very broad Moho discontinuity was found around 36 km 
depths beneath PMSA (Fig. 7c, left). Several previously conducted refraction / wide-angle 
reflection experiments had revealed a complicated Moho topography around the region 
(Sroda et al., 1997; Grad et al., 2002). They determined the thickness of the crust in the range 
of 36-42 km at coastal area of the Peninsula, in contrast, decreased to about 25-28 km toward 
the Pacific Ocean. The dipping Moho obtained from our results supported a possibility of 
the transition zone between the oceanic and continental crust in the Antarctic Peninsula.  
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Fig. 7b. Seismic S velocity models for DRV and SYO by GA inversion 
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Fig. 7c. Seismic S velocity models for PMSA and VNDA by GA inversion 
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Since the GA inversion applied for this study had assumed a uniformed structure composed 
of the flat-lying layers, the dipping structure cannot be directly identified. However, the 
obtained crust-mantle boundary was considered to reflect the averaged structure for the 
complicated regime in the vicinity of the Moho discontinuity.  

Broadening low velocity zones around 30 km depths and transitional Moho with few km 
widths at VNDA (Fig. 7c, right) might be involved in the uplift mechanism on the West 
Antarctic Rift System (WARS) nearby the Trans Antarctic Mountains (TAM) (Smith and 
Drewry, 1984; Stern and ten Brink, 1989; Ten Brink et al., 1997). Around station VNDA in the 
Terra Nova Bay region, the Moho depth was already estimated from Ps converted phases of 
the receiver functions by temporary seismic array data (Di Bona et al., 1997). They pointed 
out a thinned crust with thickness drastically varied from 17 to 29 km, which implied a 
transitional zone between East and West Antarctica, which crossing the WARS. The other 
seismic refraction data indicated the same regime of the Moho depths involving the crustal 
rift system at TAM (Vedova et al., 1997). Wiens et al. (2003; 2006) conducted the 
TransAntarctic Mountains SEISmic experiment (TAMSEIS) around the region and obtained 
a detailed distribution of the crustal thickness by receiver function analyses (Lawrence et al., 
2006). Their results also indicated relatively shallow Moho depths together with low 
velocity zones beneath VNDA.  

Figure 8 demonstrated a comparison of the Moho depths by three different methods of 

seismic refraction studies, gravity-based estimates (after Von Frese et al., 1999), together 

with receiver function GA inversion by this study. In spite of the existence of small 

differences in estimating the Moho depths between three methods, it might be mentioned 

that a principal difference between the East and West Antarctica, as well as the Antarctic 

Peninsula, was remarkably identified. In order to establish a crustal model of the whole 

regions in Antarctica, available broadband waveform data of the other seismic stations, such 

as SPA (90.0°S), CSY (66.3°S, 110.5°E), SBA (77.8°S, 166.8°E) and the other temporary stations 

should be compiled for comparison.  

During the International Polar Year (IPY 2007-2008), a major geo-science program had been 

conducted such as the ‘Antarctica`s GAmburtsev Province / GAmburtsev Mountain 

SEISmic experiment (AGAP/GAMSEIS)’ (Wiens, 2007). The AGAP/GAMSEIS was an 

internationally coordinated deployment with few tens of broadband seismographs over the 

huge area of continental ice sheet in East Antarctica. The investigations on the high plateau 

inside the ice covered continent could surely provide detail information on the crustal 

thickness and mantle structure (Hansen et al., 2010). In contrast, the ‘Polar Earth Observing 

Network (POLENET; http://www.polenet.org/)’ was another major contribution to the IPY 

by establishing a geophysical network mostly weighted on West Antarctica.  

The accumulated seismic data during the IPY will be utilized to clarify the heterogeneous 

structure of the crust and upper mantle, as well as the Earth’s deep interior, including the 

features such as the Core-Mantle-Boundary (CMB) and the lowermost mantle layer (D" 

zone). The broadband seismic arrays in the Antarctic at IPY and beyond have been 

conducting a significant contribution to FDSN as viewed from high southern latitude. 

Mapping of the crustal velocities beneath the whole Antarctic continent could firmly 

address for the advance in interpreting the difference of structure and tectonics in various 

terrains of Gondwana super-continent.  
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Fig. 8. Comparison of Moho depths determined from seismic refraction studies (open dots 

with points in center) and gravity-based estimates (open squares) (Von Frese et al., 1999), 

together with receiver function inversion study for permanent seismic stations (Solid 

diamonds; SYO, MAW, DRV, PMSA and VNDA) by this study. Alphabet numerals are 

location in Antarctica raveled after Von Frese et al., (1999), the same representation as in 

Fig. 1 

4. Conclusions  

In this chapter, seismic shear velocity models of the crust and the uppermost mantle were 

investigated by teleseismic receiver functions beneath the FDSN stations in Antarctica. In 

order to eliminate the starting model dependency, a non-linear GA was adopted in time 

domain inversion of the receiver functions. The shear velocity model beneath MAW 

represented a sharp Moho boundary at 44 km depth. A fairly sharp Moho was identified 

around 28 km and 40 km depths beneath DRV and SYO, respectively. Shear velocity 

variations in the crust for these stations might have a relationship with the lithologic 

variations of metamorphic rocks in the shallow crustal depths. Broadening low-velocity 

zones around 30 km depths with transitional crust-mantle boundary were identified at 

VNDA; which might be involved in the WARS associated with elevation of TAM. Moreover, 

a broad crust-mantle transition was determined around PMSA, in Antarctic Peninsula. 

These variations in shear velocities within the crust presumably reflected the tectonic history 

of each terrain where these permanent stations are belonging.  

Moho depth in Antarctica
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