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1. Introduction 

Encephalitis may result from the interaction between a pathogen and the host brain, such as 
in bacterial, viral or fungal infection of the CNS. There are, however, different states of 
aseptic encephalitis, which may be induced e.g. by way of (i) self-directed immune attacks 
as in experimental autoimmune encephalomyelitis or (ii) by certain substances like the 
copper chelating agent cuprizone (Torkildsen et al., 2008).  
In fact, in encephalitis, infectious and non-infectious processes do not mutually exclude each 
other. Many pathogens such as bacteria or viruses encode for immune stimulating peptides, 
better known as superantigens for their enormous potency to stimulate immune cells 
(Kappler et al., 1989; Fleischer, 1991). T-cell superantigens have been developed twice 
during the evolution, namely independently by bacteria and by viruses. Not all bacteria or 
viruses do, however, possess a superantigen. - Superantigens act in a T-cell receptor V(beta) 
dependent manner (Figure 1). Thereby, up to 10% or even 20% of the T-cell repertoire may 
become activated, sometimes resulting in a fulminant inflammatory response. The latter 
depends also on the specific repertoire of the host’s antigen-detection apparatus, e.g., the 
human-leucocyte-antigen (HLA) molecules. 
 

 

Fig. 1. Antigen and superantigen recognition via the MHC/T-cell receptor complex. 
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Taken together, superantigens are expected to take part in the inflammatory events induced 
by their pathogenic source. In florid bacterial or viral encephalitis, the detrimental effects 
that may be attributed to the pathogen or to its superantigen may be hardly discerned, while 
both may contribute to the final outcome. However, in case of slowly progressing 
encephalitides of e.g. viral origin, the superantigenic stimulus might be responsible for the 
initial and leading symptoms while the consequences of viral degeneration could be 
compensated for for a considerable time period and may become symptomatic later during 
the disease course. This is what has been suggested to happen in multiple sclerosis (MS) 
(Kornhuber et al., 2002, Kornhuber 2006, Emmer et al., 2008, 2010). In this respect, it may be 
of significance that the initial events of MS plaque generation seem to develop in the absence 
of tissue inflammation (Filippi et al., 1998; Barnett and Prineas, 2004). Although the etiology 
for slow progression in MS remains to be established, it has been speculated on a possible 
role e.g. for human endogenous retroviruses such as MSRV (Garson et al., 1998; Perron and 
Lang, 2010; Antony et al., 2010). 
Our knowledge about the cerebral actions of T-cell superantigens, e.g. Staphylococcal 

enterotoxin A (SEA), relies on but a few experiments and, thus, is far from being 

comprehensive. Nevertheless, the results outlined below may be useful for future studies to 

further characterize the role of superantigens per se or in the context of bacterial or viral 

encephalitis, respectively. 

2. Effects of intracerebral T-cell superantigen 

Intracerebrally expressed superantigen induces a perivascular and periventricular 

inflammation (Kornhuber et al., 2002; Emmer et al., 2010). Fourty-microliter aliquots of 

superantigen or saline were slowly injected intracerebrally through a small burr hole in 

isoflurane-anesthetized male 300-g Lewis rats, 2.5 mm lateral from the midline at the 

bregma at a depth of 3.5 mm. Horizontal hematoxylin/eosin stained sections of the rat 

brains were investigated after fixing the brains with 4% buffered paraformaldehyde. 

Sections were obtained at the corpus callosum and at the level of the lateral ventricles. 

Cuffings of perivascular round cells were identified scattered around the injection canal. In 

the first 3 days, perivascular round cells could be observed in both hemispheres with a 

preponderance in the corpus callosum and the periventricular white matter. Thereafter 

perivascular round cells were confined to the injected hemisphere up to 12 days after SEA 

injection. Maximum response in the injected hemisphere was identified up to 8 days after 

injection (Fig. 1). 

We wondered why the response to superantigen was relatively variable and usually low. It 

is well known that relapses in MS are often precipitated by some nonspecific immune stress 

such as infection. Furthermore, it is known that only activated immune cells are capable to 

invade the CNS (Wekerle et al., 1986). For these reasons we tried to imitate the stress by 

loading the blood with activated immune cells. 

3. Activated splenocytes amplify superantigen encephalitis 

Activated syngeneic splenocytes were injected in volumes of 0.5 ml through the penis vein 

of 300 g male Lewis rats on the third day after intracerebral injection of the superantigen 

SEA (see above). Activation of splenocytes was achieved in the following way under sterile 
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conditions: A syngeneic spleen was cut and the content passed through a sieve into isotonic 

NaCl-solution. Cells were washed three times and the pellet finally resuspended in RPMI-

medium with 5 % heat-inactivated fetal calf serum and with a final concentration of 2 µg/ml 

concanavalin A (ConA). Cells were harvested and washed after 3 days in culture when they 

were maximally stimulated. They were kept in NaCl on crushed ice for injection purposes. 

Usually 107 cells were injected i.v. under brief general isoflurane anesthesia. The time course 

of the tissue reaction to 1 mg/ml SEA was investigated (Kornhuber et al., 2002). In general, 

perivascular round cell infiltrates were more numerous and more reproducible than without 

adding activated splenocytes. In the first up to 3 days after splenocyte injection, reactive 

vessels could be identified in both cerebral hemispheres with a preponderance on the 

injected side. Thereafter, inflamed blood vessels were confined to the injected hemisphere. 

The response was short-lived and could last for further 3 up to 12 days. Thereafter, no 

reactive vessels could be identified. On day 5 after i.v.-injection, on average 18.5±11.4 vessels 

with round cell cuffs were observed. When compared with the corresponding numbers 

obtained without i.v.-injection of activated splenocytes, the difference was statistically 

significant (p < 0.05; two-sided U-test). When the amount of activated splenocytes was kept 

constant at 107 per animal, the number of reactive blood vessels increased linearly with the 

concentration of SEA. When the injected SEA was kept constant at a concentration of 1 

mg/ml, the number of reactive blood vessels increased linearly with the number of 

intravenously injected activated splenocytes. 

4. Immunohistochemical characterization of round cell cuffing 

Immunohistochemical investigations of the SEA-encephalitis were performed using shock-

frozen brains fixed at -80 °C. Six µm kryocut sections were made at -14 °C. Neighboring 

tissue sections that showed both, the cerebral ventricles and the stitch canal were taken for 

further evaluation. The avidin–streptavidin–biotin (ABC)-method was used throughout for 

immunohistochemical staining purposes. All used antibodies were ordered by BD 

Biosciences Pharmingen. After preincubation with goat serum for 20 min, incubation with 

the primary antibody (1:50, 1 h) was followed by incubation with the secondary antibody 

(1:50, 30 min). After 30 min in the pre-diluted streptavidin–horseradish–peroxidase (HRP) 

all tissue sections were finally incubated with diaminobenzidine (DAB) solution until the 

desired colour intensity was obtained. Sections were dehydrated three times on increasing 

grades of alcohol and covered with Roti-Histokit. Spleen tissue slices served as the positive 

controls. All used primary antibodies were highly specific for their target antigen. Negative 

controls included substitution of primary antibodies by antibodies of the same isotype with 

specificities against non-host antigens.  

12 h after i.v. injection of ConA-activated spleen cells (i.e. 3 days after intracerebral injection 

of SEA), relatively high numbers of immunoreactive CD3+, CD4+ and CD8+ T-cells were 

present in a perivascular distribution and also scattered in the parenchyma around the stitch 

canal of the injected hemisphere (Fig. 3). The perivascular cuffs consisted of several layers of 

round cells. The amount of immunoreactive cells within the perivascular infiltrates, i.e. 

