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1. Introduction 

The human intestine has the dual role of allowing absorption of nutrients while also acting 

as a barrier to prevent pathogens and toxins from entering the body and potentially causing 

disease. In the immature infant intestine this barrier is underdeveloped and large quantities 

of macromolecules cross the epithelium into systematic circulation. Consequently infants are 

susceptible to conditions such as infectious diarrhoea, necrotising enterocolitis and allergic 

gastroenteropathy (Schreiber & Walker, 1988). It is essential that the infant intestinal barrier 

matures appropriately because barrier dysfunction in adulthood is a critical factor in 

predisposition to intestinal diseases (Groschwitz & Hogan, 2009) and is associated with 

autoimmune diseases in other parts of the body (Cereijido et al., 2007). 

Illnesses associated with intestinal barrier dysfunction are more common in adults that were 

formula-fed as infants than in those that were breast-fed (Verhasselt, 2010). This shows that 

breast milk promotes intestinal barrier maturation (Schreiber & Walker, 1988) and illustrates 

the need for “humanised” infant formulas so that infants that are not able to breast-fed still 

obtain the benefits associated with breast milk. However, to achieve this, more knowledge is 

required about intestinal barrier development and maturation, the roles of various breast 

milk components, and the mechanisms of action of active ingredients in infant formula. 

This review describes the role of intestinal barrier function in the pathogenesis of a range of 

colitis types and discusses how maturation of the intestinal barrier in infants is critical to 

healthy intestinal function throughout life.  

2. The intestinal barrier  

The intestinal barrier, with a surface area of 300-400 m2, is the largest interface between the 

body and external environment. The intestinal barrier is a complex structure made up of 

four main components (Fig 1): the physical, chemical, immunological and microbiological 

barriers. The following sections describe the role of each barrier component in maintaining 

intestinal barrier function and discusses the link between motility and barrier function. 

www.intechopen.com



 
Colitis 

 

4 

 

Fig. 1. Four components of the intestinal barrier.  

2.1 Physical barrier  

The physical barrier is made up of a layer of columnar epithelial cells that forms the first line 
of defence between the intestinal lumen and inner milieu. Of these cells, greater than 80% 
are enterocytes with the rest being enteroendocrine, goblet, and Paneth cells (Van Der Flier 
& Clevers, 2009). Between the epithelial cells are intercellular junctional complexes 
including tight junctions, adherens junctions, desmosomes and gap junctions (Fig 2) 
(Farquhar & Palade, 1963). These junctions allow the passage of fluids, electrolytes, and 
small macromolecules, but inhibit passage of larger molecules. Of the junctional complexes, 
tight junctions are the most apical and are primarily responsible for controlling permeability 
of the paracellular pathway. The adherens junctions and desmosomes are involved in cell-
cell adhesion, whereas the gap junctions are involved in intracellular communication. 

Tight junctions are formed by protein dimers that span the space between adjacent cell 
membranes (Fig 2). There are over 40 proteins with well recognised roles in tight junction 
formation. These proteins can be divided into three functional categories: 1) transmembrane 
proteins that form bridges between adjacent cell membranes; 2) scaffolding proteins that 
anchor transmembrane proteins to the actin cytoskeleton; and 3) dual location proteins that 
are not continuously associated with the tight junctions and also act as transcription factors. 

2.2 Chemical barrier  

The chemical barrier is primarily the layer of mucus that covers the intestinal epithelium. 
This mucus acts as a diffusion barrier against unwanted substances and also as a lubricant to 
minimise sheer stress on the physical barrier. The main component of mucus are the 
secreted mucins, which are heavily glycosylated proteins. Mucins consist of a peptide 
backbone containing alternating glycosylated and nonglycosylated domains, with O-linked 
glycosylated regions comprising 70–80% of the polymer (Deplancke & Gaskins, 2001).  

The mucus layer is a dynamic defence barrier containing antimicrobial peptides 
(immunological barrier) that helps prevent contact between bacteria and the epithelial layer. 
The outer loose mucus layer contains a limited number of intestinal microbes; whereas the 
inner adherent mucus layer contains very few microbes (Fig 1). Numerous studies show that 
mucin gene expression, mucus composition and secretion are altered by intestinal 
microbiota and host-derived inflammatory mediators (Deplancke & Gaskins, 2001).  
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Fig. 2. The protein complexes between intestinal epithelial cells include tight junctions, 
adherens junctions, desmosomes and gap junctions. The tight junctions control paracellular 
permeability and consist of transmembrane (e.g., occludin, claudins and junctional adhesion 
molecules), scaffolding (e.g., zonula occludens, Crumbs group, Par group) and dual-location 
(e.g., cold shock domain protein A and cyclin-dependent kinase 4) proteins. Figure adapted 
from Ulluwishewa et al. (2011). 

2.3 Immunological barrier  

The immunological barrier’s first line of defence is secretory IgA which binds to antigenic 

substances. These IgA-antigen complexes bind to IgA receptors on microfold M cells and the 

antigens are transferred to the lamina propria for presentation to dendritic cells. Antigen-

presenting cells in the lamina propria receive immunostimulatory antigens from the lumen, 

which they process and present to T cells. The antigen-presenting cells also secrete 

interleukin (IL)-12 leading T cells to produce a TH1 immune response. This results in T cell 

secretion of interferon (IFN)-┛, which in turn activates macrophages to secrete tumour 

necrosis factor (TNF)-┙. IL-10 is also released from antigen-presenting cells, which 

feedbacks to limit the TH1 response. 

The intestinal immune system must fulfil the dual tasks of tolerance to dietary antigens and 

immune defence (Rautava & Walker, 2008). To avoid reacting to dietary antigens and the 

intestinal microbiota, the mucosal immune system exists in a predominantly immune-

suppressed (tolerant) state involving antigen-presenting dendritic cells and T cells 

(Bienenstock et al., 2010). Non-pathogenic bacteria, however, induce a mild immune 

reaction that contributes to a normal low level inflammation (defence) of the intestine 

(Bibiloni & Schiffrin, 2010). 
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2.4 Microbial barrier  

The microbial barrier is an essential component of intestinal barrier function that influences 
epithelial metabolism, proliferation and survival (Neish, 2009). These symbiotic microbes 
limit pathogen colonisation by competing for adherence to epithelial surfaces, producing 
antimicrobial compounds, and stimulating increased mucin production. They can also 
secrete chemicals that allow communication between bacterial species, which can suppress 
pathogens by optimising the numbers of beneficial microbes (Neish, 2009). The intestinal 
microbiota provides other crucial functions for the host such as nutrient acquisition and 
energy regulation (Palmer et al., 2007), and influences processes such as predisposition to 
obesity, immune homeostasis, inflammation, repair and angiogenesis (Kelly et al., 2007).  

