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1. Introduction  

When a synthetic material is placed within the human body, tissue reacts towards the 
implant in a variety of ways depending on the material type. The mechanism of tissue 
interaction (if any) depends on the tissue response to the implant surface. In general, there 
are three terms in which a biomaterial may be described in or classified into representing the 
tissues responses. These are bioinert, bioresorbable, and bioactive.  
Biomaterials are often used and/or adapted for a medical application, thus comprises whole 
or part of living structures or biomedical devices which performs, augments, or replaces 
biological functions. Biomaterials are used in dental and surgical applications, in controlled 
drug delivery applications. A biomaterial may be an autograft, an allograft or a xenograft 
used as a transplant material. 
Biomaterials are mostly polymers produced by monomers, and are used in artificial organ 
production in contemporary medicine.  They are prepared by the polymerization reaction of 
certain monomers.  
In several previous studies, we investigated whether acrylamide, methacrylamide, N-
isopropylacrylamide, acrylic acid, 2-hydroxyethyl methacrylate, 1-vinyl-2-pyrrolidone and 
ethylene glycol had cytotoxic effects and induced apoptosis or not in spinal cord.  
Immunolocalization of glial fibrillary acidic protein (GFAP) was also determined, and it was 
evaluated by using semi-quantitative morphometrical techniques. The cytotoxicity of 
monomers on cultured fibroblastic cell lines was also examined in vitro. 
Acrylic acid had the most cytotoxic effect when compared to the methacrylamide and the 
ethylene glycol groups. GFAP immunoreactivity was found to be rather stronger in the 
methacrylamide than the other monomers application groups. The methacrylamide, 
acrylic acid, N-vynil pyrrolidine, acrylamide, N-isopropylacrylamide and 2-hydroxyethyl 
methacrylate application groups had TUNEL positive cells when compared to the other 
groups. While some monomers used in biomaterial production seemed not to affect the 
cell viability and GFAP immunoreactivity, some other monomers had adverse effects on 
those features. This in turn may contribute to the pathological changes associated to the 
monomer type.  
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In our previous other works, in vitro swelling and in vivo biocompatibility of radiation 
crosslinked acrylamide and its co-polymers such as acrylamide (AAm) and 
acrylamide/crotonic acid (AAm/CA), acrylamide/itaconic acid (AAm/IA), and 
acrylamide/maleic acid (AAm/MA) hydrogels were investigated.  
The radiation crosslinked AAm, AAm/CA, AAm/IA and (AAm/MA) co-polymers were 
found to be well tolerated, non-toxic and highly biocompatible. 
On the other hand, calcium phosphate ceramics and xenografts have been used in different 
fields of medicine and dentistry. We demonstrated the effects of calcium phosphate 
ceramics (Ceraform) and xenograft (Unilab Surgibone) in the field of experimentally created 
critical size parietal bone defects in rats. Although Ceraform was less resorptive and not 
osteoconductive properties, it could be considered as a biocompatible bone defect filling 
material having a limited application alternative in dentistry and medicine. However, 
xenograft seems biocompatible, osteoconductive, and could be used in a limited manner as a 
filling material in osseous defects in clinical practice. 

2.Toxicological effect of the water-soluble monomers 

2.1 Monomers 
Monomer is a molecule of any of a class of compounds, mostly organic, that can react with 
other molecules of the same or other compound to form very large molecules, or polymers. 
The essential feature of a monomer is polyfunctionality, the capacity to form chemical bonds 
to at least two other monomer molecules. Bifunctional monomers can form only linear, 
chainlike polymers, but monomers of higher functionality yield cross-linked, network 
polymeric products. Toxicological effects of the monomers are changing from very low 
(zero) to very high.  
Some polymeric biomaterials such as hydrogels are produced by the effect of initiator such 
as chemical initiator, heat, light or high energy radiation from the water soluble-monomers.  