CD3+, CD4+ and CD8+ T-cells decreased gradually thereafter (Figs. 3 and 4) and amounted 

merely to usually 1 complete layer of immunopositive cells 3 days after i.v. injection of 

splenocytes and some loosely grouped perivascular cells after 5 days. Thus, the 
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inflammatory response was less large than in the previous experiments (see above). Among 

the different T-lymphocyte subsets, CD8+ T-cells were generally the most numerous ones 

(Figs. 3 and 4). The number of CD3+ T-cells within slices of the injected right hemisphere 

made up only about one quarter of the sum of the T-cells found to express CD8 or CD4 

(Figs. 3 and 4). The relative numbers of reactive blood vessels remained more or less 

constant within the investigated time period (not shown). In the non-injected left 

hemisphere, the inflammatory activity was generally less prominent (Fig. 4). In fact, notable 

numbers of CD4+ and CD8+ T-cells within perivascular cuffs were identified only 3 days 

after i.v. injection of ConA-activated spleen cells (Fig. 4). In the brains of control animals, T-

cells expressing CD4, CD8 or CD3 were not detected except for isolated immunopositive 

cells in the area of the stitch canal 0.5 days after the i.v. injection of ConA-activated 

splenocytes (not shown). Five days after the i.v. injection, no stained T-cells were found in 

the investigated brain slices of both control animals. 

The cerebral inflammatory reaction was short-lived, presumably due to the rapid 
disappearance of the injected superantigen, e.g. by non-specific binding to cell surfaces. 
Differences in the duration of the inflammation in the order of several days may be due to 
different preparations of the superantigen, which may impact the immunostimulatory 
potency of the SEA reagent.  
The cerebral inflammation induced by SEA was most prominent within the injected 

hemisphere and consisted initially mainly of CD8+ T-cells, which made up about 65% of the 

perivascular round cell population (Fig. 4). As no similar inflammatory response could be 

identified in the brains of the control animals that had received saline intracerebrally, the 

results do not appear to be due to the stitch trauma. Furthermore, only relatively small 

numbers of T-cells were found within the non-injected left hemisphere 0.5 days after i.v. 

injection of the ConA-activated splenocytes. As the number of the perivascular round cells 

detected in the left hemisphere peaked after 3 days following the i.v. injection of the ConA-

activated splenocytes (Fig. 4), migration from the injected right hemisphere via the corpus 

callosum is the presumable reason for their occurrence contralateral to the injection site as 

has been suspected previously (Kornhuber et al., 2002). How does the superantigen 

expressed in the brain tissue lead to local recruitment and activation of T-cells? Presumably, 

the unprocessed superantigen was presented by MHC molecules on the surface of 

perivascular cells, microglial cells or dendritic cells, which are known to express MHC-class 

II constitutively within the CNS (Sedgwick et al., 1993; Stoll, 2002). By way of contrast, 

MHC-class I is not present on cell surfaces in the cerebral parenchyma unless its expression 

is specifically induced (Sedgwick et al., 1993; Redwine et al., 2001). When the injected ConA-

activated cells appear in the circulation in high numbers after i.v. injection, namely 3 days 

after the intracerebral SEA-injection, free superantigen seems unlikely to be present in the 

cerebral extracellular fluid. Therefore, direct binding of SEA to the T-cell receptor (TCR) of 

ConA-activated splenocytes that come to traverse the blood–brain barrier does not seem to 

play a major role for T-cell activation in the present case (Fleischer, 1991; Herrmann et al., 

1990; Yagi et al., 1990). However, only relatively small numbers of T-cells migrate through 

the cerebral blood vessels as part of a surveillance process, unless specific stimuli force them 

to stay on the abluminal side (Wekerle et al., 1986). The persistence of T-cells within the 

parenchyma after intracerebral injection of SEA may be taken as evidence that a specific 

stimulus forced them to stay within the CNS, therefore. After local expression of SEA, the 
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majority of the T-cells detected within the intracerebral perivascular infiltrates was CD8+, 

while a minority was CD4+ (Figs. 1 and 2). Although superantigens presented via MHC II 

are well known to stimulate CD4+ T-cells, it has been demonstrated that SEA may activate 

CD8+ T-cells in a TCR-dependent manner (Müller-Alouf et al., 2001; Stinissen et al., 1995). 

Results obtained by gene expression analysis for the SEA encephalitis are in line with a 

CD8+ T-cell driven immune response (see below; Emmer et al., 2008). At a first glance it 

seemed to be curious that the numbers of T-cells expressing CD8 or CD4 detected within the 

right hemisphere in sum outnumbered the CD3+ ones at each investigated time point. The 

immunostaining for CD3 like that for CD4 and CD8 was of sufficient quality to allow a clear 

distinction between positive and negative cells (Fig. 3). Therefore, it does not seem likely 

that the mismatch between the results for CD3 and CD8 was artificial in nature. Actually, a 

diminished expression of CD3 but not of CD4 or CD8 has been reported previously for T-

cells that had been challenged by superantigen (Damle et al., 1993; Niedergang et al., 1995; 

Makida et al., 1996; Von Essen et al., 2004). Therefore, the finding of a lower expression of 

CD3 in comparison to CD8 on T-lymphocytes like in the present investigation can be taken 

as evidence for the presence of a previous superantigenic stimulus.  

Taken together, it has been demonstrated that the round cells that take part in perivascular 
cuffing of the encephalitis induced by the superantigen SEA are primarily composed of T-
cells, especially of CD8+ T-cells. This result may be of importance with respect to the 
pathogenesis of inflammatory diseases of the central nervous system. The fact that upon the 
superantigenic stimulus T-cells become CD3-negative in significant numbers, leaving the 
expression of e.g. CD8 unaltered, may be used to demonstrate the involvement of a 
superantigenic stimulus in different states of encephalitis. 
 
 
 

 

 
Fig. 2. The figure illustrates the effect of intracerebral superantigen. Frontal sections of the 
rat brain at the level of the corpus callosum, hematoxylin and eosin stain. The 
interhemispheric cleft has been marked by a star. (A) Five days after intracerebral SEA-
injection and 8 days after i.v. injection ConA-activated splenocytes. (B) Part A at a higher 
magnification. 
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Fig. 3. Representative immunohistochemical stains of rat brain slices of the right hemisphere 
(streptavidin–biotin-method) after intracerebral injection with Staphylococcal enterotoxin A 
(SEA). Slices obtained 0.5 and 3 days after i.v. injection of ConA-activated splenocytes show 
expression of the antigens CD8 (a, day 0.5; b, day 3), CD4 (c, day 0.5; d, day 3), and CD3 (e, 
day 0.5; f, day 3). Note the special preponderance of CD8+ T-cells (a) in comparison with 
CD4+ T-cells (c). With time, the perivascular round cell count decreased as exemplified by 
the T-cells expressing CD8, CD4 or CD3, 3 days after i.v. injection of ConA activated 
splenocytes (b, d, f) compared with those detected after 0.5 days (a, c, e) (Emmer et al.,  
2010). 

a b

c d

e f 
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Fig. 4. Summary of the perivascular round cell counts (columns) are given together with the 
standard deviation (bars) for the entirety of the cells per tissue slice and hemisphere (olive 
green) and for the cells positively stained with CD3 (blue), CD4 (green) and CD8 (red), after 
injection of the superantigen Staphylococcal enterotoxin A (SEA) into the right hemisphere 
followed by intravenous loading of ConA-activated splenocytes 3 days later. The bar of the 
first left-sided column has been cut. Its value amounts to 58 cells. The 3 investigated time 
points, i.e. 0.5 days, 3 days and 5 days, refer to the interval between intravenous splenocyte 
injection and sacrification of the animals (Emmer et al., 2010). 

