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1. Introduction

1.1 The Zhang formulation of the second law of thermodynamics, and a velocity dependent

modified Feynman-ratchet model

The Zhang [1] formulation of the second law of thermodynamics (second law) states that
no spontaneous momentum flow is possible in an isolated system. By spontaneous, it is
meant [1]: not merely (a) sustaining, i.e., permanent; but also (b) robust, i.e., capable of
withstanding dissipation, of surviving disturbances, and of generating (regenerating) itself if
initially nonexistent (if destroyed). The Zhang [1] formulation of the second law implies that,
at thermodynamic equilibrium (TEQ), not even merely sustaining momentum flow is possible,
i.e., that no systematic motion — most generally, no systematic process — is possible at TEQ:
Systematic processes generated and maintained spontaneously despite TEQ violate the second
law; by contrast, systematic merely sustaining, i.e., nonrobust and nondissipative — and hence
nonspontaneous — processes do not violate the second law, but merely imply that TEQ has
not been completely realized [1,2]. [Given any irreversibility (e.g., friction), (nonspontaneous)
merely sustaining processes lose even their sustainability — they become nonrobust and dissipative
— their negentropy (and hence free energy) is lost, and then TEQ is completely realized [1,2].]
Corollary: The Zhang [1] formulation of the second law implies that, within a system
maintained at non-TEQ, spontaneous momentum flow and hence systematic motion — most
generally systematic process — is certain. Said certainty may be actualized or in potentiality:
Example: a gas constrained to within less than the total volume of its container is at non-TEQ
and has the potential for systematic motion — expansion — which is actualized upon release of
the constraint.
Feynman’s classic ratchet and pawl [3] elucidates the Zhang [1] formulation of the second law:
In the original classic “Ratchet and Pawl” chapter [4], it is stated, as the upshot concerning
Feynman’s classic system,

“In spite of all our cleverness of lopsided design, if the two temperatures are exactly
equal there is no more propensity to turn one way than the other. The moment we
look at it, it may be turning one way or the other, but in the long run it gets nowhere.
The fact that it gets nowhere is really the fundamental deep principle on which all of
thermodynamics is based.”
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2 Will-be-set-by-IN-TECH

Recently, various formulations of the second law have been challenged, in both the quantum
[5–8] and classical [5,8–10] regimes.
In this chapter [11], we show that velocity-dependent fluctuations (but not fluctuations in
general) challenge the second law in the classical regime. [A digression concerning limited
aspects of the quantum regime is provided in Sect. 6. Otherwise, except for the last four
paragraphs of Sect. 3 (and a few very brief mentions elsewhere), this chapter deals only
with the classical regime.] Our challenge is most self-evident with respect to the Zhang [1]
formulation of the second law, but (as will be discussed in the last four paragraphs of Sect.
3): The Zhang [1] formulation of the second law is maximally strong — no other formulation
thereof can be stronger [although some other(s) may be equally strong]. [Classically (with
one exception [6gg] that is not applicable insofar as this present chapter is concerned) — all
formulations of the second law are equivalent — but not so quantum-mechanically [6s–6ff].]
Hence: A challenge to the Zhang [1] formulation of the second law is also a challenge to all
other formulations thereof.
In this chapter [1], Feynman’s ratchet [3] is modified to the minimum extent necessary to
ensure that velocity-dependence of fluctuations can spontaneously break the randomness of
its Brownian motion at TEQ — spontaneously superposing a nonrandom walk on its Brownian
motion and hence challenging the second law. This minimally-modified Feynman ratchet,
illustrated in Fig. 1, will now be described.
In the right-handed Cartesian coordinate system of Fig. 1, the +X, +Y, and +Z directions
are to the right, into the page, and upwards, respectively. The Brownian motion of the disk 1
of mass m′ (shown edge-on in Fig. 1) is constrained to be X-directional by the frictionless
guide 2. The pawl 3 of mass m (whose lower tip protrudes below the disk in Fig. 1) is
in a vertical groove within the +X disk face, wherein — in addition to its X-directional
Brownian motion in lockstep with the disk as part of the combined disk-and-pawl system
(DP) — it also has Z-directional Brownian motion relative to the disk per se. The DP’s total
mass is M = m′ + m ≫ m. Each peg 4 is of Z-directional height H, and is separated from
adjacent pegs by X-directional distance L. The pawl’s altitude Z is the vertical distance of
its undersurface above the Z = 0 level at the floor of the peg row 4, and is restricted to
Z ≥ Zmin (0 < Zmin < H) by a stop within the +X disk face. (A simple design for the stop:
Let the vertical groove that accommodates the pawl have thinner slots extending in the +Y