2.2 Cytotoxic effects 
Biomaterial suitable for a biomedical application must be biocompatible at least on its 
surface. In several previous studies, we investigated whether acrylamide, methacrylamide, 
N-isopropylacrylamide, acrylic acid, 2-hydroxyethyl methacrylate, 1-vinyl-2-pyrrolidone 
and ethylene glycol used in polimeric biomaterial production had cytotoxic effects (Unver 
Saraydin et al., 2011). The cytotoxicity of xenograft (one of the alternative graft materials) 
was also examined in vitro (Unver Saraydin et al., 2011). 
The viability of cultured fibroblastic cell lines following all monomer applications except for 
the ethylene glycol group were found to be decreased in all time intervals (Figure 1, 2), and 
differences were statistically significant (p<0.05). In addition, the cell viability was 
significantly (p<0.05) lower in the acrylamid application group when compared to the 
control group. Acrylic acid demonstrated the maximum cytotoxic effect when compared to 
the methacrylamide and ethylene glycol groups. On the other hand, the ethylene glycol 
group showed no cytotoxicity for cells (Graphic 1). 
In our study of the xenograft cytotoxic activities, the xenograft showed no cytotoxicity for 
the cells (Figure 3).  There was no decolorization zone around the samples.  Although the 
cells were directly in contact with the xenograft in the culture media, they did not show any 
signs of injury and preserved their morphological characteristics and wholeness like those 
seen in the controls.  
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Fig. 1. Fibroblast viability %100 after  12 h incubation period with ethylene glycol 
 

 
Fig. 2. Fibroblast viability % 0 after 12h incubation period with N-isopropyl acrylamide 
 

 
Graphic 1. Shows the cell viability alterations between groups in the fibroblastic cell lines by 
the time. 

www.intechopen.com



 
Biomaterials – Physics and Chemistry 

 

428 

 
Fig. 3. There is no cytotoxicity for the cells. 

2.3 Neurotoxic effects 
Several studies revealed neurotoxic effects as well as ataxi and muscle weakness caused by 
biomaterials on humans and on laboratory animals. It has been suggested that they cause 
axonal degeneration in central and peripheric nervous system (Barber et al., 2001). 
Astrocytes are the stellate glial cells in the central nervous system, which play a major role 
in supporting neurons, scar formation and development and maintenance of the blood-brain 
barrier. The physiological and metabolic properties of astrocytes indicate that those cells are 
involved in the regulation of water, ions, neurotransmitters, and pH of the neuronal milieu 
(Montgomery 1994). They are also implicated in protection against toxic insults such as 
excitotoxicity and oxidative stress (Lamigeon et al., 2001). Glial fibrillary acidic protein 
(GFAP) is an intermediate filament protein found predominantly in astrocytes (McLendon 
1994). Therefore it is important to determine the glial fibrillary acidic protein (GFAP) 
immunoreactivity in astrocytes for the evaluation of biomateials. 
In our study, immunolocalization of glial fibrillary acidic protein (GFAP) was determined, 
and it was evaluated by using semi-quantitative morphometrical techniques (Unver 
Saraydin et al., 2011). GFAP immunoreactivity was found to be very strong in the 
methacrylamide, N-isopropylacrilamid, ethylene glycol and N-vinyl pyrrolidine application 
groups whereas it was weak in acrylic acid, acrylamide and 2-hydroxyethyl metacrylad 
applied groups (Table 1, Figure 4-10). Changes in GFAP immunoreactivity could be due to 
following conditions; astrocyte dysfunction, astrocyte loss accompanied by astroglial cell 
proliferation, de-differentiation, and changes in functional state of neuronal cell types, thus 
altering the neuron-glial homeostasis. The over-expression of GFAP could probably indicate 
the protective strategy of these tissues.  
Although the neurotoxicity of acrylamide and many monomers has been known since 1950s, 
its’ mechanisms have remained obscure (Lee et al., 2005, Gold and Schaumburg, 2000). 
Acrylamide increases p53 protein (Okuno et al., 2006), recent studies indicate that it plays a 
role in apoptotic cell death in neurons (Morrison et al., 2003). Acrylamide can activate 
caspase- 3 and cause apoptosis in neuronal cells (Sumizawa and Igisu, 2007). The cellular 
process of apoptosis is an important component of tissue and organ development as well as 
the natural response to disease and injury (David et al., 2003). DNA fragmentation in 
neurons was characterized by double staining with terminal deoxynucleotidyl transferase-
mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) (Bao and Liu, 2004). 
To our knowledge, however, it has not been determined whether acrylamide and other 
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Fig. 4. Control group GFAP immunoreactivity. GFAP40X 

 