5. Gene expression profile of superantigen encephalitis 

Of 5 male 300 g Lewis rats, two animals received 50 µl of 1 mg⁄ ml SEA and two animals 
were injected with saline into the right brain hemisphere during deep anaesthesia. Injections 
were placed 2.5 mm lateral to the midline and 2 mm behind the bregma. One rat was sham 
operated. Three days after this procedure, 1.5*107 ConA-activated splenocytes (see above), 
were injected into the penis vein of each animal. Eight days after the initial surgical 
procedure, brains were taken from all Lewis rats. A coronar disk (2 mm) including the 
injection channel was prepared and divided into an injected half and a non-injected half. 
The samples were snap frozen in isopropanol and stored at -80 °C. Microarray analysis was 
performed as described previously (Staege et al., 2004). Data analyses were performed by 
using Statistical Analysis of Microarrays (SAM) (Tusher et al., 2001). Results from the 4 rat 
brain hemispheres of the two ‘SEA’ animals were compared with the 4 hemispheres of the 2 
‘saline’ animals. Furthermore, the differential gene expression after saline injection versus 
sham operation was calculated. Due to the small sample size, a relatively conservative 
approach was followed with Δ = 0.75, a false discovery rate of 0.099 and a minimum change 
factor of three. To be acceptable, the signal intensities had to be above 30. Validation of 
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microarray data was done by real-time PCR. To validate the results of the microarray 
analysis, the transcriptional regulation of nine genes [CCL5 (RANTES), TIMP-1, 
osteopontin, CD74, RT1-Da, complement component 3, tenascin C, CD8 and CCL2 (MCP-1)] 
that showed significant differential expression in rat brains with SEA encephalitis was 
measured also using real-time PCR. Total RNA was extracted from brain tissue using Trizol 
(Invitrogen, Karlsruhe, Germany) or the RNeasy kit (Qiagen, Hilden, Germany). 
Quantitative RT-PCR (qRT-PCR) was performed by using the QuantiTect SYBR Green RT-
PCR Kit (Qiagen) using the following conditions: 94 °C, 45 s; 62 °C, 45 s; 72 °C, 60 s. Each 
reaction was subjected to melting temperature analysis to confirm presence of the expected 
products. Specific gene amplification was normalized to GAPDH. Target genes and GAPDH 
were amplified with 40 cycles using a ROTOR GENE RG-3000 (Corbett Research, Sydney, 
Australia) and ROTOR GENE 6 software. The threshold cycle (CT) value was defined as the 
fraction cycle number and set at 10 times the standard deviation above the mean baseline 
fluorescence calculated from cycles 3 to 15. The fold changes in the target genes normalized 
to actin 22 (as house keeping gene) and relative expression of controls (1 uninjected rat 
brain) was calculated by using standard ΔΔCT method.  
Of the 8800 investigated genes, 106 were at least 3-fold increased with SEA over saline, 

while 29 genes were decreased at least 3-fold. The respective microarray data of 

differentially overexpressed genes are summarized in Table 1. Genes with increased 

expression were grouped in the following order: antigen presentation, lymphocytes, 

chemokines ⁄ chemokine receptors, microglial reaction ⁄ macrophages, phagocytosis ⁄ 

opsonization, extracellular matrix ⁄ cell adhesion, anti-inflammatory reaction and 

miscellaneous/ compound to inflammation. Some of the genes with decreased expression 

(not shown) presumably belong to cerebral cell elements such as neurons or astrocytes, e.g. 

genes encoding for neurotransmitter receptors or ion channels. In fact, the expression for the 

genes encoding for CCL5 (RANTES), TIMP-1, osteopontin, CD74, RT1-Da, complement 

component 3, tenascin C, CD8 and CCL2 (MCP-1) in relation to the house keeping gene for 

actin 22 as measured by real-time PCR showed a high level of conformity in comparison 

with the results obtained by using microarrays. Differential gene expression after saline 

injection versus sham operation revealed at least 3-fold overexpression of six genes and 

underexpression of 40 genes (not shown). The relatively mild differences observed in the 

gene expression between both conditions may reflect the consequences of the injection 

trauma and are considered of minor relevance for the SEA encephalitis.  

When data were first analysed, it became obvious that after intracerebral SEA injection 

versus saline injection, expression of several genes was markedly increased in the injected 

hemisphere and also displayed considerable overexpression in the non-injected contralateral 

hemisphere as well. This finding might correspond to the bilateral perivascular 

inflammatory reaction observed by using histology in the first days of SEA encephalitis (see 

above). Due to this finding, it was decided to analyse both hemispheres together. This 

approach certainly reduces absolute values of differential gene expression and at the same 

time it might reduce detection of false-positive data, e.g. resulting from the small number of 

samples. The results are in conformity with the light microscopy findings of a perivascular 

inflammation.  

Among the genes with elevated expression, there was a considerable number of genes 

encoding for MHC class II molecules, which are constitutively expressed on microglial cells 

in the brain. In a state of encephalitis, they may be detected on astrocytes as well. 
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Superantigen is presented in the context of MHC class II. However, 8 days after 

intracerebral injection of the superantigen, it might be doubted whether the elevated 

expression of genes for MHC class II molecules is still a direct consequence of the 

superantigenic stimulus. Antigen-presenting cells present in the inflammatory area may 

comprise microglial elements, monocytes and astrocytes [elevated expression of genes for: 

Serping1, CD53 antigen, CCAAT⁄ enhancer binding protein (C ⁄ EBP) delta, glial fibrillary 

acidic protein (GFAP) and calcium binding protein S100A4]. T lymphocytes seem to play a 

major role among the hematogenous cellular infiltrates of the SEA encephalitis. While the 

genes for CD3 and CD8 were found to be significantly elevated, this was not the case with 

the gene for CD4. This fits to immunohistochemical results showing that the perivascular 

round cell cuffs are dominated by CD8+ T lymphocytes on days 3.5, 6 and 8 after 

intracerebral SEA injection (see above). This finding was unexpected as usually CD4+ T cells 

are activated by T-cell superantigen presented in the context of MHC class II molecules 

(Fields et al., 1996). By way of contrast, CD8+ T cells are predominantly stimulated in the 

context of MHC class I molecules (Jelonek et al., 1998). As the latter ones are not 

constitutively presented in the brain, it seems unlikely that these molecules play a major role 

in the induction of the SEA encephalitis. Rather SEA may have been presented in the context 

of MHC class II. Previously, a similar stimulation of CD8+ T cells via superantigen bound to 

MHC class II as found in the present investigation has been reported (Fraser, 1989). Of 

interest, there exists a parallel to MS, where CD8+ T cells have been reported to 

predominate among perivascular inflammatory infiltrates (Liu et al., 2007; Jilek et al., 2007). 

Further proteins involved in antigen presentation or in signalling cascades were 

significantly overexpressed with SEA comprise sialoprotein CD43, cathepsin C, and CD 72. 

Similar to other states of cerebral inflammation such as in MS or EAE, there was a profound 

increase in the expression of the genes for the following proteins involved in chemotaxis 

after SEA injection: RANTES (CCL5), osteopontin, MCP-1 (CCL2) and CXCL10. 

Furthermore, the gene for the receptor of MCP-1 (CCR2) showed a significantly increased 

expression. In contrast to the elevated chemokine levels, cytokines, such as interleukin-2, 

tumour necrosis factor alpha or interferon gamma, did not reveal significantly increased 

differential expression levels. As these cytokines belong to the group of substances which 

are released early in the course of an inflammation, it is quite plausible that the genes for 

these cytokines are not expressed any more differentially 8 days after injection of SEA. 

Intracerebral injection of SEA was followed by an enhanced expression of genes encoding 

different complement factors such as C3, C4a, C1q, B, D (adipsin) and serping 1. These 

factors may be released from microglial cells (Raivich and Banati, 2004) or from 

macrophages. Complement factors were suggested to play a role in opsonization and 

phagocytosis. Complement factors 1q, 3 and 4a showed a high expression in microarray 

studies in EAE and MS (Tajouri et al., 2003; Lock et al., 2002). Actually, increased expression 

was detected for genes that are also related to phagocytosis. These were Fc-gamma receptor, 

Vav1, galectin 3 (Wilkinson et al., 2006; Rotshenker, 2003). These genes were previously 

shown to display increased expression in EAE (Lock et al., 2002; Reichert and Rotshenker, 

1999; Carmody et al., 2006). A number of genes with increased expression levels after SEA 

injection were related to the extracellular matrix. These were lysyl oxidase, tenascin C, 

alpha-1- collagen type III, syndecan 1, alpha-1-collagen, alpha-1- procollagen type I, 

vimentin, matrix-gla-protein, periostin, oxidized LDL-receptor-1 and alpha-tubulin. The 
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gene for tenascin C was measured with elevated expression in EAE and in MS (Lock et al., 

2002, Carmody et al., 2006), while a similar increase for the gene of alpha-tubulin was 

present in MS (Carmody et al., 2006). Not all of the above summarized genes that showed 

enhanced expression after intracerebral superantigen injection did so in EAE or MS. 