The adult gastrointestinal tract is comprised of more than 1014 microbes ranging from 1011 

cells/g content in the ascending colon to 107 - 108 cells/g content in the distal ileum and 102 - 
103 cells/g content in the proximal ileum and jejunum. Comprised of 500-1000 species, the 
microbiota of each adult human colon is unique and remains stable over time (Eckburg et 
al., 2005). In contrast, the infant intestinal microbiota composition is variable and less stable 
over time (Palmer et al., 2007), rapidly expanding to over 300 species within the first 
postnatal week (Park et al., 2005). 

The microbiota also produces metabolites such as short chain fatty acids (acetate, propionate 
and butyrate) that result from fermentation (Kien, 1996). As well as a major energy source 
for epithelial cells, butyrate affects cellular proliferation and differentiation, increases 
intestinal blood flow, and may also aid in the strengthening of tight junctions (Neu, 2007; 
Sanderson, 2004). In addition, butyrate increases intestinal motility (Fukumoto et al., 2003). 

2.5 The role of motility in intestinal barrier function  

Intestinal motility can influence intestinal barrier function in a number of ways (Fig 3). 
Motility is one of the most influential determinants of intestinal microbiota growth (Kim & 
Lin, 2007). In conjunction with fluid/mucus secretion it propels bacteria and toxins (DeMeo 
et al., 2002) through the lumen, maintaining turnover and providing another defence 
mechanism for the epithelial barrier. Conversely, the composition of the intestinal 
microbiota can influence colonic neuromotor function (Verdu, 2009) through release of 
substances that influence intestinal motility (Kim & Lin, 2007). For example, supernatant 
from the probiotic, Escherichia coli Nissle 1917 (Mutaflor – used in the treatment of colitis) 
can increase colonic motility in isolated muscle strips from humans (Bar et al., 2009). 

There are many neuromodulators in the colon that affect motility, including 
neurotransmitters: adrenergic (-), cholinergic (+), serotonergic (+), dopaminergic, 
GABAergic, neuropeptides. These may be released from neurons or other cell types and act 
on receptors located on a variety of cells including smooth muscle and enteric neurons. 
Factors that affect neuromodulation can also affect smooth muscle contractility and hence 
affect transit (Kien, 1996). For example, butyrate produced by bacteria stimulates serotonin 
(5HT) release from enterochromaffin cells (Fukumoto et al., 2003). 5HT activates intrinsic 
primary afferent neurons (Fig 3) to initiate peristaltic reflexes (Hord, 2008) and has pro-
inflammatory actions (Lakhan & Kirchgessner, 2010). 5HT receptor subtypes differ between 
animals and humans such that their function in peristalsis in humans is not fully determined 
(Wouters et al., 2007).  
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Fig. 3. Intestinal barrier and muscle layers in the colon.  

Sympathetic nerves release norepinephrine which inhibits acetylcholine release from motor 
neurons and relaxes smooth muscle, decreasing gastrointestinal motility. Another enteric 
neurotransmitter is dopamine. Although the function of dopaminergic neurons is unclear, 
mice lacking the D2 dopamine receptor subtype (present in smooth muscle from stomach to 
distal colon) have increased intestinal motility and stool water content and frequency (Zhi et 
al., 2006). Expression of most dopamine receptor subunits was detected in submucosal and 
myenteric neurons (Zhi et al., 2006). Since dopaminergic gene expression begins early at 
embryonic day 10 in the foetal intestines, prior to the appearance of neurons, it is possible 
that dopamine affects enteric nervous system development (Zhi et al., 2006). 

3. Development and maturation of the intestinal barrier  

The complexity of the intestinal barrier develops over time from early gestation through to 
childhood. The intestine undergoes incredible growth, elongating 1000-fold from 5-40 weeks 
gestation, to reach a mean length at birth of 275 cm (Neu, 2007). While growth occurs most 
rapidly during gestation, the intestine continues to lengthen until 3 to 4 years of age 
(Newell, 2000). The following sections describe the development and maturation of the 
intestinal barrier and the role of breast milk in these processes. 

3.1 Maturation of the intestinal barrier in infants  

The physical barrier begins developing from conception; its basic structure is formed by the 
end of the first trimester, and by week 22 of gestation the absorptive epithelial cells resemble 
those of the adult intestine (Montgomery et al., 1999). Initially, the absorptive lining of the 
intestine is stratified (Fig 4A) but soon becomes a single layer of columnar cells (Fig 4B). 
Simultaneously, structural differentiation begins with establishment of the crypt-villus axis. 
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Villi form by week 8 of gestation, beginning in the small intestine and progressing to the 
colon by week 10-12 with crypts developing throughout the intestine between weeks 12-19 
(Fig 4C) (Maheshwari & Zemlin, 2009; Montgomery et al., 1999; Polak-Charcon et al., 1980). 
However, villi disappear from the colon at 30 weeks of gestation as the adult-type crypt 
epithelium is established (Fig 4D). Epithelial cells with microvilli, goblet and enteroendercrine 
cells, all derived from the same undifferentiated stem cells, appear by week 8 of gestation 
(Louis & Lin, 2009) and tight junctions are detected from week 10 (Fig 4B). 