 
Fig. 5. GFAP immunoreactivity 6 week after Acrylic acid exposure. GFAP 40X 

 

 
Fig. 6. GFAP immunoreactivity 2 week after Acrylamide exposure. GFAP 40X 
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Fig. 7. GFAP immunoreactivity 6 week after 2-hydroxyethyl methacrylate exposure GFAP 40X 

 

 

Fig. 8. GFAP immunoreactivity 4 week after methacrylamide exposure GFAP 40X 

 

 
Fig. 9. GFAP immunoreactivity 6 week after N-isopropylacrylamide exposure GFAP 40X 
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Fig. 10. GFAP immunoreactivity 4 week after N-vinyl pyrrolidone exposure. GFAP 40X 
 

Monomer 1st week 2nd week 4th week 6 th week 12 th week 
Ethylene glycol  ++ ++ +++ ++ ++ 
N-vinyl pyrrolidone +++ +++ +++ +++ ++ 
2-hydroxyethyl methacrylate + ++ +++ ++ ++ 
Acrylamide  ++ ++  
Methacrylamide +++ +++ ++ ++ + 
N-isopropylacrylamide +++ +++ +++ +++  
Acrylic acid  + ++ ++ ++ 
Control  +++ +++ +++ +++ +++ 

Table 1. Demonstrates the semi-quantitative scoring findings of GFAP immunolocalization 
in rat medullaspinalis following 1, 2, 4, 6 and 12 weeks of particular monomer applications 

monomers cause apoptosis in neuronal cells. We therefore examined apoptosis by using 
terminal deoxynucleotydil transferase dUTP nick and labelling (TUNEL) method in spinal 
cord (Unver Saraydin et al., 2011). 
While TUNEL positive cells has been detected rarely in the control and in the ethylen glycol 
application groups, numerous TUNEL positive cells were intensively observed in the spinal 
cord of the methacrylamide, acrylic acid, N-vinyl pyrrolidine, acrylamide, N-
isopropylacrylamide and 2-hydroxyethyl metacrylate application groups (Figure 11-14). 
 

 
Fig. 11. TUNEL-positive apoptotic cells in the control group. TUNEL 100X 
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Fig. 12. TUNEL positive cells 6 week after 2-hydroxyethyl methacrylate. TUNEL 100X 

 

 
Fig. 13. TUNEL positive cells 6 week after N-isopropylacrylamide. TUNEL 100X 

 

 
Fig. 14. TUNEL positive cells 6 week after N-vinyl pyrrolidine. TUNEL 100X 
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3. Polymeric biomaterials 