Furthermore, the gene for integrin alpha M was detected with elevated expression in the 

present study. Integrin alpha M mediates cellular adhesion to the extracellular matrix 

(Friedl and Brocker, 2000). It is also upregulated in EAE and in MS (Lock et al., 2002, 

Carmody et al., 2006). Whether the enhanced gene expression of components of the 

extracellular matrix reflects alterations in the context of the encephalitis or reflects reparative 

activity remains to be established. Increased expression of the following genes may be 

regarded as part of an anti-inflammatory tissue reaction: alpha-2-macroglobulin, 

metallothionein, heat shock protein 27 (HSP27), haeme oxygenase-1, C⁄ EBP-related 

transcription factor beta, coeruloplasmin and pleckstrin. The gene products take part in the 

inactivation of proteolytic enzymes (alpha-macroglobulin), in the reduction in oxidative 

stress (methallothionein, haeme oxygenase 1, coeruloplasmin) or in the apoptosis induction 

(HSP27). Several of these genes have been observed with increased expression in EAE or in 

MS (Table 3), such as metallothionein (Tajouri et al., 2003; Lock et al., 2002; Penkowa and 

Hidalgo, 2003; Espejo et al., 2005; Espejo and Martinez-Caceres, 2005), haeme oxygenase 1 

(Levine and Chakrabarty, 2004; Tan et al., 2004) and HSP27 (Tajouri et al., 2003). 

Furthermore, there was a significant increase for the genes of the metalloproteinase 9 

(MMP9) and its inhibitor, the tissue inhibitor of metalloproteinase 1 (TIMP-1). Both genes 

were reported to be upregulated in EAE and in plaque tissue from patients with MS 

(Steinman, 1999; Pagenstecher et al., 1998). While MMP9 is e.g. required for the migration of 

lymphocytes through the basilar membrane and thus for invading the CNS, the much more 

pronounced upregulation of TIMP-1 may be regarded as an anti-inflammatory response. 

Other genes with increased expression levels in the SEA encephalitis are genes encoded for 

different cytochromes (P450 type 1b1, b558 and b245), granulin, lipocalin and STAT1. The 

role of the proteins during the course of the SEA encephalitis is not entirely clear. At least 

the elevated gene expression for STAT1 was noted previously in EAE (Jee et al., 2001) and in 

MS (Frisullo et al., 2006). Furthermore, the gene for granulin was observed with elevated 

expression in MS (Tajouri et al., 2003). 

Genes with decreased expression: The number of genes with significantly and at least 

threefold decreased expression was small (n = 29), in comparison with the number of genes 

showing an increased expression (n = 106). Among the former genes, there was a number of 

genes related to cerebral cellular functions such as neurotransmitter receptors, ion channel 

proteins, ion pumps or growth factor receptors: retinoid-X-receptor gamma, cholinergic 

receptor (nicotinic, alpha polypetide 2, neuronal), potassium voltage-gated channel, 

subfamily H member 8 (ATPase), proton pump (H+ transporting, V1 subunit G, isoform 3 

and H+⁄K+ ATPase), calbindin and oncomodulin. Expression of these genes was not 

observed to be decreased in EAE or MS. Nevertheless, in EAE and MS, genes with decreased 

expression levels were observed to encode proteins with similar functions. These included 

myosin VIIA, phosphatidylinositol 4- kinase (Tajouri et al., 2003), TGF beta 3, cadherin-7 

(Lindberg et al., 2004), somatostatin and kinesin (Lock et al., 2002). Taken together, the gene 

expression data in the present study support previously reported light microscopy findings 

of the encephalitis developing after superantigen injection into the rat brain (Kornhuber et 
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al., 2003). The peculiar gene expression pattern found 8 days after superantigen injection is 

compatible with a CD8+ T lymphocyte driven process leading to different cerebral 

inflammatory and anti-inflammatory reactions. As superantigens were implicated in the 

pathogenesis of human autoimmune diseases, such as MS, the comparison of the presented 

data with those gathered with EAE or MS may be of general interest. Actually, there is 

considerable conformity between the gene expression profile of the SEA encephalitis and 

EAE or MS (Table 2). This accordance between the three different states of inflammation 

may be due to the fact that a T-cell-driven pathogenesis is common to all of them. 

 

Accession no. Description SEA NaCl Ratio 

Antigen presentation

X13044  MHC-II (CD74 antigen)  3542  130  27.2 

X14254  MHC-II (invariant chain)  1209  45  26.9 

X07551  MHC-II B-alpha gene  1384  113  12.2 

X56596  MHC-II B-1 beta chain  1014  168  6.0 

X53054  MHC-II (protein complex)  1322  219  6.0 

M64795  MHC-I (CRT 1-u)  620 106 5.8 

U31599  MHC-II (DM beta)  433 82 5.3 

M36151  MHC-II A-beta gene (RT1 class II locus Bb)  794 154 5.2 

K02815  MHC-II (locus Ba)  1982 387 5.1 

M15562  MHC-II  1180  231  5.1 

X57523  TGF-beta (activated)  310 83 3.7 

AI171966  MHC-II (DM beta)  1619 440 3.7 

X67504  MHC-I (locus Aw2)  205 61 3.3 

U31599  MHC-II  215  69  3.1 

Lymphocytes 

X03015  CD8 antigen (alpha chain)  282  35  8.1 

S79711  CD3 gamma-chain  68  14  4.9 

X14319 T-cell receptor (beta chain)  282  61  4.6 

M10072 CD45 antigen  130  32  4.1 

U24441  Matrix metallopeptidase 9  198  49  4.0 

D90404  Cathepsin C  476  148  3.2 

AI045440 Sialophorin  75  24  3.1 

Chemokine ⁄ chemokine receptor

M14656 Secreted phosphoprotein 1 (osteopontin) 1694  94  18 

AI009658 CCL5 (RANTES) 1345  88  15.3 

AA892854 CXCL13 442  63  7 

X17053 CCL2 (MCP-1)  226  38  5.9 

AA945737 CXCR4  60  11  5.5 
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Accession no. Description SEA NaCl Ratio 

U17035 CXCL10 175  40  4.4 

X52498 TGF beta1 414  132  3.1 

Microglial reaction ⁄ macrophages

U18729 Cytochrome b558 alpha subunit 985  169  5.8 

U09540 Cytochrome P450 type 1b1 223  40  5.6 

AF028784 GFAP (alternatively spliced form) 4474  1030  4.3 

AI176856  Cytochrome P450 (Cyp1b1) 289  70  4.1 

AA800318 Serping1 1085  285  3.8 

M57276 CD53 antigen 537  158  3.4 

M65149 CCAAT ⁄ enhancer binding protein (C ⁄ EBP) 257  77  3.3 

M24067 Serpin E1 180  59  3.1 

U10894  Allograft inflammatory factor 1 669  219  3.1 

Phagocytosis ⁄ opsonization

J02962 IgE-binding protein (Galectin 3) 1220  87  14.0 

M29866 Complement component 3 1358 122  11.1 

X52477 Pre-pro-complement component 3  935  103  9.1 

X71127 Complement C1q beta chain 3632  649  5.6 

M92059 Adipsin 138  25 5.5 

X73371 Fc gamma-receptor 209  41  5.1 

AA892775 Lysozyme 4526  919  4.9 

AA891576 Complement component 1q 98  20  4.9 

AA893280 Adipose differentiation related protein 563  135  4.2 

AI639117 Complement factor B 268  65  4.1 

AI639117 Complement factor B 268  65  4.1 

M32062 Fc-gamma-receptor 3 433  117  3.7 

M32062 Fc gamma-receptor II beta 597  173  3.5 

U42719 Complement component 4a 1453  416  3.5 

D10757 Proteosome (macropain) subunit, beta type 9 277  80  3.5 

U39476 Vav 1 oncogene 106  31  3.4 

D88666 Fatty acid-binding protein (adipocyte) 131  40  3.3 

Extracellular matrix ⁄ cell adhesion

S66184 Lysyl-oxidase; fibroblast 140  16  8.8 

U15550 Tenascin-C 61  10  6.1 

S61865 Syndecan 1 105  20  5.3 

X70369 Collagen type III alpha 1 862  165  5.2 

U59801 Integrin alpha M 84  18  4.7 
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Accession no. Description SEA NaCl Ratio 