Many of the protective aspects of the foetal intestine are evident early in gestation and 

continue to mature throughout pregnancy (Louis & Lin, 2009). The goblet cells, responsible 

for producing the chemical barrier, start producing mucin by week 12 of gestation (Fig 

4B)(Montgomery et al., 1999). The protective secretory cells of the innate immunological 

barrier are also formed early in gestation. For example, Paneth cells appear by the week 12 

of gestation and begin to produce defensins by week 13 and lysozyme by week 20 with their 

number per crypt increasing with maturation until adulthood (Fig 4C-F) (Louis & Lin, 2009; 

Maheshwari & Zemlin, 2009; Rumbo & Schiffrin, 2005). M cells, specialised for antigen 

sampling, are first observed at week 17 of gestation, and distinct T cell zones and B cell 

follicles containing follicular dendritic cells, both associated with Peyer’s patches, appear by 

week 19 (Fig 4C). All major components of the intestinal immune apparatus are identifiable 

by week 29 of gestation (Fig 4D) (Maheshwari & Zemlin, 2009). 

Luminal factors play a crucial role in intestinal development. By week 16, the foetus begins 
to ingest amniotic fluid, which provides essential growth and trophic factors, such as 
epidermal growth factor and polyamines, that stimulate intestinal differentiation and 
growth (Pácha, 2000; Rumbo & Schiffrin, 2005). Other cytokines and growth factors 
necessary for maturation are provided by the systemic circulation and interstitial fluid 
(Harada et al., 1997; Hirai et al., 2002; Montgomery et al., 1999).  

While the foetal intestinal mucosa is permeable to intact macromolecules allowing an 

exchange between amniotic fluid and foetal serum (Harada et al., 1997), “gut closure”, or 

membrane closure, occurs during the first postnatal week. Any delay or change to these 

processes, particularly in pre-term or small-for-date infants, predisposes the infant to 

infection, inflammatory states and allergic sensitisation (Maheshwari & Zemlin, 2009). The 

gut closure process is mediated by human milk hormones and growth factors that play a 

crucial role in stimulating intestinal epithelial growth and maturation (Cummins & 

Thompson, 2002). These are described in more detail in section 3.2.  

Formation of the microbial barrier is also crucial during this time. Unlike the adult intestinal 

tract, the newborn gastrointestinal tract was thought to be essentially sterile. However, 

recent discoveries point to pregnancy as the beginning of intestinal colonisation of the 

developing foetus (Jiménez et al., 2008) with a temporal progression towards an adult 

microbiota profile by the end of the first year of life (Fig 4E-F) (Palmer et al., 2007; Round & 

Mazmanian, 2009). Many factors contribute to the acquisition of intestinal microbiota 

including mode of delivery, gestational age, exposure to antibiotics (in either the mother or 

the infant), feeding (i.e. breast milk or formula, introduction of solids), and other 

environmental exposures. The first bacteria to colonise the intestine are facultative aerobes 

(such as Staphylococcus, Streptococcus and Enterococcus) while anaerobic bacteria such as 

eubacteria and clostridia appear later (Palmer et al., 2007). 
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Fig. 4. Development and maturation of the intestinal barrier from conception to weaning.  
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Intestinal microbiota is necessary for both morphological and immunological maturation of 
the intestinal barrier (Hooper, 2004). For example, germ-free mice have hypoplastic villi that 
normalise when colonised with commensal bacteria (Louis & Lin, 2009). Other examples 
include bacterial-induced expression of the microbiocidal protein angiogenin-4 (Ang4) by 
paneth cells (Hooper et al., 2003), and induction of the development of networks of blood 
vessels in the villi (Stappenbeck et al., 2002). 

The intestinal mucosal barrier continues to grow in a process that involves fission and 
deepening of crypts, increase in villus width and number, and appearance of submucosal 
folds (Cummins & Thompson, 2002). In the early postnatal period, development of intestinal 
mucosa is associated with profound tissue remodelling and modification of intestinal 
digestive and absorptive functions. An increase in the number of epithelial cells is also 
observed at the time of weaning; this involves a shift in the equilibrium between mitosis and 
apoptosis that is vital for maturation (Zabielski et al., 2008). Because the sIgA system is not 
fully mature until 4 years of age, it has been postulated that the intestinal barrier is in itself 
not fully mature until this time (Mayer, 2003).  

3.2 Role of breast milk in intestinal barrier maturation  

Human breast milk provides all the necessary ingredients for a newborn to make an optimal 
transition from intrauterine to extrauterine life. Breast milk contains numerous bioactive 
proteins, lipids and complex carbohydrates, including immune factors and growth factors 
that play roles in healthy structural and functional postnatal development of the intestinal 
barrier of the human infant. Although full-term infants are born with sufficiently developed 
absorptive and digestive function, the gastrointestinal tract undergoes significant postnatal 
development in the first year of life. The components in human breast milk that compensate 
for the developmental immaturity of the intestinal barrier include sIgA, lactoferrin, 
lysozyme, platelet activating factor-acetylhydrolase and cytokines.  

Several studies have indicated that human breast milk decreases intestinal permeability and 
therefore enhances the physical barrier. Since the intestinal barrier is underdeveloped in 
pre-term babies, the influence of breast milk is particularly important. A study on pre-term 
infants in the first month post-birth found that those predominately fed human milk 
demonstrated lower intestinal permeability when compared with those fed minimal or no 
human milk (Taylor et al., 2009). A similar effect of breast feeding on intestinal permeability 
has also been reported for full-term babies (Catassi et al., 1995). The effect of formula-
feeding on permeability appears to be related to the protein content: in a study using piglets, 
those fed a high-protein formula had increased intestinal permeability compared with those 
fed an adequate-protein formula (protein concentration the same as sows milk) and others 
fed by their mothers (Boudry et al., 2011). However, due to the complex composition of 
human breast milk and the interplay among its components, it has been difficult to delineate 
the roles of individual components on intestinal development.  

4. Importance of the intestinal barrier in health and wellness  

The controlled regulation of the intestinal barrier in the healthy intestine leads to antigenic 
tolerance. However, disruption of the intestinal barrier, in particular the tight junctions of 
the physical barrier, results in increased permeability (Fig 5). This allows direct access of 
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antigens to the dendritic cells in the lamina propria, as opposed to the dendritic cells 
sampling the lumen, and results in an aberrant immune response that can target any organ 
or tissue in genetically predisposed individuals. As discussed in the following sections, this 
can lead to inflammatory and autoimmune diseases both during infancy and adulthood. 

 

Fig. 5. When the intestinal barrier is functioning correctly, luminal bacteria and antigens are 
unlikely to pass across the epithelium into the lamina propria. In contrast, when the 
intestinal barrier is dysfunctional, paracellular permeability is increased. 