Some polymeric biomaterials such as hydrogels are made of water-soluble molecules, 
connected usually by covalent bonds, forming a three-dimensional insoluble network. The 
space between chains is accessible for diffusion of solutes and this space is controllable by 
the level of cross-linked (connected) molecules. They usually show good biocompatibility in 
contact with blood, body fluids, and tissues. Therefore, they are very often used as 
biomaterials for medical purposes, for instance contact lenses, coating of catheters, etc. 
Biomaterials are defined as materials that can be interfaced with biological systems in order 
to evaluate, treat, augment, or replace any tissue, organ, or function of the body. 
The clinical application of a biomaterial should not cause any adverse reaction in the 
organism and should not endanger the life of the patient; any material to be used as part of a 
biomaterial device has to be biocompatible. The definition of biocompatibility includes that 
the material has to be nontoxic, non-allergenic, noncarcinogenic, and non-mutagenic, and 
that it does not influence the fertility of a given patient. Preliminary use of in vitro methods 
is encouraged as screening tests prior to animal testing. In order to reduce the number of 
animals used, these standards use a step-wise approach with review and analysis of test 
results at each stage. Appropriate in vitro investigations can be used for screening 
prospective biomaterials for estimations of toxic effect. Cytotoxicity in vitro assay is the first 
test to evaluate the biocompatibility of any material for use in biomedical devices (Rogero 
et.al. 2003). 
Hydrogels can be synthesized by accomplishing crosslinking via -irradiation (Guven, O; 
et.al. 1999, Saraydın et.al. 1995, 2002, Karadağ et. al. 2004). However, little work is done on 
the biomedical applications of the hydrogels prepared by crosslinking of a homo- or 
copolymer in solution with -irradiation. It is well known that the presence of an initiator 
and a crosslinking agent affects the macromolecular structure and phase behavior of 
hydrophilic polymers in solution and contributes to inhomogeneity of the network 
structure. It is argued that more homogeneous network structures can be synthesized, if 
crosslinking is accomplished with -irradiation in the absence of an initiator and a 
crosslinking agent. The structural homogeneity of the network affects the swelling behavior 
and mechanical properties that improved the biological response of materials and 
subsequently the performance of many medical devices (Benson 2002). Thus, looking to the 
significant consequences of biocompatibility of biomaterials, we, in the present study, are 
reporting the results on the biocompatibility with the copolymeric hydrogels prepared with 
acrylamide (AAm) and crotonic acid (CA) or itaconic acid (IA) or maleic acid (MA) via 
radiation technique. The selection of AAm as a hydrophilic monomer for synthesizing 
hydrogel rests upon the fact that it has low cost, water soluble, neutral and biocompatible, 
and has been extensively employed in biotechnical and biomedical fields. On the other 
hand, CA monomer consists of single carboxyl group, while IA and MA monomers are 
consisting of double carboxyl groups. These carboxylic acids could provide the different 
functional characteristics to acrylamide-based hydrogels. So, these monomers were selected 
for the preparation of the hydrogels and their biocompatibility studies.  
In our previous other works, in vitro swelling and biocompatibility of blood in vivo 
biocompatibility of radiation crosslinked acrylamide co-polymers such as acrylamide 
(AAm), acrylamide/crotonic acid (AAm/CA), acrylamide/itaconic acid (AAm/IA) and 
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acrylamide/maleic acid (AAm/MA) hydrogels were investigated (Saraydin et al., 1995, 
Karadağ et. al. 1996, Saraydin et al., 2001, 2004). 

3.1 In vitro swelling of the hydrogels in the simulated body fluids 
In this stage of the study, the swelling of the hydrogels in the simulated physiological body 
fluids was investigated (Saraydin et al., 1995, Karadağ et. al. 1996). 
The phosphate buffer at pH 7.4 (pH of cell fluid, plasma, edema fluid, synovial fluid, 
cerebrospinal fluid, aqueous humour, tears, gastric mucus, and jejunal fluid), glycine-HCl 
buffer at pH 1.1 (pH of gastric juice), human sera, physiological saline and distilled water 
intake of initially dry hydrogels were followed for a long time until equilibrium (Saraydin et 
al., 2001, 2002). 
The fluid absorbed by the gel network is quantitatively represented by the EFC (equilibrium 
body fluids content), where: EFC% = [mass of fluid in the gel/mass of hydrogel] x 100. EFCs 
of the hydrogels for all physiologically fluids were calculated. The values of EFC% of the 
hydrogels are tabulated in Table 2.  
 

Simulated body fluid AAm AAm /CA AAm /MA AAm /IA 
Distilled Water 86.3 93.9 94,7 92.0 
Isoosmotic phosphate buffer 87.5 93.8 89,7 92.2 
Gastric fluid 87.7 93.6 92,4 88.7 
physiological saline 87.8 92.9 89,7 88.7 
Human Sera 88.6 92.5 89.8 86.4 
In rat 89.0 93.1 91.9 91.7 

Table 2. EFC values of the hydrogels  

All EFC values of the hydrogels were greater than the percent water content values of the 
body about 60%. Thus, the AAm and AAm/CA, AAm/MA and AAm/IA hydrogels were 
exhibit similarity of the fluid contents with those of living tissues. 

3.2 In vitro blood biocompatibility 
In the second stage of this study, the biocompatibility of the hydrogels was investigated 
against some biochemical parameters of human sera at 25 OC. 
The mean and standard deviation values of control and test groups for biochemical 
parameters of human sera are listed in Table 3.  
Table 3 shows that the values of means of control and test groups are in the range of normal 
values and there is no significant difference in values before and after contacting these sera 
with the hydrogels. On the other hand, Student's t-test is applied to control and test groups. 
No significant difference in values of biochemical parameters was found. 