U75405UTR#1 Alpha-1 collagen mRNA 2804  624  4.5 

M27207 Procollagen, type 1, alpha 1 2070  568  3.6 

X62952 Vimentin 2652  763  3.5 

AI012030 Matrix Gla protein 1932  561  3.4 

AA894092 Periostin, osteoblast specific factor (predicted) 47  14  3.4 

AI231472 Procollagen, type 1, alpha 1 999  308  3.2 

AI071531 Oxidized low density lipoprotein receptor 1 63  20  3.2 

AA892333 Tubulin, alpha 6 1662  553  3.0 

Antiinflammatory reaction

AI169327 Tissue inhibitor of metalloproteinase 1  940  20  47.0 

M22670 Alpha-2-macroglobulin  219  9  24.3 

AI045030 CCAAT ⁄ enhancer binding protein  delta  118  22  5.4 

AA998683 Heat shock 27-kDa protein 1 1386  273  5.1 

AA817854 Ceruloplasmin  183  39  4.7 

AI169327 TIMP-1 1671  362  4.6 

S77528  NF-IL6 (C ⁄ EBP-related transcription factor beta) 74  16  4.6 

L33869  Ceruloplasmin  391  92  4.3 

AI176456 Metallothionein  11045  2980  3.7 

M86389  Heat shock 27-kDa protein 1  1563  444  3.5 

AA799323  Pleckstrin  99  29  3.4 

M65149  CCAAT ⁄ enhancer binding protein delta  257  77  3.3 

J02722  Haeme oxygenase (decycling) 1 194  58  3.3 

M23566  Alpha-2-macroglobulin 3153  989  3.2 

AA900582 Alpha-2-macroglobulin 1000  330 3.0 
 

Miscellaneous ⁄ compound to inflammation

L07114 Apolipoprotein B complex  378  23  16.4 

AA946503 Lipocalin 2  629  45  14.0 

M80367 Guanylate nucleotide binding protein 132  25  5.3 

X06916 Protein p9Ka, (S100 calcium binding Prot. A4)  774  153  5.1 

AA892553  STAT-1  261  54  4.8 

D26393 Hexokinase II  143  33  4.3 

X62322 Granulin  4118  1048  3.9 

AA946044  Yamaguchi sarcoma viral (v-yes-1) oncogene  79  21  3.8 

D21215 Coagulation factor 10  44  12  3.7 

AA894029  Cytochrome b-245 beta polypeptide) 116  31  3.7 
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Accession no. Description SEA NaCl Ratio 

L13192 Forkhead box D1  114  32  3.6 

M18349 Protein tyrosine phosphatase, receptor type, C  80  22  3.6 

J02869 Cytochrome P450 (Cyp2d9) 153  43  3.6 

S66024 CAMP responsive element modulator  68  19  3.6 

K03039  Leukocyte common antigen 35  10  3.5 

X61381 Interferon-induced trans-membrane protein 3  2347  671  3.5 

AI233219 Endothelial cell-specific molecule 1 38  11  3.5 

M33648 Coenzyme A synthase 2 192  56  3.4 

M19257 Retinol binding protein 1, cellular 653  199  3.3 

D30649 Ectonucleotide pyrophosphatase  3 56  17  3.3 

E00903 Natriuretic peptide precursor type A 362  112  3.2 

J05495 Macrophage galactose lectin 1 88  28  3.1 

S67722 Prostaglandin-endoperoxide synthase 2 595  192  3.1 

U77038 Protein tyrosine phosphatase type 6  68  22  3.1 

Table 1. Absolute and relative signal intensities measured with Affymetrix Rat Genome 
U34A are given for individual genes that exhibited significantly and at least 3-fold increased 
differential expression after intracerebral (i.c.) SEA injection compared with saline injection. 

 
Description    MS   EAE   SEA encephalitis 

 
MHC-II    ↑ [Lock et al., 2002]  ↑ [Carmody et al., 2006]  ↑ 
MHC-I     ↑ [Tajouri et al., 2003]     ↑ 
Matrixmetallopeptidase 9   ↑ [Steinman, 1999]     ↑ 
CD8 antigen alpha chain   ↑ [Liu et al., 2007]     ↑ 
T-cell receptor beta chain   ↑ [Lock et al., 2002] ↑ [Carmody et al., 2006]  ↑ 
CD3 gamma-chain   ↑ [Liu et al., 2007]    ↑ 
CD 45 antigen    ↑ [Liu et al., 2007]    ↑ 
Leukocyte common antigen  ↑ [Liu et al., 2007]    ↑ 
Cathepsin C (dipeptidyl    ↑ [Carmody et al., 2006]   ↑ 
peptidase I) 
Sialophorin (CD43)     ↑ [Ford et al., 2003]  ↑ 

Secreted phosphoprotein 1 ↑ [Lock et al., 2002] ↑ [Kim et al., 2004]  ↑ 
(osteopontin)    ↓ [Lindberg et al., 2004] 
Chemokine (C-C-motiv  ↑ [Boven et al., 2000]  ↑ [Dos Santos et al., 2005]  ↑ 
ligand) 5, RANTES 
Early response JE gene  ↑ [Tanuma et al., 2006]  ↑ [Hofmann et al., 2002]   ↑ 
(chemokine C-C motiv 
ligand 2 (MCP-1) 
Chemokine (C-X-C motif)   ↑ [Tajouri et al., 2003] ↑ [Tajouri et al., 2003]  ↑ 
ligand 10 (CXCL10) 
Transforming growth factor,  ↓ [Lindberg et al., 2004] ↑ [Carmody et al., 2006]  ↑ 
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beta 1 (TGF beta1)   ↑ [Lock et al., 2002] 
CD53 antigen      ↑ [Carmody et al., 2006]  ↑ 
IgE-binding protein    ↑ [Reichert, 1999]   ↑ 
(Galectin 3)    
Vav 1 oncogene      ↑ [Carmody et al., 2006]  ↑ 
Fc gamma-receptor   ↑ [Lock et al., 2002]    ↑ 
Lysozym    ↑ [Lock et al., 2002]    ↑ 
Complement C1q   ↑ [Tajouri et al., 2003]    ↑ 
Complement component 3  ↑ [Lock et al., 2002]    ↑ 
Complement component 4a    ↑ [Tajouri et al., 2003]  ↑ 
Fatty acid-binding protein    ↑ [Carmody et al., 2006]  ↑ 
(adipocyte) 
Integrin alpha M    ↑ [Lock et al., 2002] ↑ [Carmody et al., 2006]  ↑ 
Tenascin-C    ↑ [Lock et al., 2002] ↓ [Carmody et al., 2006]  ↑ 
Collagen type III alpha 1   ↓ [Tajouri et al., 2003] ↓ [Tajouri et al., 2003]  ↑ 
Tubulin, alpha 6    ↑ [Tajouri et al., 2003] ↓    ↑ 
Haeme oxygenase 1     ↑ [Tan et al., 2004]   ↑ 
TIMP-1       ↑ [Steinman, 1999]   ↑ 
Alpha 2 macroglobulin     ↑ [Hunter et al., 1991]   ↑ 
Heat shock 27-kDa protein 1    ↑ [Tajouri et al., 2003]  ↑ 
NF-IL6(C / EBP-related  ↑ [Lock et al., 2002]    ↑ 
transcription factor beta); 
Metallothionein    ↑ [Tajouri et al., 2003]  ↑ [Espejo et al., 2005]   ↑ 
GFAP (alternatively    ↑ [Tani et al., 1996]   ↑ 
spliced form) 
Granulin    ↑ [Tajouri et al., 2003]    ↑ 
STAT-1     ↑ [Frisullo et al., 2006]  ↑ [Carmody et al., 2006]   ↑ 
Coagulation factor 10     ↑ [Carmody et al., 2006]  ↑ 
Hexokinase II      ↑ [Carmody et al., 2006]  ↑ 
Protein tyrosine phosphatase,    ↑ [Carmody et al., 2006]  ↑ 
receptor type, C 
Guanylate nucleotide    ↑ [Carmody et al., 2006]  ↑ 
binding protein 

Table 2. Comparison of the differential expression of individual genes for which data were 
available for the SEA encephalitis (present investigation) and from EAE and MS.  