4.1 Intestinal barrier dysfunction in infants  

Dysfunction of intercellular junctions is a key factor in pathogenesis of several early infancy 

autoimmune diseases, including necrotising enterocolitis and allergic gastro-enteropathy, 

and may also a play a role in the pathogenesis of infectious diarrhoea. The following 

sections look at consequences of intestinal barrier dysfunction in the human infant. 

4.1.1 Necrotising enterocolitis  

Necrotising enterocolitis (NEC) is an inflammatory bowel necrosis that primarily afflicts the 

terminal ileum and proximal colon in pre-term infants (Caplan & MacKendrick, 1993). 

Although full-term infants can also develop NEC, there is usually an underlying cause such 

as birth asphyxia. Immaturity of intestinal barrier function may be a major risk factor for 

pre-term babies developing NEC. This includes: 1) an underdeveloped physical barrier with 

incomplete development of tight junctions; 2) a lack of proper chemical barrier due to lower 

gastric acid and mucin production, immature proteolytic enzyme activity (Udall, 1990), and 

deficiency of bacteriostatic proteins such as defensins (Salzman et al., 1998); and 3) a poor 

immunological barrier due to an under developed mucosal immune system.  

In addition, the peristaltic muscle contractions can also be abnormal in pre-term infants, 

which can lead to increased bacterial adhesion, that in turn allows for bacterial overgrowth 

that could increase endotoxin exposure and predispose to NEC (Beeby & Jeffery, 1992). Pre-

term infants have increased intestinal permeability and infants with NEC have even greater 

permeability (Neu, 2005). Thus any abnormality in maturation of the components of the 

intestinal barrier can predispose the neonatal intestine to insult by pathogenic or non-

pathogenic invasion leading to tissue inflammation. 

No case of NEC has been described in utero, supporting the importance of bacterial 
colonisation in the NEC pathophysiology. Most cases of NEC are sporadic, hence a specific 
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infectious agent is not suspected. It is more likely that abnormal colonisation of the 
gastrointestinal tract with an unfavourable balance between desirable and undesirable 
microbes plays a significant role in the pathogenesis of NEC. In the case of a normal vaginal 
birth the infant first comes in contact with microbiota from the mother; whereas, in the case 
of caesarean birth it is the environment of the hospital or neonatal intensive care unit that 
provides the first bacterial exposure to the newborn. Indeed, there is evidence of abnormal 
colonisation in very low birth weight infants (Hoy et al., 2000).  

Human breast milk contains a large amount of oligosaccharides that may promote growth 
of desirable bacteria. Studies have shown differences in the composition of microbiota 
between breast-fed and formula-fed babies (Rubaltelli et al., 1998; Wold & Adlerberth, 2000). 
This lack of human milk oligosaccharides in formula-fed pre-term babies may also 
contribute to NEC pathogenesis. Although the role of enteric bacteria is unclear, studies 
suggest that early colonisation with probiotics reduces the risk of NEC (Hoyos, 1999). 

The likely common pathway in pathogenesis of NEC is the pro-inflammatory cascade 

initiated by bacteria, bacterial products and other antigens that gain access through a leaky 

intestinal barrier (Lin & Stoll, 2006). Inflammatory mediators implicated in NEC 

pathogenesis include platelet-activating factor (PAF), tumour necrosis factor (TNF-┙) and 

pro-inflammatory cytokines such as IL-6, IL-8 and IL-12 (Edelson et al., 1999). 

The definitive pathogenesis of NEC remains poorly understood. Hopefully, future research 

on the maturation of the intestinal barrier, role of probiotics and understanding of genetic 

predisposition will lead to better preventative and treatment strategies for this disease.  

4.1.2 Infectious diarrhoea  

Infectious diarrhoea is another disease where intestinal barrier dysfunction plays a role. It is 

defined as diarrhoea due to bacterial, viral or parasitic infection of the gastrointestinal tract 

that results in more than three bowel motions in a day with an excessive amount of watery 

stools. Diarrhoeal episodes are a major health problem in children worldwide and the global 

incidence of diarrhoeal disease has remained unchanged over the last decade; about 3.2 

episodes per child per year (Kosek et al., 2003). In developing countries diarrhoeal illnesses 

are associated with a high risk of mortality and thus are a major concern.  

Rotavirus infection is the single greatest cause of infectious diarrhoea in children worldwide 

(Dennehy, 2000). Rotavirus disrupts absorptive function by the selective invasion of mature 

enterocytes by the invading pathogen, resulting in osmolar diarrhoea. Rotavirus acts on 

epithelial cells by altering protein trafficking, disrupting cell-cell interactions, and damaging 

tight junctions, thereby increasing paracellular permeability (Obert et al., 2000). The toxic 

rotavirus unstructured protein-4 induces age- and calcium ion-dependent chloride secretion 

and disrupts sodium-dependent glucose transporter-1 mediated reabsorption of water (Ball 

et al., 2005). 

There are a number of other pathogens that are responsible for infectious diarrhoea. The 
prevalence and type of individual pathogen varies widely between geographies and age 
groups. Common bacteria responsible for infectious diarrhoea include Campylobacter, 
Salmonella, Clostridium, Shigella, and E. coli; whereas Giardia and Cryptosporidum are among 
the most common parasites. The mechanisms by which these enteropathogens cause 
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diarrhoea are highly variable, and include crypt cell proliferation, cellular invasion, 
production of enterotoxins or cytotoxins, and enteroadhesion. Infectious agents usually 
induce diarrhoea by directly damaging epithelial barrier function. For example, the Viberio 
cholera zonula occludens toxin acts by disrupting tight junctions leading to fluid secretion 
into the lumen (Fasano et al., 1991). Others affect ionic permeability, for example, 
enterotoxins produced by bacterial pathogens selectively and specifically increase either 
cyclic adenosine monophosphate (e.g., heat labile E. coli toxin) or cyclic guanosine 
monophosphate (e.g., enterotoxigenic E. coli, or Klebsiella heat stable toxin – Sta), resulting in 
the opening of Cl channels in the luminal membrane.  