3.3 In vivo tissue biocompatibility 
In this part, hydrogels based on copolymer of AAm, AAm/MA, AAm/CA and AAm/IA 
with capacity of absorbing a high water content in biocompatibility with subcutaneous 
tissues of rats were examined. After one week implantation, no pathology such as necrosis, 
tumorigenesis or infection were observed in the excised tissue surrounding the hydrogels 
and in skin, superficial fascia and muscle tissues in distant sites. After 2–4 weeks, thin 
fibrous capsules were thickened. A few macrophage and lymphocyte were observed in 
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Biochemical parameters of
human serum / Unit 

Normal 
values

Control AAm AAm/CA AAm/MA AAm/IA 

Glucose/mg dl-1 70-110 87.0±8.2 91.0± 6.1 88.1±3.99 88.8±6.0 88.4±5.30 
Triglyceride/mg dl-1 40-160 127.3±24.6 127.0±25.8 130.6±19.9 127.2±25.1 125.6±20.7 
Cholesterol/mg dl-1 125-350 158.6±10.9 160.6±14.3 159.8±11.3 157.8±10.8 160.6±14.3 
BUN/mg dl-1 8-25 14.8±1.27 15.2±4.56 14.6±3.73 15.2±4.10 15.6±3.84 
Creatinin/mg dl-1 0.8-1.6 0.98±0.14 1.06±0.17 1.02±0.14 0.98±0.18 1.00±0.18 
Total protein/g dl-1 6.0-8.4 6.52±0.15 6.72±0.15 6.70±0.13 6.60±0.22 6.48±0.30 
Albumin/mg dl-1 3.5-5.6 4.02±0.15 3.88±0.15 3.98±0.18 3.96±0.20 3.94±0.10 
Alkaline phosphatase/U 35-125 53.6± 13.1 54.5±12.3 54.0±14.9 52.6±12.6 52.6± 10.3 
Alanine transaminase/U 7-56 14.6±2.12 16.0±2.63 15.7±3.23 15.9±2.47 16.0±2.63 
Aspartate transaminase/U 5-40 16.2±5.33 15.2±3.19 16.5±3.03 17.2±5.16 15.2±3.19 
Direct bilirubin/mg dl-1 0.0-0.3 0.12±0.04 0.12±0.04 0.11±0.03 0.11±0.03 0.12±0.04 
Indirect bilirubin/mg dl-1 0.1-1.1 0.45±0.05 0.35±0.09 0.35±0.09 0.45±0.05 0.40±0.07 
Chlorine/meq dl-1 95-107 98.5±2.17 98.8±2.3 98.6±2.12 97.8±1.75 98.2±2.10 
Sodium/meq dl-1 137-146 142.7±1.4 142.8± 0.9 143.0±1.6 142.7±1.4 142.0±1.6 
Potassium/meq dl-1 3.5-5.5 4.80±0.28 4.68±0.36 4.94±0.39 4.87±0.35 4.70±0.35 
Calcium/mg dl-1 8.5-10.8 9.40±0.39 9.47±0.28 9.42±0.28 9.63±0.42 9.47±0.28 
Phosphorus/mg dl-1 2.5-4.5 3.60±0.41 3.60±0.32 3.68±0.42 3.60±0.36 3.56±0.38 

Table 3. Means and standard deviations of biochemical parameters of human sera 

these fibrous capsules consisting of fibroblasts, and a grouped mast cells and lymphocyte 
were observed between tissues and capsule in the some samples (Figure 15, 16).  
 

 
Fig. 15. After one week, the implan-tation site of AAm hydrogel, H-E, 20X 

After 6–10 weeks, the adverse tissue reaction, giant cells and necrosis of cells, inflammatory 
reaction such as deposition of foamed macrophage were not observed in the implant site, 
however, it is observed to increase in the collagen fibrils due to proliferation and activation 
of fibroblasts (Fig. 17). No chronic and acute inflammation, adverse tissue reaction were 
observed in the all test groups. It is no determination related to the loss of activation and 
liveliness of cells in the capsule cells and in distant sites. No pathology were observed in the 
skin and the tissues of straight muscle in the close to implant sites. 
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Fig. 16. After 4 week, the implantation site of AAm hydrogel, H-E, 20X 

 