and −Y directions. These slots accommodate pins extending from the pawl in the +Y and
−Y directions, respectively. The floors of these slots preclude Z-directional motion of the pins
below the pin/slot-floor contact level, thereby restricting the pawl’s altitude to Z ≥ Zmin.) The
net peg height is thus Hnet ≡ H − Zmin (0 < Hnet < H). The entire system, including the DP,
is at TEQ with equilibrium blackbody radiation (EBR) at temperature T. L is, for simplicity,
taken to be large compared with the combined pawl-plus-peg X-directional thickness; yet L
can easily still be small enough so that changes in the DP’s X-directional Brownian-motional
velocity V occur, essentially, only at pawl-peg bounces, and not via DP-EBR X-directional
momentum exchanges between pawl-peg bounces [12]. (The frictionless guide 2, of course, has
no effect on V.) A uniform gravitational field g is attractive downwards (in the −Z direction).
The V = 0 rest frame — wherein (a) the frictionless guide 2 and peg row 4 are fixed and (b)
the EBR at temperature T is isotropic — is (for simplicity) taken as that of g’s source [of mass
≫ M (or even ≫ M)]. Except for the EBR, our system is nonrelativistic: i.e., all speeds (except
of EBR photons) are ≪ c, and all pertinent differences in gravitational potential (e.g., gH) are
≪ c2.
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Time evolution of a modified Feynman ratchet with velocity-dependent fluctuations and the second law of thermodynamics 3

Fig. 1. Modified Feynman ratchet with velocity-dependent fluctuations

The right-handed Cartesian coordinate system described in the immediately preceding
paragraph is the most appropriate one given linear X-directional DP Brownian motion. For
transformation to circular X-directional DP Brownian motion, said right-handed Cartesian
coordinate system can be transformed into a right-handed cylindrical coordinate system by (a)
curving the X-directional axis into a circle, and (b) letting the +X, +Y, and +Z directions be
counterclockwise, radially outwards from the center of this circle, and upwards, respectively.
Corresponding to X-directional Brownian-motional velocity V of the DP, to first order in V/c,
Doppler-shifted EBR at temperature [13]

T±(V, α) = T

(

1 ±
V cos α

c

)

(1)

impinges on the ±X disk face at angle α from the ±X direction — at a rate proportional both
to the differential solid angle 2π sin αdα and, by Lambert’s cosine law, to cos α [13]. {The pawl,
being in the +X disk face, “sees” EBR impinging — as per the immediately preceding sentence
[including (1)] with the + signs — only from directions with +X components (except for its
lower tip — of negligible size compared with the entire pawl even at maximum tip protrusion,
i.e., even at Z = Zmin — when said tip protrudes below the disk).} Averaging over the range
0 ≤ α ≤ π/2 [13],

T±(V) = 〈T±(V, α)〉 =

∫ π/2
0 T

(

1 ± V cos α
c

)

sin α cos αdα
∫ π/2

0 sin α cos αdα
= T

(

1 ±
2V

3c

)

. (2)
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4 Will-be-set-by-IN-TECH