One of the most rapidly expanding areas in prevention and treatment of diarrhoeal diseases is 
the use of probiotics. A growing number of rigorous meta-analyses show the efficacy of 
probiotics in prevention of acute infectious diarrhoea in children (Guandalini 2006). Analysis 
shows that probiotics may shorten the duration and severity of diarrhoea, particularly in 
young children. Some evidence suggests that probiotics may improve intestinal barrier 
function (Anderson et al., 2010a; Anderson et al., 2010b). This will be discussed further in 
Section 5.1. 

4.1.3 Allergic gastroenteropathy  

Allergic gastroenteropathy is a term that describes an immune-mediated process that can 

affect any area of the gastrointestinal tract and may include classic allergic reaction, protein 

losing enteropathy, malabsorption syndrome and post-enteritis milk protein intolerance 

(Moon & Kleinman, 1995). The features of enteropathy may include lymphocyte and plasma 

cell infiltration, epithelial abnormality, or crypt hyperplastic villus atrophy and impaired 

absorption. Allergic gastroenteropathy is more common in infants, but may occur at any age.  

The pathophysiologic basis of allergic gasteroenteropathy remains elusive and the primary 
treatment is the elimination of offending antigens. An elemental diet may prove beneficial in 
many patients, but the process of identifying causal allergens is time-consuming and often 
frustrating. The onset of symptoms after the addition of a problematic food may be delayed, 
adding to the diagnostic difficulties. Cows’ milk-sensitive enteropathy is the most common 
food allergic gasteroenteropathy (Walker-Smith et al., 1978). 

The most common type of eosinophilic gastroenteropathy, and most difficult to diagnose 
and manage, is allergic eosinophilic esophagitis. This disorder is particularly challenging to 
diagnose because the symptoms overlap those of gastroesophageal reflux (Sicherer, 2003).  

4.2 Life-long impact of intestinal barrier dysfunction  

Intestinal barrier dysfunction in infancy underlies predisposition to and exacerbation of 
various autoimmune and inflammatory diseases. In addition, compromised tight junctions are 
involved in cancer development, infections, and allergies (Fasano, 2011; Groschwitz & Hogan, 
2009). The following sections highlight the life-long impact of intestinal barrier dysfunction. 

4.2.1 Inflammatory bowel diseases  

Inflammatory bowel disease (IBD) is a collection of conditions characterised by chronic and 
relapsing inflammation of the gastrointestinal tract, and includes Crohn’s disease and 
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ulcerative colitis. The exact etiology and pathogenesis of IBD is still unclear, although there 
is strong evidence for a genetic contribution to disease susceptibility, with more than 40 IBD 
loci identified (Frank et al., 2011). IBD is considered to involve overly aggressive acquired (T 
cell) responses to a subset of intestinal microbiotia that develop in genetically susceptible 
individuals where environmental factors precipitate the onset or reactivation of the disease 
(Sartor, 2006). 

The immune-pathogenesis of IBD occurs in three distinct stages: 1) barrier defects allow 

luminal contents to penetrate the underlying tissues; 2) clearing of foreign material from the 

intestinal wall is impaired; and 3) a compensatory immune response, leading to the 

production of pro-inflammatory cytokines, perpetuates the increased intestinal permeability 

by re-organising the tight junction proteins (Fasano & Shea-Donohue, 2005; Matricon et al., 

2010). This results in a vicious cycle in which barrier dysfunction allows further leakage of 

luminal contents, thereby triggering an immune response that in turn promotes further 

leakiness.  

Although the intestinal microbiota has been shown to play a role in the development of IBD, 

specific contributions are undefined due to the complexity of this microbial community. 

IL10-gene-deficient mice that develop colitis in response to colonisation by enteric bacteria, 

but not under germ-free conditions, demonstrate that bacteria are required to initiate IBD 

(Hoffmann et al., 2011). However, studies of IBD patients have shown that while there are 

significant shifts in the composition of the microbiota, there is no consistent microbial profile 

associated with IBD (Frank et al., 2007; Frank et al., 2011), nor in chronic IBD (Nell et al., 

2010). Toll-like receptors, which recognise conserved microbial molecules, and regulatory T 

cells have an important role in maintaining tolerance and immune homeostasis to prevent 

chronic inflammation (Levin & Shibolet, 2008; Nell et al., 2010). Likewise, NOD2, which 

plays an important part in the detection and elimination of intracellular pathogens, is also a 

recognised risk allele for Crohn’s disease (Nell et al., 2010).  

Receptors associated with colitis suggest targets for modulation by beneficial bacteria or 
functional foods to strengthen barrier integrity, immune tolerance and defence. An example 
is the  intermediate conductance K+ ion channel (IK, KCNN4) for which a gene variant has 
been implicated in Crohn’s disease in an Australia/New Zealand cohort in which IK mRNA 
expression is significantly reduced (Simms et al., 2010). Decreased IK expression would limit 
its role in colonic anion secretion (Barmeyer et al., 2010) and positive modulation of motility 
(Wang et al., 2010), which would affect the microbiota environment. Since IK is also 
expressed in the colon and lamina propria and modulates T cell activation and cytokine 
production (Logsdon et al., 1997), reduced expression might impact immune function. 

4.2.2 Celiac disease 

Celiac disease is an autoimmune disorder of the small intestine that occurs in genetically 
predisposed individuals. It is caused by a reaction to gliadin, a prolamin component of 
gluten found in wheat, and similar proteins found in other cereals within the grass genus 
Triticum, such as barley and rye. Symptoms include chronic diarrhoea, failure to thrive and 
fatigue. Some patients also experience lactose intolerance due to the decrease in intestinal 
surface and reduced production of lactase but this is usually resolved once the condition is 
treated. Currently, the only known effective treatment for Celiac disease is a lifelong gluten-
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free diet. However, enhanced intestinal permeability persists even in asymptomatic patients 
while on a gluten-free diet (Chahine & Bahna, 2010; Schulzke et al., 1998). 

Normally, gliadin is prevented from crossing the intestinal barrier by the intercellular tight 
junctions. However, in susceptible individuals, interplay between gliadin and the intestinal 
cells triggers tight junction disassembly. Gliadin causes a reorganisation of actin filaments 
and altered expression of the tight junction proteins occludin, claudin-3 and claudin-4, the 
tight junction-associated protein ZO-1 and the adherens junction protein E-cadherin 
resulting in increased intestinal permeability (Sander et al., 2005). This is thought to precede 
gliadin-induced immune events that eventually lead to Celiac disease (Schuppan, 2000). 