6. B-Cell superantigens and oligoclonal bands 

When the role of superantigens is considered with respect to encephalitis, B-cell 

superantigens have to be taken into consideration in addition T-cell superantigens. A 

prominent representative for B-cell superantigens is gp120, which forms part of the 

envelope of the human immune-deficiency virus (HIV) (Neshat et al., 2000; Patke and 

Shaerer, 2000; Zouali, 2007). Like T-cell superantigens, B-cell superantigens stimulate their 

target cells in a clonal manner (Müller and Köhler, 1997; Goodyear and Silverman, 2005). As 

more than 1 B-cell clone is expected to be stimulated by a B-cell superantigen, it may be 

speculated whether this type of stimulus would result in the presence of oligoclonal IgG 
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bands on isoelectric focussing. Indeed, oligoclonal IgG bands have been identified in various 

encephalitic diseases in the cerebrospinal fluid (CSF), including e.g. different forms of viral 

or bacterial encephalitis. Usually, all the antibodies forming oligoclonal bands in these 

diseases are directed against proteins of the encephalitogenic pathogen. However, there are 

states of encephalitis like in MS, where the presence of oligoclonal bands cannot be 

attributed to a certain pathogen. In fact, the antigen specificities present in MS oligoclonal 

bands comprise almost any antigen that has been tested. Therefore, these oligoclonal 

antibodies in MS have been termed as “nonsense antibodies” (Mattson et al., 1980). Among 

this nonsense-spectrum of antigen specificities, frequently an intrathecal antibody sythesis 

against measles, rubella, varizella zoster virus, herpes simplex virus, Epstein-Barr virus, and 

Chlamydia pneumoniae have been found (Reiber et al., 1998; Skorstad et al., 2009; Franciotta 

et al., 2010; Fainardi et al., 2009). It may be interesting to mention here, that antibodies 

specific for myelin proteins form only a small part of the oligoclonal IgG antibodies in MS 

(Owens et al., 2009). If nonsense antibodies like in MS would be due to a B-cell 

superantigenic stimulus, experimental proof should be available. Therefore, we tested in 

vitro, whether B-cell superantigens were capable to induce the formation of oligoclonal IgG 

bands on isoelectric focussing. In fact, after stimulation of peripheral blood mononuclear 

cells in vitro with the B-cell superantigen gp120, we detected IgG-bands by isoelectric 

focussing of the supernatant (Figure 5; Emmer et al., unpublished). This IgG-production   

 

 

Fig. 5. Representative results obtained by isoelectric focussing after stimulation of peripheral 
blood mononuclear cells from 3 healthy human donors in vitro with gp120 (8 µg/ml) and 
without gp120 (control). The numbers underneath the images denote the different subjects.  
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depended on the concentration of the B-cell superantigen. The detected oligoclonal bands 
were quite similar to those found by isoelectric focussing in the cerebrospinal fluid of MS- 
patients. Our results suggest that B-cell superantigens may play a role in the pathogenesis of 
the inflammatory response of multiple sclerosis. 
The expression of oligoclonal IgG in the CSF of MS-patients per se could have a detrimental 
influence, e.g. by opsonization of central nervous system components and subsequent 
phagocytosis by macrophages. In fact, the progress of the disease has been reported to be 
unfavourable if multiple oligoclonal bands are detected in the CSF of MS-patients (Joseph et 
al., 2009).  

7. Conclusion 

The present review focusses on the encephalitogenic effects of the intracerebrally expressed 
T-cell superantigen SEA. It has been demonstrated that SEA is capable to induce a 
perivascular inflammatory response, which was short lived after a single intracerebral 
injection. In the context of a pathogen residing within the CNS, a T cell superantigen is, 
however, expected to be expressed for prolonged periods of time and could, therefore, 
induce a longer lasting inflammatory response. The latter might add to the noxious response 
of the pathogen itself. Furthermore it was demonstrated that B-cell superantigens are able to 
stimulate B-cells to produce IgG which is detected as oligoclonal bands by isoelectric 
focussing. These oligoclonal bands resemble those found in the CSF of MS-patients.  
Beside bacterial infections, the presented findings could be of special relevance for viral 
encephalitis and possibly for multiple sclerosis.  

8. Acknowledgement 

A.E. gratefully acknowledges the support obtained within the Wilhelm-Roux-grant (FKZ 
21/22) by the Martin-Luther-University of Halle-Wittenberg. 

9. References 

Antony, JM; Deslauriers, AM; Bhat, RK; Ellestad, KK; Power, C. (2011). Human endogenous 
 retroviruses and multiple sclerosis: innocent bystanders or disease determinants? 
 Biochim Biophys Acta, Vol. 1812, No. 2, pp. 162-176 

Barnett, MH; Prineas, JW. (2004). Relapsing and remitting multiple sclerosis: pathology of 
 the newly forming lesion. Annals of Neurolgy, Vol. 55, No. 4, pp. 458-468 

Boven, LA; Montagne, L; Nottet, HS; De Groot, CJ. (2000). Macrophage inflammatory 
 protein-1alpha (MIP-1alpha), MIP-1beta, and RANTES mRNA semiquantification 
 and protein expression in active demyelinating multiple sclerosis (MS) lesions. 
 Clinical and Experimental Immunology, Vol. 122, No. 2,pp. 257–263 

Carmody, RJ; Hilliard, B; Maguschak, K; Chodosh, LA; Chen, YH. (2006). Genomic scale 
 profiling of autoimmune inflammation in the central nervous system: the nervous 
 response to inflammation. Journal of Neuroimmunology, Vol. 133, No. 1, pp. 95–107 

Damle, NK; Leytze, G; Klussman, K; Leadbetter, JA. (1993). Activation with superantigens 
 induces programmed death in antigen-primed CD4+ class II major 
 histocompatibility complex T lymphocytes via a CD11a/CD18- dependent 
 mechanism. European Journal of Immunology, Vol. 23, No.7, pp.  1513–1522 

www.intechopen.com



 
Pathogenesis of Encephalitis 

 

230 

Dos Santos, AC; Barsante, MM; Arantes, RM; Bernard, CC; Teixeira, MM; Carvalho-Tavares, 
 J. (2005). CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune 
 encephalomyelitis – an intravital microscopy study. Journal of Neuroimmunology, 
 Vol. 162, No. 1, pp. 122–129 

Emmer, A; Gerlach, K; Staege, MS; Kornhuber, ME. (2008). Cerebral gene expression of 
 superantigen encephalitis in the lewis rat induced by Staphylococcal enterotoxin A. 
 Scandinavian Journal of Immunology, Vol. 67, No. 5, pp. 464–472 

Emmer, A; Gerlach, K; Staege, MS; Kornhuber ME. (2010). T-cell subsets of the encephalitis 
 induced by the superantigen Staphylococcal Enterotoxin A (SEA) in the Lewis rat: 
 an immunohistochemical investigation. Cellular Immunology, Vol. 264, No. 1, pp. 
 93-96 

Espejo, C; Penkowa, M; Demestre, M; Montalban, X; Martinez Caceres, EM. (2005). Time 
 course expression of CNS inflammatory, neurodegenerative tissue repair markers 
 and metallothioneins during experimental autoimmune encephalomyelitis. 
 Neuroscience, Vol. 32, No. 4, pp. 1135–1149 

Espejo, C ; Martinez-Caceres, EM. (2005). The role of metallothioneins in experimental 
 autoimmune encephalomyelitis and multiple sclerosis. Annals of New York Academy 
 of Science, Vol. 1051, pp. 88–96 

Fainardi, E; Castellazzi, M; Tamborino, C; Seraceni, S; Tola, MR; Granieri, E; Contini, C. 
 (2009). Chlamydia pneumoniae-specific intrathecal oligoclonal antibody response is 
 predominantly detected in a subset of multiple sclerosis patients with progressive 
 forms. Journal of Neurovirology, Vol. 15, No.5, pp. 425-433 

Fields, BA; Malchiodi, EL; Li, H; Ysern, X; Stauffacher, CV; Schlievert, PM; Karjalainen, K; 
 Mariuzza, RA. (1996). Crystal structure of a T-cell receptor beta-chain complexed 
 with a superantigen. Nature, Vol. 384, No. 6605, pp. 188–192 

Filippi, M; Rocca, MA; Martino, G; Horsfield, MA; Comi, G. (1998).  Magnetization transfer 
 changes in the normal appearing white matter precede the appearance of 
 enhancing lesions in patients with multiple sclerosis. Annals of Neurology, Vol. 43, 
 No. 6, pp. 809-814 