The DP’s thermal response time is sufficiently short that T+(V) [T−(V)] is the temperature,
corresponding to V having a given value, of the +X disk face (including the pawl) itself [12]
[of the −X disk face itself [12]] — not merely of Doppler-shifted EBR “seen” thereby [13].
The stop within the +X disk face — and hence itself [12] at temperature, corresponding to
V having a given value, of T+(V) [12,13] — restricts the pawl’s altitude to Z ≥ Zmin:
this prevents mechanical thermal contact [although not radiative thermal contact (which is
negligible)] between the floor of the peg row — at elevation Z = 0 and temperature T — and
the pawl’s undersurface. (Except when the pawl’s undersurface protrudes below the disk, the
+X disk face shields it from EBR impinging from directions with −X components — and, in
any case, the pawl’s undersurface area is negligible compared with that of the entire pawl.) The
pawl’s thermal isolation within the +X disk face is thereby improved — helping to ensure
that T+(V) is the temperature, corresponding to V having a given value, of the pawl itself
[12], not merely of Doppler-shifted EBR “seen” thereby [13].
In accordance with the Boltzmann distribution, and applying (2) with the + signs, the
conditional probability [14] P(Z > H|V) that the pawl, of weight mg, can attain sufficient
altitude Z > H to jump the pegs — and hence not to impede the DP’s X-directional Brownian
motion — given V, is

P(Z > H|V) = exp[−mg (H − Zmin) /kT+(V)]

≡ exp[−mgHnet/kT+(V)]

= exp
{

−mgHnet

/[

kT

(

1 +
2V

3c

)]}

≡ exp
[

−A

/(

1 +
2V

3c

)]

=

(

1 +
2AV

3c

)

e−A. (3)

The second step of (3) restates the definition (initially given near the middle of the paragraph
immediately following Fig. 1)

Hnet ≡ H − Zmin, (4a)

the third step of (3) is justified by (2) with the + signs, the fourth step of (3) defines

A ≡ mgHnet/kT, (4b)

and the last step of (3), which is correct to first order in V/c, is justified because V is
nonrelativistic, with |V| ≪ c for all values of |V| that have nonnegligible probabilities of
being equaled or exceeded.
By (3), P(Z > H|V) is slightly greater when V > 0 than when V < 0. Hence, despite
TEQ, the velocity-dependence of P(Z > H|V) spontaneously superposes a nonrandom walk
(spontaneous momentum flow [1]) in the +X (Forward) direction on the DP’s Brownian
motion — challenging the second law.
Note that T±(V, α), T±(V), Z, and P(Z > H|V) manifest velocity-dependent fluctuations. By
contrast, T, H, Zmin, Hnet ≡ H − Zmin, L, m′, m, M = m′ + m ≫ m, g, and A ≡ mgHnet/kT
are parameters, fixed in any one given (thought) experiment.
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Time evolution of a modified Feynman ratchet with velocity-dependent fluctuations and the second law of thermodynamics 5

2. Markovian time evolution and challenges to the second law

The derivation of our system’s time evolution will be easiest if we first consider, in (5) – (22)
and the associated discussions [except in defining notation in the third paragraph of this Sect.
2, and in the last step of (7)], only occasions when |V| happens to have any one given value,
i.e., when V = ± |V|. Subsequently, we will average over all ± |V| pairs, i.e., over all |V|.
By (3) and (4), we have, to first order in |V| /c, for the conditional probabilities [14] F and R of
Z > H obtaining given DP Brownian motion in, respectively, the Forward or +X direction at
V = + |V| and Reverse or −X direction at V = − |V|,

F ≡ P(Z > H|V = + |V|) ≡ P(> |+) =

(

1 +
2A |V|

3c

)

e−A (5)

and

R ≡ P(Z > H|V = − |V|) ≡ P(> |−) =

(

1 −
2A |V|

3c

)

e−A, (6)