Following tight junction disassembly, gliadin peptides can cross the epithelium and reach 
the lamina propria where they are recognised by antigen presenting cells. This triggers an 
inflammatory reaction; the body produces antibodies which damage the villi lining the 
small intestine and make it difficult for the body to absorb vitamins, minerals and other 
nutrients (Clemente et al., 2003; Fasano, 2011). Exercise can contribute to the disease by 
increasing intestinal permeability (Chahine & Bahna, 2010). 

4.2.3 Irritable bowel syndrome 

Irritable bowel syndrome (IBS) is characterised by abdominal pain and cramping, 
discomfort, bloating, and changes in bowel movements. Diarrhoea or constipation may 
predominate, or they may alternate, classified as IBS-D, IBS-C or IBS-A, respectively. While 
IBS is a common malady, the mechanisms by which the symptoms arise are poorly 
understood. IBS is associated with psychological disturbance (Drossman et al., 1999), food 
intolerance (Atkinson et al., 2004; Francis & Whorwell, 1994), and prior gastroenteritis 
(Dunlop et al., 2006; Spiller, 2003). The psychological aspect of this disease is not surprising 
given that stress is a well-documented inducer of intestinal permeability (Söderholm & 
Perdue, 2001).  

Growing evidence suggests that patients with IBS have decreased intestinal barrier function 
and that some forms of IBS are associated with low-grade intestinal inflammation (Collins et 
al., 2001). Permeability of colonic biopsies is significantly higher in patients with IBS 
compared with healthy subjects (Piche et al., 2009). Furthermore, intestinal permeability 
profiles differ among IBS subtypes with increased small bowel permeability both in post 
infectious-IBS and IBS-D without an infectious onset when compared with both controls and 
IBS-C (Dunlop et al., 2006).  

A number of other IBS-like intestinal disorders are associated with increased intestinal 
permeability. For instance, chronic alcohol consumption leads to enhanced translocation of 
endotoxins from the intestine to other organs resulting in inflammation and tissue damage 
(Groschwitz & Hogan, 2009). Non-steroidal anti-inflammatory drugs (NSAIDs), such as 
aspirin, also promote altered intestinal barrier dysfunction and hypermotility (Sigthorsson 
et al., 1998), as do the enterotoxins produced by bacterial pathogens such as Vibrio cholerae, 
and enteropathogenic E. coli (Fasano et al., 1991; Groschwitz & Hogan, 2009). The 
inflammatory responses elicited by bacteria and bacterial toxins due to changes in the 
integrity of the intestinal barrier have also been shown to enhance cancer progression 
(Fukata & Abreu, 2008). In some studies of IBD, the degree and prolongation of the duration 
of ulcerative colitis were recognised as factors leading to increased risk of gastrointestinal 
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cancer development (McConnell & Yang, 2009; Tlaskalová-Hogenová et al., 2011), although 
the mechanisms involved are not fully understood. 

Stress induced in early life by neonatal maternal separation may affect colonic permeability 
and motility (Bian et al., 2010; Coutinho et al., 2002; Gareau et al., 2007). When this condition 
is mimicked in a rat model of IBS, colonic smooth muscle contraction amplitude is increased 
and this is associated with an increased expression of L-type calcium ion channels in colonic 
smooth muscle, as the level of calcium in smooth muscle cells increased in response to L-
type calcium ion channel activation (Zhang et al., 2010).  

4.2.4 Non-intestinal disorders  

There is increasing evidence to suggest intestinal barrier dysfunction results in immune 
responses that can target any organ or tissue in genetically predisposed individuals (Fasano 
& Shea-Donohue, 2005; Fasano, 2011), such as the skeletal system (ankylosing spondylitis, 
rheumatoid arthritis: Edwards, 2008), pancreas (type 1 diabetes: (Carratù et al., 1999), 
kidney (IgA nephropathy: Davin et al., 1988), liver (nonalcoholic steatohepatitis: Wigg et al., 
2001), and brain (multiple sclerosis; Yacyshyn et al., 1996). Barrier dysfunction can also 
result in an aberrant or exaggerated inflammatory response to the intestinal microbiota. This 
has been implicated in a wide range of diseases such as cardiovascular disease, neoplastic 
diseases, diabetes and obesity (Chahine & Bahna, 2010). Intestinal microbiota and increased 
intestinal permeability have also been linked to atopic diseases such as eczema and 
dermatitis (Penna et al., 2008).  

5. Improving intestinal barrier function  

Ingestion of specific foods or bacteria to reverse barrier dysfunction has the potential to 
break the vicious cycle that occurs in colitis, that is, to improve physical barrier integrity and 
to maintain an immune homeostasis. Food and probiotics are intricately linked in their 
effects on colitis. In addition to the direct effects of food on intestinal barrier growth and 
survival, many food components are prebiotics, promoting the growth of beneficial bacteria. 
While effects of food components are generally studied in isolation it is the net effect of 
these interactions with the intestinal barrier that will determine their impact in colitis. 

5.1 Probiotic bacteria that enhance intestinal barrier function  

Probiotics are microorganisms that when ingested transiently occupy the gastrointestinal 
tract to confer health benefits (Saavedra, 2007). Lactobacillus, Bifidobacterium and Streptococcus 
species are widely used in foods for fermentation, and some strains are probiotic in that they 
help maintain intestinal barrier and immune functions (Saavedra, 2007). Multiple 
mechanisms have been implicated in beneficial probiotic modes of action. These include 
immune modulation of the host, production of substances that inhibit pathogens or toxins, 
competition with and therefore inhibition of pathogen growth, mucosal barrier repair 
(decrease permeability) (Penna et al., 2008), increased mucus secretion (Saavedra, 2007), and 
altered motility (Verdu, 2009). More specifically, probiotics have been reported to exert 
beneficial effects including altered cytokine secretion (particularly to down-regulate 
inflammation in infants), to affect T cell differentiation, and to increase macrophage 
activation (Saavedra, 2007). 
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Some probiotic bacteria, such as Lactobacillus plantarum (Anderson et al., 2010a; Anderson et 

al., 2010b), can improve tight junction integrity (physical barrier). For a recent review see 

Ulluwishewa et al. (2011). Probiotic bacteria may also enhance mucin production (chemical 

barrier). For example, a probiotic formula composed of Lactobacillus, Bifidobacterium, and 

Streptococcus species induces mucin gene expression and secretion in colonic epithelial cells 

(Caballero-Franco et al., 2007). Additionally, some probiotic bacteria can reduce the risk of 

infection (immunological barrier), for example, non-pathogenic E. coli have been shown to 

protect pre-term infants from infection (and reduce allergy) (Candy et al., 2008). 