 
Fig. 17. 10 week postimplantation of AAm/CA hydrogel. H-E, 20X 

The thickness of the fibrous capsules were measured in the optical microscope using a 
micrometer scale. The means of five measurements for each the sample and each time point 
were calculated. The thickness of fibrous capsules are gradually increased to 6 weeks, and 
then these values are becomed a constant value. The thickness of fibrous capsule occurred 
due to AAm/CA, AAm/MA and AAm/IA hydrogels implant are high from the values of 
AAm and hydrogels. The carboxyl groups on the chemical structure and ionogenic character 
of AAm/CA, AAm/MA and AAm/IA hydrogels can be caused to the high thickness of the 
fibrous capsule (Smetana et al., 1990). The thickness of the fibrous capsules were measured 
in the optical microscope using a micrometer scale. The means of five measurements for 
each the sample and each time point were calculated and shown in Graphic 2. The thickness 
of fibrous capsules are gradually increased to 6 weeks, and then these values are becomed a 
constant value. The thickness of fibrous capsule occurred due to AAm/CA, AAm/MA and 
AAm/IA hydrogels implant are high from the values of AAm and hydrogels. The carboxyl 
groups on the chemical structure and ionogenic character of AAm/CA, AAm/MA and 
AAm/IA hydrogels can be caused to the high thickness of the fibrous capsule (Smetana et 
al., 1990). On the other hand, Student’s t test was applied to the all constant values of 
thickness of fibrous capsules of the hydrogels, and no significant differences (p >0:05) was 
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found. These thickness of fibrous capsule indicated well within the critical tissue tolerance 
range. It was given by the some reporters that the threshold capsule thickness should not 
exceed 200–250 m for an implanted biomaterial (Jeyanthi and Rao, 1990). Our results 
clearly indicated that the capsule thickness of the excised tissue were well within these 
stipulated threshold limits. On the basis of the findings we can conclude that the biological 
response against the tested hydrogels was very similar to the biocompatibility of very low 
swollen of poly(2-hydroxyethyl methacrylate) hydrogel, which considered as a biologically 
inert polymer (Smetana et al., 1990). However, it is important that the swelling of 
acrylamide based hydrogels are very high than the swelling of poly(2-hydroxyethyl 
methacrylate) hydrogels for the biomedical uses. 
 

 
Graphic 2. The curves of thickness of fibrous capsule—implantation time. 