respectively. The states Z > H, Z < H, V = + |V| > 0, and V = − |V| < 0 are denoted
as >, <, +, and −, respectively. [Since Z and V are continuous random variables, the point
values Z = H and V = |V| = 0 each has zero probability measure [14a] of occurrence —
and hence does not finitely contribute to any quantity integrated or averaged over any finite
range of Z and V, respectively (e.g., over all Z and over all V, respectively).] Given V = ± |V|,
immediately preceding any pawl-peg interaction, the DP is in one of the four states > +, > −,
< +, or < −; the former two states implying that this interaction will be a pawl-over-peg
jump, and the latter two that it will be a pawl-peg bounce. Immediately following a jump
(bounce), sgn V is unchanged (reversed).
We now study our system’s time evolution, given V = ± |V|, in discrete time-steps of
∆t = L/ |V| that separate consecutive pawl-peg interactions, with time N immediately
preceding the (N + 1) st pawl-peg interaction. If a quantity Q or an average thereof is
time-dependent, then its value at time N is indicated via a subscript N. Let 〈Q〉N (〈〈Q〉〉N)
denote the expectation value at time N of a quantity Q over any one given ± |V| pair (〈Q〉N
itself subsequently averaged over all |V|). {Notes: (a) All averages in this chapter are,
in this wise, either over any one given ± |V| pair or over all |V|, except: (i) the average
〈T±(V, α)〉 over α in (2) (denoted via enclosure within single angular brackets), and (ii) some
of the averages in Sect. 6, and in the Footnotes. (b) Consistently with the fifth-to-the-last
sentence (especially the last clause thereof) of the paragraph immediately following Fig. 1: The
combined pawl-plus-peg X-directional thickness is ≪ L; hence, the X-directional spatial, and
temporal, intervals separating consecutive pawl-over-peg jumps are only negligibly greater
[by said thickness, and (said thickness)/ |V|, respectively] than those separating consecutive
pawl-peg bounces (jump preceded or followed by bounce being the intermediate case).}
TEQ, i.e., maximum initial total entropy, implies that initially, at N = 0,

P(+)0 = P(−)0 =
1
2

⇐⇒ 〈V〉0 = |V| [P(+)0 − P(−)0] = 0 =⇒ 〈〈V〉〉0 = 0. (7)

The expression in (7) for 〈V〉0 is true for all ± |V| pairs, hence implying that for 〈〈V〉〉0. For all
N ≥ 0,
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〈V〉N = |V| [P(+)N − P(−)N ]

⇐⇒ P(±)N =
1
2

(

1 ±
〈V〉N

|V|

)

. (8)

The second line of (8) is justified by P(+)N + P(−)N = 1 and by (7).
Given V = ± |V| and P(+)N + P(−)N = P(> |+) + P(< |+) = P(> |−) + P(< |−) = 1,
said time evolution is a two-state discrete-time Markov chain [15] with (a) states + and −; and
(b) the following conditional transition probabilities:

P[(+)N |(+)N−1] = P(> |+) = F, (9a)

P[(−)N |(−)N−1] = P(> |−) = R, (9b)

P[(−)N|(+)N−1] = P(< |+) = 1 − F, (9c)

and
P[(+)N |(−)N−1] = P(< |−) = 1 − R. (9d)

Note that (9) – (18) are correct not only for the specific F and R given by the rightmost terms of
(5) and (6), respectively, but also for general F and R that are at most functions of |V| only — and
hence constant for any one given |V|. [Of course, (1), (2), (7), and (8) are correct independently
of any mention of F and R.]
Applying (9a), (9d), and P(+)N + P(−)N = 1, we obtain, for all N ≥ 0, [15]

P(+)N = FP(+)N−1 + (1 − R)P(−)N−1

= FP(+)N−1 + (1 − R)[1 − P(+)N−1]

= (F + R − 1)P(+)N−1 + 1 − R

= (F + R − 1)[(F + R − 1)P(+)N−2 + 1 − R] + 1 − R

= (F + R − 1){(F + R − 1)[(F + R − 1)P(+)N−3 + 1 − R]

+ 1 − R}+ 1 − R

= (F + R − 1)N P(+)0 + (1 − R)
N−1

∑
j=0

(F + R − 1)j

= (F + R − 1)N

(

1
2

)

+ (1 − R)
1 − (F + R − 1)N

2 − F − R

=
2(1 − R)− (F − R)(F + R − 1)N

2(2 − F − R)

=⇒ P(−)N = 1 − P(+)N

=
2(1 − F) + (F − R)(F + R − 1)N

2(2 − F − R)

=⇒ P(±)N =
1
2

{

1 ±
(F − R)[1 − (F + R − 1)N ]