Supplementation with probiotic bacteria can also alter the microbiota composition 

(microbial barrier). For example, when pre-term formula-fed infants are supplemented with 

bifidobacteria, their microbiota composition more closely resembles that of breast milk-fed 

infants (Saavedra, 2007). 

Finally, probiotics can alter intestinal motility, which in turn can affect intestinal barrier 

function as discussed in Section 2.4. Probiotics that increase motility can also have the 

benefit of reducing constipation; whereas those that decrease motility may reduce diarrhoea 

(permeability changes are also relevant). Some Lactobacillus, Bifidobacterium and Streptococcus 

species increase intestinal motility in vitro (Massi et al., 2006; Wang et al., 2010) and in vivo 

(Ohashi et al., 2001) and reduce transit times from approximately 4 to 3 days in patients with 

chronic constipation (Krammer et al., 2011).  

5.2 Foods that enhance intestinal barrier function  

The most common way to alter intestinal barrier function using dietary intervention is via 

modification of the intestinal microbiota composition (microbial barrier). A prebiotic is a 

non-digestable ingredient that results in activity of the intestinal microbiota that is beneficial 

to the host (Roberfroid et al., 2010). The main substrates for bacterial growth are dietary 

non-digestible carbohydrates (e.g. pectins), non-digestible oligosaccharides (e.g. galactins), 

undigested disaccharide components (lactose), and sugar alcohols (Scheppach et al., 1996). 

Many of these are fermented by colonic bacteria to short chain fatty acids, which are also 

beneficial in that they acidify the lumen suppressing pathogen growth, and alter motility as 

described in Section 2.4 (Yajima, 1985). Short chain oligosaccharide fermentation increases 

bifidobacteria concentrations in adult faecal samples in vitro (Hernot et al., 2009). Although 

promotion of bifidobacteria concentration has been demonstrated in a number of infant 

studies (Rautava & Walker, 2008), few reports exist on the clinical benefits of dietary 

oligosaccharides in infants (Roberfroid et al., 2010). In pre-term infants, an oligosaccharide 

mix did not enhance the postnatal decrease in intestinal permeability (Westerbeek et al., 

2010). However, treatment of healthy pre-term formula-fed infants with oligosaccharides 

has been shown to speed gastric emptying by 30% (Indrio et al., 2009). This is consistent 

with clinical studies on the effects of galacto-oligosaccharides reported for adults and the 

elderly that increase motility (Niittynen et al., 2007). The relatively slow mode of action of 

prebiotics in promoting bacterial growth is reflected in studies which demonstrate its 

effectiveness in prophylaxis rather than treatment (Roberfroid et al., 2010). Prebiotic 

supplementation to formula-fed infants increased bifidobacteria counts and reduced the 

occurrence of diarrhoea four–fold (Rao et al., 2009).  
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Some food components can improve tight junction integrity (physical barrier). For example: 

green pepper, nutmeg, and bay leaf extracts (Hashimoto et al., 1997), star anise, black tea 

(Konishi, 2003), and the flavonoid quercetin (Amasheh et al., 2008; Suzuki & Hara, 2009). 

Curcumin, a polyphenolic from turmeric, reduced inflammation in a mouse model of 

colonic inflammation (Nones et al., 2009). Black tea has multiple effects on physical aspects 

of the intestinal barrier in that it can improve tight junction integrity and speed 

gastrointestinal transit (Chaudhuri et al., 2000; Hashimoto et al., 1997). Some 

polyunsaturated fatty acids (PUFAs) are able to decrease intestinal permeability (Vine et al., 

2002) and reduce intestinal inflammation (Knoch et al., 2009). Some dairy compounds can 

also enhance barrier function, for example, ┚-lactoglobulin (Hashimoto et al., 1995) and the 

casein peptide Asn-Pro-Trp-Asp-Gln (Yasumatsu & Tanabe, 2010) improve tight junction 

integrity. Bovine colostrum and goat milk powder were shown to reduce heat-induced 

intestinal hyperpermeability in a rat model (Prosser et al., 2004). 

Additionally, food components can promote immune system development and homeostasis 

(immunological barrier). For example, lectin from kidney beans can accelerate the process of 

intestinal mucosa maturation in piglets (Zabielski et al., 2008). Bovine milk is a rich source of 

proteins and peptides that are important in immune system development and function. For 

example, glycomacropeptide derived from kappa casein, has anti-inflammatory activity in a 

rat model of colitis, suggesting potential for IBD treatment (Daddaoua et al., 2005). 

Oligosaccharides from goat milk have been shown to enhance recovery from colonic 

inflammatory damage in a rat model of colitis and may therefore also be useful for 

treatment of IBD (Daddaoua et al., 2006). 

6. Delivering ingredients to infants  

The delivery of required nutrients during the neonatal period is critical to later health 

outcomes. It is therefore essential that when breast feeding is not possible, steps are taken to 

incorporate functional ingredients suitable for infants into appropriate food systems, and 

deliver them to the required areas of the body. Infants can only ingest foods in liquid form 

until they are 4-6 months old, after which formulas and more structured food matrices, such 

as puréed/semi-solid foods can be introduced to their diet. The addition of functional 

ingredients can cause a range of adverse effects such as changes in stability, appearance and 

taste of the product. Additionally, the effects of processing, lack of bio-accessibility, or 

interaction with the food matrix may reduce the activity of the functional ingredient (Patel & 

Velikov, 2011). 