4. Bioactive ceramic biomaterials 

Bioactive refers to a material, which upon being placed within the human body interacts 
with the surrounding bone and in some cases, even soft tissue. This occurs through a time – 
dependent kinetic modification of the surface, triggered by their implantation within the 
living bone. An ion – exchange reaction between the bioactive implant and surrounding 
body fluids – results in the formation of a biologically active carbonate apatite (CHAp) layer 
on the implant that is chemically and crystallographically equivalent to the mineral phase in 
bone. Prime examples of these materials are synthetic hydroxyapatite, glass ceramic and 
bioglass. 
Calcium phosphate ceramics and xenografts have been used in different fields of medicine 
and dentistry. We demonstrated the effects of calcium phosphate ceramics (Ceraform) and 
xenograft (Unilab Surgibone) in the field of experimentally created critical size parietal and 
mandibular bone defects in rats (Develioglu et al., 2006, 2007, 2009, 2010).  
Many researches are currently conducted to find out the ideal material to support bone 
repair or regeneration. The limitations of autogenous grafts and allogeneic bankbone have 
led to a search for synthetic alloplast alternatives. Calcium phosphate ceramics have been 
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widely used because the mineral composition of these implants materials does fully 
biocompatible (Rey C. 1990, LeGeros. 2002). The porous structure of the ceramics is claimed 
to enhance bone deposition and implant stabilization in the recipient bone. The optimal pore 
size is still debated to be ranging from 50 and 565 μm (Gauthier et al., 1998, Chang et al., 
2000). However, porosity of the material is inversely proportional to the mechanical stability 
of these calcium phosphate based ceramics (Le Huec et al., 1995). This loss of stability is 
often cited as a limitation in the use of calcium phosphate-based ceramics in clinical practice. 
A convenient compromise to overcome this problem is to use a biphasic ceramic, which 
maintains its mechanical resistance until the resorption is achieved (Gauthier et al., 1998). 
Various types of xenografts are used in medicine, dentistry, and also in periodontology.  
One of the xenografts is Unilab Surgibone, which is currently being used succesfully in 
medicine and implantology. Moreover, osteoconductive properties are also known (Zhao et 
al., 1999). Unilab Surgibone is obtained from freshly sacrificed calves which is partially 
deproteinized and processed by the manufacturers. It is available in varius shapes like 
tapered pins, blocks, cubes, granules, circular discs and pegs (Balakrishnan et al., 2000). 
Xenograft materials, bovine bones have been the most preferred ones, basically because they 
are easily obtainable and there are no great ethical considerations. Additionally they have 
the great advantage of practically unlimited availability of source/raw material. Partially 
deproteinized and defatted preparations (e.g.Unilab Surgibone) was indicated reduce 
antigenity and mild immune response (William et al., 2008).  
Generally, xenografts are one of the alternative graft materials used in different fields for 
filling osseous defects Slotte and Lundgren, 1999, Salama 1983). Nonetheless, an interesting 
alternative to xenografts is Biocoral® (natural coral), which has been shown to exhibit 
osteoconductive and biocompatible properties whereby gradual replacement with newly 
formed bone occurred after its resorption (Guillemin et al.,1989, Doherty et al., 1994, Yılmaz 
and Kuru, 1996, Yukna Ra and Yukna CN, 1998).  
Another xenogeneic, bone-derived implant material is Bio-Oss, which is similar to the 
xenograft investigated in our studies (Develioglu et al.2009, 2010). Bio-Oss has been 
proposed as a biocompatible graft material for bony defects for it has shown 
osteoconductive properties — that is, it was replaced with newly formed bone after grafting 
(Yıldırım et al, 2001, Sculean et al., 2002, Carmagnola et al., 2002). However, regarding the 
resorption of Bio-Oss, contradicting reports have emerged. On one hand, a previous study 
revealed that the bovine bone mineral underwent resorption (Pinholt et al., 1991). On the 
other hand, numerous researchers claimed that the resorption process of Bio- Oss® was very 
slow (Skoglund et al., 1997, Jensen et al 1996, Klinge et al., 1992). 
In our previous studies with Ceraform (calcium phosphate ceramics) and xenograft (Unilab 
Surgibone), multinuclear giant cells (MNGC) were observed in the implantation region on 
1st, 3rd, 6th ve 18th months. 
The observed MNGCs are featured morphologic characteristics of foreign body giant cell 
(FBGC). These cells are osteoclast-like cells. Both cell types develop from a common 
precursor (Anderson, 2000) Since foreign body giant cell (FBGC) are the fusion products 
of monocytic precursors, which are also the precursors of macrophages, (Brodbeck at al., 
2002, Matheson et al., 2004) the presence of such leukocytes in the wound healing 
compartment may be of central importance in driving the tissue reaction to the material. 
No necrosis, tumorigenesis, or infection was observed at the implant site up to 18 months 
(Figure 18-20). 
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Fig. 18. Remnants of the Xenograft (*) surrounded by fibrous tissue at 30 days.  A-T 4X. 
 

 
Fig. 19. A dense, fibrovascular tissue (*) in the side of ceraform implantation at 12th month 
M-T, 4X. 
 

 
Fig. 20. Multinuclear giant cell (↔)in the  implantation site. H-E, 40X 
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A long-term study would be useful to evaluate the biological degradation behavior of the 
material utilized in this study. BCP ceramics are well known to be biodegradable due both 
to body fluid dissolution and bio resorption cellular activity Nery et al., 1990, Piatelli et al., 
1996). It might indicate that the implants utilized in our studies are progressively resorbed, 
but the size of the particle might be big (Handschel et al., 2002) The studies reveal that 
Ceraform and xenograft are biocompatible. However, the materials did not promote bone 
formation.  

5. Conclusion 

In conclusion, while some vinyl monomers had cytotoxic effects on tissues, their polymers, 
Ceraform and Unilab Surgibone were found to be biocompatible in soft and hard tissues 
and they seem only to be beneficial bone filler materials in treatment of the bone defects. 
Unilab Surgibone and xenograft could be used as bone filler materials in the treatment of 
traumatic and post-traumatic skeletal complications (e.g delayed unions, non-unions), 
defects due to bone removal (e.g. bone tumors, congenital diseases) or low bone quality (e.g. 
osteoporosis, osteopenia) and in other medical fields. 
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