2 − F − R

}

. (10)
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The second step and third-to-the-last step of (10) are justified by P(+)N + P(−)N = 1.
In the third through sixth lines of (10), a recursion relationship is developed via repeated
substitution. In the seventh step of (10), we applied the first line of (7) and standard
summation of the geometric series in the sixth line of (10). [If N = 0, then: (i) This geometric
series contains no terms and hence vanishes. (ii) (F + R − 1)0 = 1 is true throughout the
range −1 ≤ F + R − 1 ≤ 1 of F + R − 1, with possible difficulty only at the point value
F+ R− 1 = 0. But, since (F+ R− 1)0 = 1 remains true even as F+ R− 1 −→ 0± infinitesimally
closely (from both above and below) — by continuity we take (F + R − 1)0 = 1 even at the
point value F + R − 1 = 0. Note that, among indeterminate forms, perhaps x0 alone is so
well-behaved, maintaining a fixed well-defined unique finite value (1) even as x −→ 0±

infinitesimally closely (from both above and below) — by contrast, for example, x
0 −→ ±∞

as x −→ 0±. Hence, lim
x,y−→0

xy = lim
x,y−→0

(

eln x
)y

= lim
x,y−→0

ey ln x |y ln x|≪1
−→ 1 + y ln x

|y ln x|≪1
−→ 1:

if x = F + R − 1 and y = 0, then the last two steps immediately preceding yield exactly
1 — not merely a limiting value of 1. For perhaps the most general approach pertinent
to (10) of F + R − 1 to 0 that is consistent with (F + R − 1)0 = 1 even at the point value

F + R − 1 = 0, let x = a (F + R − 1) and y = b (F + R − 1)n = b
(

x
a

)n
= b

an xn, where a,

b, and n are arbitrary positive constants. Then lim
x,y−→0

xy = lim
x−→0

x
b

an xn
= lim

x−→0

(

eln x
)

b
an xn

=

lim
x−→0

e
b

an xn ln x = lim
x−→0

(

1 + b
an xn ln x

)

= 1 + b
an lim

x−→0
xn ln x = 1 + 0 = 1 (the last four steps

immediately preceding being justified because lim
x−→0

xn ln x = 0 by L’Hospital’s Rule).]

Applying the first line of (8) and the last line of (10) yields, for all N ≥ 0,

〈V〉N = |V| [P(+)N − P(−)N ]

= |V| (F − R)[1 − (F + R − 1)N ]/(2 − F − R). (11)

By (11), 〈V〉N is antisymmetric in F and R; hence, without loss of generality, we always take
F ≥ R =⇒ 〈V〉N ≥ 0 — e.g., as obtains for the specific F and R given by the rightmost terms
of (5) and (6), respectively. The equality F = R =⇒ 〈V〉N = 0 obtains only given: (a) the
point value V = |V| = 0, which has zero probability measure of occurrence; and/or (b) N = 0.
Our challenge to the second law requires the strict inequality F > R =⇒ 〈V〉N > 0 despite
TEQ, which obtains given |V| > 0 and N ≥ 1.
Direct calculation of P(+)N and P(−)N via (10) can be cumbersome. However, applying the
second line of (11) — and then the antisymmetry of 〈V〉N as per the paragraph immediately
following (11) — to the last line of (10) further simplifies the already simpler expression given
by the second line of (8) [restated in the first line of (12)]:

P(±)N = P(V = ± |V|)N =
1
2

(

1 ±
〈V〉N

|V|

)

=⇒ P(V)N =
1
2

(

1 +
〈V〉N

V

)

= P(V)0

(

1 +
〈V〉N

V

)

. (12)
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The further simplification as per the second line of (12) [wherein P(V)0 = 1
2 and V =

± |V| insofar as (5) – (22) and the associated discussions are concerned] is justified by said
antisymmetry.
By (11), the final steady-state value of 〈V〉N , i.e.,

〈V〉∞ = |V| (F − R)/(2 − F − R), (13)

is reached at N = 1 if F + R − 1 = 0 ⇐⇒ 2 − F − R = 1; i.e.,

〈V〉1 = |V| (F − R) for all 0 ≤ F, R ≤ 1 ⇐⇒ −1 ≤ F + R − 1 ≤ 1

= 〈V〉∞ if F + R − 1 = 0 ⇐⇒ 2 − F − R = 1. (14)