6.1 Delivering probiotic bacteria to infants 

Since probiotics do not colonise the intestines, they must be continually supplemented via 

food products to be of benefit. Probiotics are now added to many established infant formula 

ranges (e.g., Nestle-Nan Pro Gold, Danone-Aptamil and Nutirica-Karicare). The main 

difficulty associated with the incorporation of probiotics into foods is ensuring that the 

bacteria are both viable (at quantities sufficient enough to show an effect) and functional 

when they are delivered to the intestine. The three main obstacles to viability and 

functionality are the effects of processing, storage, and transition through the 

gastrointestinal tract. Industrial preparations of various probiotic strains can be bought in a 
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number of forms (e.g. spray- and freeze-dried). A solution to delivering probiotic bacteria 

through the gastrointestinal tract is encapsulation. Matrices that can be used for probiotics 

have been comprehensively reviewed (Anal & Singh, 2007). It is important to understand 

the possible effects of the protective matrix on intestinal barrier function. For example, the 

food grade polymer chitosan, used in encapsulation matrices, can itself increase tight 

junction permeability (Sadeghi et al., 2008). Such particles are used in the drug/medical 

industry to help open tight junctions to allow particles through (targeted drug delivery). 

The composition of the food matrix used to deliver the probiotic bacteria, including its pH, 
water activity, dissolved oxygen level and storage temperature, can affect viability. The pH 
of a fruit juice system for example will be low (3-4), and therefore this factor along with the 
organic acids present can cause a decrease in viability of most probiotic strains over storage 
time (Saarela et al., 2006). Researchers have found that milk-based systems perform well as 
delivery systems for probiotics due to the buffering capacity and pH of the milk, which can 
protect the bacterial strain from detrimental effects of gastric acid (Ranadheera et al., 2010). 
The amount and type of fat present in yoghurts can have an effect, with lower levels of fat 
showing greater probiotic viability for certain strains (Vinderola et al., 2000).  

The delivery matrix can also have a significant effect on probiotic functionality due to 

positive or negative interactions. The response of probiotics to their surrounding 

environment could affect the level of organic acid produced, and therefore limit the extent 

of health benefit conferred. Interactions between probiotics and macromolecules in the 

matrix are also important. For example, a probiotic strain of Lactobacillus reuteri interacts 

preferentially with the fat globule membrane in dairy products (Brisson et al., 2010).  

The survival of probiotics can also be enhanced by the addition of prebiotics, which are now 
added in varying quantities to food systems such as infant formulas (Boehmm G., 2007). For 
example, fructo and galacto-oligosaccharides have been found to promote the growth rate of 
bifidobacteria (Siggers et al., 2011).  

6.2 Delivery of food components to infants 

Peptides that play a role in promoting intestinal barrier function can be released from 

bovine milk proteins, casein (- and -) and whey (-lactalbumin and -lactoglobulin) 
(Yasumatsu & Tanabe, 2010), through commercial processing and gastric digestion. A 
number of factors can affect peptide activity, such as processing, shelf life of the product and 
the food system in which they are delivered to the body. An example of how both the 
intrinsic properties of the peptides and external factors can affect bioactivity was described 

in a recent study (Dupont et al., 2010). It was found that casein fractions (- and s2) were 
more resistant to infant digestion, due to both hydrophobic areas on the protein at pH 3 and 
heat processes during preparation of the product. This resistance to hydrolysis within the 
intestine may also be attributed partially to interactions with whey protein, which may 
protect the casein fractions to an extent. Conversely, a casein hydrolysate was found that can 
withstand manufacturing processes (atomisation, homogenisation, pasteurisation) and 
storage for a considerable time without any significant effect on its activity (Contreras et al., 
2011). Recently a few studies have focused on assessing the effect of digestion on various 
peptides such as caseinophosphopeptides (García-Nebot et al., 2010). Further hydrolysis can 
occur as the peptides move through the stomach that may not always be desirable as it may 
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reduce bioactivity within the body (Kamau et al., 2010). The effect of high temperatures on 
aminopeptides and lipids during processing in the presence of reducing sugars can lead to 
the formation of advanced glycation end products (AGEs). While these milk fractions may 
have been placed in the food system to potentially decrease intestinal permeability, the 
formation of AGEs can actually have the opposite effect (Rapin & Wiernsperger, 2010). 
Therefore it is of vital importance that the properties of the bioactive ingredients are 
considered, along with the composition of the food matrix and changes that occur to the 
product during processing and storage. 

As with probiotics, there are many limitations that prevent the delivery of functional food 
components to the required site in the body. Encapsulation and protection have been 
identified as critical to the incorporation and delivery of biologically active ingredients to 
infants. The reasons are varied; from protection of the ingredient against processing conditions 
as discussed above, to masking of taste and also providing protection between the ingredient 
and the surrounding environment (gastric acid). The site of release is also important in order 
for these ingredients to confer a health benefit. Some peptides have been found to give a bitter 
taste, therefore effects on the organoleptic properties of food products are also a concern. This 
bitterness has been attributed to the hydrophobic nature of their amino acid side chains. Both 
the hydrophobicity and bitterness of milk peptides have lead to the use of encapsulation as a 
means to incorporate these ingredients into food systems. Methods such as spray drying have 
been recently used to try and reduce the extent of the bitterness of a casein hydrolysate 
(Favaro-Trindade et al., 2010). Mixtures of soy protein isolate and gelatin as carriers for the 
peptide helped to mask the adverse effects of the powdered samples. 

7. Conclusions  

It is well-established that intestinal barrier dysfunction can lead to gastrointestinal illness in 
infants and is a risk factor for inflammatory and autoimmune disease during adulthood. 
Since it is difficult to permanently alter intestinal barrier integrity in adults, greater success 
may be achieved by intervening in early-life to ensure the intestinal barrier matures 
appropriately, improving health both during infancy and adulthood. 

Breast feeding is the most beneficial way to feed an infant and promote intestinal barrier 
maturation; however, this may not always be possible. Many infants, even while being 
breast-fed, also receive formula in order to meet their nutritional needs. Therefore, the 
optimisation of infant formulas and foods with ingredients that enhance intestinal barrier 
function is necessary to promote life-long wellness. However, more research is needed to 
fully understand how the intestinal barrier develops and the mechanisms by which food 
ingredients may enhance this process. In addition, there are still challenges in delivering 
ingredients to ensure that functional food ingredients maintain their activity throughout 
production, storage, and digestion. 
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