Ford, ML; Onami, TM; Sperling, AI; Ahmed, R; Evavold, BD. (2003). CD43 modulates 
 severity and onset of experimental autoimmune encephalomyelitis. Jounal of 
 Immunology, Vol. 171, No. 12, pp. 6527–6533 

Fleischer, B. (1991). Stimulation of the immune system by microbial ‘‘superantigens”, 
 Immun Infekt, Vol. 19, No. 1, pp. 8–11 

Franciotta, D; Di Stefano, AL; Jarius, S; Zardini, E; Tavazzi, E; Ballerini, C; Marchioni. E; 
 Bergamaschi, R; Ceroni, M. (2011). Cerebrospinal BAFF and Epstein-Barr virus-
 specific oligoclonal bands in multiple sclerosis and other inflammatory 
 demyelinating neurological diseases. Journal of Neuroimmunology, Vol. 230, No. 1, 
 pp. 160- 163 

Fraser, JD. High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. (1989). 
 Nature, Vol. 339, No. 6221, pp. 221–223 

Friedl, P; Brocker, EB. (2000). The biology of cell locomotion within threedimensional 
 extracellular matrix. Cellular and Molecular Life Sciences, Vol. 57, No. 1, pp. 41–64 

Frisullo, G; Angelucci, F; Caggiula, M. (2006). PSTAT1, pSTAT3 and Tbet expression in 
 peripheral blood mononuclear cells from relapsing-remitting multiple sclerosis 

www.intechopen.com



 
Superantigen-Mediated Encephalitis 

 

231 

 patients correlates with disease activity. Journal of Neuroscience Research, Vol. 84, No. 
 5, pp. 1027–1036 

Garson, JA; Tuke, PW; Giraud, P; Paranhos-Baccala, G; Perron, H. (1998). Detection of 
 virion-associated MSRV-RNA in serum of patients with multiple sclerosis. The 
 Lancet, Vol. 351, No. 9095, pp. 33 

Goodyear, CS; Silverman, GJ. (2005). B cell superantigens: a microbe's answer to innate-like 
 B cells and natural antibodies. Springer Seminars in Immunopathology, Vol. 26, No. 4, 
 pp. 463-484 

Herrman, A; Croteua, G; Sekaly, RP; Kappler, J; Marrack, P. (1990). Effect of isotypes and 
 allelic polymorphism on the binding of staphylococcal exotoxins to MHC class II 
 molecules. Journal of Experimental Medicine, Vol. 172, No. 1, pp. 709–717 

Hofmann, N; Lachnit, N; Sreppel, M. (2002). Increased expression of ICAM-1, VCAM-1, 
 MCP-1 and MIP-1 alpha by spinal perivascular macrophages during experimental 
 allergic encephalomyelitis in rats. BMC Immunology, Vol. 26, pp. 3–11 

Jee, Y; Kim, G; Tanuma, N; Matsumoto, Y. (2001). STAT expression and localization in the 
 central nervous system during autoimmune encephalomyelitis in Lewis rats. 
 Journal of Neuroimmunology, Vol. 114, No. 1, pp. 40–47 

Jelonek, MT; Classon, BJ; Hudson, PJ; Margulies, DH. (1998). Direct binding of the MHC 
 class I molecule H-2Ld to CD8: interaction with the amino terminus of a mature cell 
 surface protein. Journal of Immunology, Vol. 160, No. 6, pp. 2809–2814 

Jilek, S; Schluep, M; Rossetti, AO. (2007). CSF enrichment of highly differentiated CD8+ T 
 cells in early multiple sclerosis. Clinical Immunology, Vol. 123, No. 1, pp. 105–113 

Joseph, FG; Hirst, CL; Pickersgill, TP; Ben-Shlomo, Y; Robertson, NP; Scolding, NJ. (2009). 
  CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control 

 study of 100 patients. Journal of Neurology, Neurosurgery and Psychiatry, Vol. 80, No. 
 3, pp. 292-296 

Kappler, J; Kotzin, B; Herron, L; Gelfand, EW; Bigler, RD; Boylston, A; Carrel, S; Posnett, 
 DN; Choi, Y; Marrack, P. (1989). V beta-specific stimulation of human T cells by 
 staphylococcal toxins. Science. Vol. 244, No. 4906, pp. 811-813 

Kim, MD; Cho, HJ; Shin, T. (2004). Expression of osteopontin and its ligand, CD44; in the 
 spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. 
 Journal of Neuroimmunology, Vol. 151, No. 1, pp. 78–84 

Kornhuber, ME; Ganz, C; Lang, R; Brill, T; Schmahl, W. (2002). Focal encephalitis in the 
 Lewis rat induced by intracerebral enterotoxin superantigen and amplified by 
 activated intravenous splenocytes. Neuroscience Letters, Vol. 324, No. 2, pp. 93–96 

Kornhuber, ME. (2006). Noninflammatory pathogenesis of lesions in multiple sclerosis. 
 Nervenarzt, Vol. 77, No. 8, pp. 989-990 

Levine, SM; Chakrabarty, A. (2004). The role of iron in the pathogenesis of experimental 
 allergic encephalomyelitis and multiple sclerosis. Annals of the New York Academy of 
 Science, Vol. 1012, pp. 252–266 

Lindberg, RLP; De Groot, CJA; Certa, U. (2004). Multiple sclerosis as a generalized CNS 
 disease – comparative microarray analysis of normal appearing white matter and 
 lesions in secondary progressive MS. Journal of Neuroimmunology, Vol. 152, No. 1, 
 pp. 154– 167 

Liu, GZ; Fang, LB; Hjelmstrom, P; Gao, XG. (2007). Increased CD8+ central memory T cells 
 in patients with multiple sclerosis. Multiple Sclerosis, Vol. 13, No. 2, pp. 149–155 

www.intechopen.com



 
Pathogenesis of Encephalitis 

 

232 

Lock, C; Hermans, G; Pedotti, R; Brendolan, A; Schadt, E; Garren, H. (2002). Gene-microrray 
 analysis of multiple sclerosis lesions yields new targets validated in immune 
 encephalomyelitis. Nature Medicine, Vol. 8, No. 5, pp. 500–508 

Makida, R; Hofer, MF; Takase, K; Cambier, JC; Leung, DY. (1996). Bacterial superantigens 
 induce V beta-specific T cell receptor internalization. Molecular Immunology, Vol. 33, 
 No. 10, pp. 891–900 

Mattson, DH; Roos, RP; Arnason, BG. (1980). Isoelectric focusing of IgG eluted from 
 multiple sclerosis and subacute sclerosing panencephalitis brains. Nature, Vol., 287, 
 No. 5780, pp. 335-337 

Müller-Alouf, H; Carnoy, C; Simonet, M; Alouf, JE. (2001). Superantigen bacterial toxins, 
 state of the art. Toxicon, Vol. 39, No. 11, pp. 1691–1701 

Müller, S; Köhler, H. (1997). B cell superantigens in HIV-1 infection. International Reviews of 
 Immunology, Vol. 14, No. 4, pp. 339-349. 

Neshat, MN; Goodglick, L; Lim, K; Braun, J. (2000). Mapping the B cell superantigen binding 
 site for HIV-1 gp120 on a V(H)3 Ig. International Immunology, Vol. 12, No. 3, pp. 
 305-312 

Niedergang, F; Hémar, A; Hewitt, CR; Owen, MJ; Dautry-Varsat, A; Alcover, A. (1995). The 
 Staphylococcus aureus enterotoxin B superantigen induces specific T cell receptor 
 down-regulation by increasing its internalization. Journal of Biological Chemistry, 
 Vol. 270, No. 21,  pp. 12839–12845 

Owens, GP; Bennett, JL; Lassmann, H; O'Connor, KC; Ritchie, AM; Shearer, A; Lam, C; Yu, 
 X; Birlea, M; DuPree, C; Williamson, RA; Hafler, DA; Burgoon, MP; Gilden, D. 
 (2009). Antibodies produced by clonally expanded plasma cells in multiple 
 sclerosis cerebrospinal fluid. Annals of Neurology, Vol. 65, No. 6, pp. 639-649 

Pagenstecher, A; Stalder, AK; Kincaid, CL; Shapiro, SD; Campbell, IL. (1998). Differential 
 expression of matrix metalloproteinase and tissue inhibitor of matrix 
 metalloproteinase genes in the mouse central nervous system in normal and 
 inflammatory states. American Journal of Pathology, Vol. 152, No. 3, pp. 729–741 