Hence, P(V)N of (12) manifests similar behavior. The completion of time evolution at N = 1
if F + R − 1 = 0 ⇐⇒ 2 − F − R = 1 obtains for all quantities studied in this chapter. [In
Sect. 4, we will show that, while allowing time evolution to N −→ ∞ does maximize 〈V〉N

and
∣

∣

∣
P(V)N − 1

2

∣

∣

∣
, it does not correspond to maximizing the force that tends to accelerate the

DP in the +X direction, or to our primary objective of maximizing its power output and hence
its time rate of negentropy production.]
Now, define

〈V〉N+ 1
2
≡

1
2
(〈V〉N + 〈V〉N+1)

= |V| (F − R)[2 − (F + R)(F + R − 1)N ]/[2(2 − F − R)] (15)

and

〈∆V〉N+ 1
2
≡ 〈V〉N+1 − 〈V〉N

= |V| (F − R)(F + R − 1)N . (16)

Let f be the force that tends to accelerate the DP in the +X direction. By Newton’s second law
and (16), at the N −→ N + 1 transition, i.e., at the (N + 1) st pawl-peg interaction, we have

〈 f 〉N+ 1
2
= M 〈∆V〉N+ 1

2

/

∆t

= M 〈∆V〉N+ 1
2

/

(L/ |V|)

= (MV2/L)(F − R)(F + R − 1)N . (17)

The second step of (17) is justified because consecutive pawl-peg interactions are separated in
time by ∆t = L/ |V|. Let P∗ be the DP’s power output (not to be confused with probability
P). Applying (15) and (17), at the N −→ N + 1 transition, i.e., at the (N + 1) st pawl-peg

284 Thermodynamics – Kinetics of Dynamic Systems
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Time evolution of a modified Feynman ratchet with velocity-dependent fluctuations and the second law of thermodynamics 9

interaction, we have

〈P∗〉N+ 1
2
= 〈 f V〉N+ 1

2

= 〈 f 〉N+ 1
2
〈V〉N+ 1

2

=
M |V|3

2L

(F − R)2(F + R − 1)N [2 − (F + R)(F + R − 1)N ]

2 − F − R
. (18)

The second step of (18) is justified because 〈V〉N+ 1
2

of (15) is independent of which of the four

DP states (> +, > −, < +, or < −) — and hence of the corresponding (N + 1) st pawl-peg
interaction (jump or bounce) — that happens to occur at the N −→ N + 1 transition [14].
For the specific F and R given by the rightmost terms of (5) and (6), respectively; (11), the
second lines of (12), (17), and (18), respectively become

〈V〉N = (2V2/3c)A[1 − (2e−A − 1)N ]/(eA − 1), (19)

P(V)N =
1
2

{

1 +
(

2V

3c

)

A[1 − (2e−A − 1)N ]

eA − 1

}

=
1
2
+

(

V

3c

)

A[1 − (2e−A − 1)N ]

eA − 1
, (20)

〈 f 〉N+ 1
2
= (4M |V|3 /3Lc)Ae−A(2e−A − 1)N , (21)

and

〈P∗〉N+ 1
2
=

(

8M |V|5

9Lc2

)

A2e−A(2e−A − 1)N [1 − e−A(2e−A − 1)N ]

eA − 1
. (22)

Now, consider all ± |V| pairs, i.e., all V, and hence also all |V|; especially, consider fluctuations
of V among all possible values. TEQ, i.e., maximum initial total entropy, implies that initially, at
N = 0,

P(V)0 = P(V)mw

= (M/2πkT)1/2e−MV2/2kT

=⇒ P(|V|)0 = P(|V|)mw

= 2P(V)0 = 2P(V)mw

= (2M/πkT)1/2e−MV2/2kT, (23)

P(V)mw [P(|V|)mw] being the one-dimensional Maxwellian probability density of V [|V|].
Letting P(V)0 = 1

2 −→ P(V)0 = P(V)mw and V = ± |V| −→ continuous V in the second line
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of (12), and then applying (19), we obtain

P(V)N = P(V)0

(

1 +
〈V〉N

V

)

= P(V)mw

(

1 +
〈V〉N

V

)

= P(V)mw

{

1 +
(

2V

3c

)

A[1 − (2e−A − 1)N ]

eA − 1

}

. (24)

Any 〈Q〉N , e.g., 〈V〉N , 〈 f 〉N+ 1
2
, or 〈P∗〉N+ 1

2
, is defined for a given ± |V| pair, i.e., for a given

|V| — it is undefined and cannot even be calculated given only a single value of V, e.g., given
only + |V| alone or given only − |V| alone. 〈Q〉N can be written in the more detailed form
〈Q(|V|)〉N ; by contrast, the expression 〈Q(V)〉N is meaningless. Since (20) and (24) are correct
to first order in V/c, by (24), P(|V|)N = P(+ |V|)N + P(− |V|)N = P(|V|)0 = P(|V|)mw to
first order in |V| /c; hence, to first order in |V| /c, any average 〈〈Q〉〉N over P(|V|)mw equals
that over P(|V|)N itself. [Of course, initially, at N = 0, P(|V|)N = P(|V|)0 = P(|V|)mw
exactly, not merely to first order in |V| /c; hence, any average 〈〈Q〉〉0 over P(|V|)mw is exact.]
The following five averages over P(|V|)mw will be useful: 〈〈|V|〉〉mw = (2kT/πM)1/2,
〈〈

V2〉〉

mw = kT/M,
〈〈

|V|3
〉〉

mw
= [2(kT/M)3]1/2,

〈〈

V4〉〉

mw = 3(kT/M)2 = 3
〈〈

V2〉〉2
mw,

and
〈〈

|V|5
〉〉

mw
= 8[2(kT/M)5 ]1/2. [Of course, numerically, these five averages are identical

whether taken over P(|V|)mw or over P(V)mw. But, conceptually, as per the first two sentences
of this paragraph — and anticipating the next paragraph — they are more correctly taken over
P(|V|)mw.] Averaging over any one given ± |V| pair to obtain 〈Q〉N first, and subsequently
averaging over all |V| to obtain 〈〈Q〉〉N , is preferable to attempting to obtain 〈〈Q〉〉N directly
because, e.g.: (a) the former procedure is easier, (b) both 〈Q〉N and 〈〈Q〉〉N are thus obtained,
and (c) the |V|-dependence of F − R is thus accounted for — e.g., as per application of (5) and
(6) to the last terms of (11), (17), and (18) in order to obtain (19), (21), and (22), respectively.
Averaging V2, |V|3, and |V|5 in (19), (21), and (22), respectively, over P(|V|)mw (as per the
immediately preceding paragraph) yields (25), (27), and (28), respectively. So that (25) – (28)
are a complete set of equations, we restate the last line of (24) as (26). Thus, we obtain

〈〈V〉〉N =
2
〈〈

V2〉〉

mw
3c

A[1 − (2e−A − 1)N ]

eA − 1

=
2kT

3Mc

A[1 − (2e−A − 1)N ]

eA − 1
, (25)

P(V)N = P(V)mw

{

1 +
(

2V

3c

)

A[1 − (2e−A − 1)N ]

eA − 1

}

, (26)
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〈〈 f 〉〉N+ 1
2
=

4M
〈〈

|V|3
〉〉

mw
3Lc

Ae−A(2e−A − 1)N

=
4

3L

[

2(kT)3

Mc2

]1/2

Ae−A(2e−A − 1)N , (27)

and

〈〈P∗〉〉N+ 1
2
=

⎛

⎝

8M
〈〈

|V|5
〉〉

mw
9Lc2

⎞

⎠

A2e−A(2e−A − 1)N [1 − e−A(2e−A − 1)N ]

eA − 1

=
64

9Lc2

[

2(kT)5

M3

]1/2
A2e−A(2e−A − 1)N [1 − e−A(2e−A − 1)N ]

eA − 1
. (28)

Note that specification to P(V)mw = 1
2 P(|V|)mw is not required for the validity of our

analyses: For example, P(V)mw is specifically applied in the last two lines of (24) and in (26);
and P(|V|)mw in (25), (27), and (28). By contrast, for example, (7) – (22) and the first line
of (24) are valid not only for P(V)0 = P(V)mw = 1