Patke, CL; Shearer, WT. (2000). gp120- and TNF-alpha-induced modulation of human B cell 
 function: proliferation, cyclic AMP generation, Ig production, and B-cell receptor 
 expression. Journal of Allergy and Clinical Immunology, Vol. 105, No. 5, pp. 975-982 

Penkowa, M; Hidalgo, J. (2003). Treatment with metallothionein prevents demyelination 
 and axonal damage and increases oligodendrocyte precursors and tissue repair 
 during experimental autoimmune encephalomyelitis. Journal of Neurosciene 
 Research, Vol. 72, No. 5, pp. 574–586 

Perron, H; Lang, A. (2010). The human endogenous retrovirus link between genes and 
 environment in multiple sclerosis and in multifactorial diseases associating 
 neuroinflammation. Clinical Reviews in Allergy and Immunology, Vol. 39, No. 1, pp. 
 51-61 

Raivich, G; Banati, R. (2004). Brain microglia and blood-derived macrophages: molecular 
 profiles and functional roles in multiple sclerosis and animal models of 
 autoimmune demyelinating disease. Brain Research Reviews, Vol. 46, No. 3, pp. 261–
 281 

Redwine, JM; Buchmeier, MJ; Evans, CF. (2001). In vivo expression of major 
 histocompability complex molecules and neurons during viral infection. American 
 Journal of Pathology, Vol. 159, No. 4, pp. 1219–1224 

www.intechopen.com



 
Superantigen-Mediated Encephalitis 

 

233 

Reiber, H; Ungefehr, S; Jacobi, C. (1998). The intrathecal, polyspecific and oligoclonal 
 immune response in multiple sclerosis. Multiple Sclerosis, Vol. 4, No. 5, pp. 111-117 

Reichert, F; Rotshenker, S. (1999). Galectin-3 / MAC-2 in experimental allergic 
 encephalomyelitis. Experimental Neurology, Vol. 160, No. 1, pp. 508–514 

Rotshenker, S. (2003). Microglia and macrophage activation and the regulation of 
 complement-receptor-3 (CR3 / MAC-1)-mediated myelin phagocytosis in injury 
and  disease. Journal of Molecular Neuroscience, Vol. 21, No. 1, pp. 65–72 

Sedgwick, JD; Schwender, S; Gregersen, R; Dörries, R; ter Meulen, V. (1993). Resident 
 macrophages (ramified microglia) of the adult brown Norway rat central nervous 
 system are constitutively major histocompability complex class II positive. Journal 
 of Experimental Medicine, Vol. 177, No. 4, pp. 1145–1152 

Skorstad G, Vandvik B, Vartdal F, Holmøy T. (2009). MS and clinically isolated syndromes: 
 shared specificity but diverging clonal patterns of virus-specific IgG antibodies 
 produced in vivo and by CSF B cells in vitro. European Journal of Neurology, Vol. 16, 
 No. 10, pp. 1124-1129 

Staege, MS; Hansen, G; Baersch, G; Burdach S. (2004). Functional and molecular 
 characterization of interleukin-2 transgenic Ewing tumor cells for in vivo 
 immunotherapy. Pediatric Blood and Cancer, Vol. 43, No. 1, pp. 23–34 

Steinman, L. (1999). Assessment of the utility of animal models for MS and demyelinating 
 disease in the design of rational therapy. Neuron, Vol. 24, No. 3, pp. 511–514 

Stoll, G. (2002). Inflammatory cytokines in the nervous system. Multifunctional mediators in 
 autoimmunity and cerebral ischemia. Reviews in Neurology., Vol. 158, pp. 887–891 

Tajouri, L; Mellick, AS; Ashton, KJ. (2003). Quantitative and qualitative changes in gene 
 expression pattern characterize the activity of plaques in multiple sclerosis. 
 Molecular Brain Research, Vol. 119, No. 2, pp. 170–183 

Tan, GJ; Zhu, YF; Cao, CF; Zhao, XY; Ma, CS; Yang, TZ. (2004). Dynamic changes of heme 
 oxygenase-1 protein and mRNA in the brains of rats with experimental allergic 
 encephalomyelitis. Sheng Li Xue Bao, Vol. 56, No. 5, pp. 579–584 

Tani, M; Glabinski, AR; Tuohy, VK; Stoler, MH; Estes, ML; Ransohoff, RM. (1996). In situ 
 hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of 
 biphasic astrocyte activation during acute experimental autoimmune 
 encephalomyelitis. American Journal of Pathology, Vol. 148, No. 3, pp. 889–896 

Tanuma, N; Sakuma, H; Sasaki, A; Matsumoto, Y. (2006). Chemokine expression by 
 astrocytes plays a role in microglia/macrophage activation and subsequent 
 neurodegeneration in secondary progressive multiple sclerosis. Acta 
 Neuropathologica, Vol. 112, No. 2 ,pp. 195–204 

Torkildsen O, Brunborg LA, Myhr KM, Bø L. (2008). The cuprizone model for 
 demyelination. Acta Neurologca Scandinavica Supplementum, Vol. 188, pp. 72-76 

Tusher, VG; Tibshirani, R; Chu, G. (2001) Significance analysis of microarrays applied to the 
 ionizing radiation response. Proceedings of the National Academy of Science of the USA, 
 Vol. 98, No. 9, pp. 5116–5121 

Von Essen, M; Menné Bonefeld, C; Siersma, V; Rasmussen, AB; Lauritsen, JPH; Nielsen, BL; 
 Geisle, C. (2004). Constitutive and ligand-induced TCR degradation. Journal of 
 Immunology, Vol. 173, No 1, pp. 384–393  

Wekerle, H; Linington, C; (1986). Lassmann, H; Meyermann, R. Cellular immunoreactivity 
 within the CNS. Trends in Neuroscience, Vol. 9, pp. 271–277 

www.intechopen.com



 
Pathogenesis of Encephalitis 

 

234 

Wilkinson, B; Koenigsknecht-Talboo, J; Grommes, C; Lee, CY; Landreth, G. (2006). Fibrillar 
 beta-amyloid-stimulated intracellular signalling cascades require Vav for induction 
 of respiratory burst and phagocytosis in monocytes and microglia. Journal of 
 Biological Chemistry, Vol. 281, No. 30, pp. 20842–20845 

Yagi, J; Baron, J; Buxser, S; Janeway Jr., CA. (1990). Bacterial proteins that mediate the 
 association of a defined subset of T cell receptor: CD4 complexes with class II 
 MHC. Journal of Immunology, Vol. 3, No. 3, pp. 892–901 

Zouali, M. (2007). B cell superantigens subvert innate functions of B cells. Chemical 
 Immunology and Allergy, Vol. 93, p. 92-105. 

www.intechopen.com



Pathogenesis of Encephalitis

Edited by Dr. Daisuke Hayasaka

ISBN 978-953-307-741-3

Hard cover, 344 pages

Publisher InTech

Published online 09, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Many infectious agents, such as viruses, bacteria, and parasites, can cause inflammation of the central

nervous system (CNS). Encephalitis is an inflammation of the brain parenchyma, which may result in a more

advanced and serious disease meningoencephalitis. To establish accurate diagnosis and develop effective

vaccines and drugs to overcome this disease, it is important to understand and elucidate the mechanism of its

pathogenesis. This book, which is divided into four sections, provides comprehensive commentaries on

encephalitis. The first section (6 chapters) covers diagnosis and clinical symptoms of encephalitis with some

neurological disorders. The second section (5 chapters) reviews some virus infections with the outlines of

inflammatory and chemokine responses. The third section (7 chapters) deals with the non-viral causative

agents of encephalitis. The last section (4 chapters) discusses the experimental model of encephalitis. The

different chapters of this book provide valuable and important information not only to the researchers, but also

to the physician and health care workers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

A. Emmer, K. Gerlach, M. S. Staege and M. E. Kornhuber (2011). Superantigen-Mediated Encephalitis,

Pathogenesis of Encephalitis, Dr. Daisuke Hayasaka (Ed.), ISBN: 978-953-307-741-3, InTech, Available from:

http://www.intechopen.com/books/pathogenesis-of-encephalitis/superantigen-mediated-encephalitis



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