2 P(|V|)mw, but for any P(V)0 — whether
continuous, discrete, or possessing both continuous and discrete ranges — that is symmetrical
about V = 0. {Of course, (1) – (6) are valid for any P(V) whatsoever [including, e.g., a Dirac
δ-function, in which case either (5) or (6) but (unless V = |V| = 0) not both would obtain.]} For
any one given value of |V|, i.e., for any one given ± |V| pair, velocity-dependent fluctuations
behave identically — and break the randomness of Brownian motion identically — given any
P(V)0 that is symmetrical about V = 0. Note, in particular, as per (12), (20), and the first line
of (24), that, for any given V, the bias of P(V)N from P(V)0 is identical given any P(V)0 that
is symmetrical about V = 0. Considering all V, and hence also all |V|, P(V)mw = 1

2 P(|V|)mw
is the symmetrical velocity probability density — indeed, the velocity probability density
— corresponding to maximum entropy. Hence, P(V)mw = 1

2 P(|V|)mw is employed in this
chapter — but with the view that generalization is possible to any P(V)0 that is symmetrical
about V = 0.

3. Negentropy production, and formulations of the second law

Positive values (however small) of 〈V〉N ,
∣

∣

∣P(V)N − 1
2

∣

∣

∣, 〈 f 〉N+ 1
2
, 〈P∗〉N+ 1

2
, 〈〈V〉〉N , |P(V)N −

P(V)mw |, 〈〈 f 〉〉N+ 1
2
, and 〈〈P∗〉〉N+ 1

2
despite TEQ challenge the second law. A positive value of

〈〈P∗〉〉N+ 1
2

despite TEQ is our primary challenge thereto, because if 〈〈P∗〉〉N+ 1
2

overcomes a

conservative resisting force, equal in magnitude but opposite in direction to 〈〈 f 〉〉N+ 1
2
, then

there obtains an uncompensated negative time rate of change in total entropy S:

〈〈P∗〉〉N+ 1
2
> 0 =⇒ dS/dt = − 〈〈P∗〉〉N+ 1

2

/

T < 0. (29)
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Perhaps the simplest such conservative resisting force, Mg sin(−θ) = −Mg sin θ
.
= −Mgθ,

is obtained by sloping our system very slightly upwards towards the +X direction — as per
Fig. 1 and the two immediately following paragraphs, very slightly upwards towards the
right given a right-handed Cartesian coordinate system, or into a very gentle counterclockwise
upward spiral given a right-handed cylindrical coordinate system — at a very small slope
angle θ (0 < θ ≪ 1 rad; also, 0 < θ ≪ mgL/kT = AL/Hnet), such that 〈〈 f 〉〉N+ 1

2
= Mg sin θ

.
=

Mgθ. (If, instead, the resisting force is frictional and hence nonconservative, then it can be
overcome at steady state indefinitely — frictional dissipation being recycled into power P∗ —
despite TEQ.) Generation — or regeneration via recycling — of power P∗ despite TEQ entails
spontaneous momentum flow [1] in challenge of the Zhang formulation [1] of the second law
(and hence, as per the last two paragraphs of this Sect. 3, of all formulations thereof).
Of course, (29) is true for all DP power outputs, e.g., (29) is also true for the DP’s Carnot-engine
[17] power outputs.
But, in view of recent work concerning limitations of validity of certain formulations —
especially, of entropy-based formulations — of the second law in the quantum regime [6s–6ff],
the employment of the entropy-based (29) requires justification.
In the classical regime, (a) the Zhang [1] formulation of the second law (no spontaneous
momentum flow in an isolated system =⇒ no systematic motion — most generally, no
systematic process — at TEQ), and (b) Thomson’s formulation thereof (no extractable work at
TEQ), are equivalent to (c) the formulation thereof stating that total entropy (total negentropy)
can never decrease (increase), and, indeed, to (d) all other formulations of the second law.
But, in the quantum regime, entropy (or, equivalently, negentropy — and hence free energy)
is a difficult, non-uniquely-defined concept — as opposed to heat, and especially to work
[6s–6ff]. Hence, in the quantum regime, (a) and (b) immediately above are preferable to (c)
[and (d)] immediately above. This present chapter deals only with the classical regime —
except for the last four paragraphs of this Sect. 3, a digression concerning limited aspects of
the quantum regime in Sect. 6, and a few very brief mentions elsewhere. This present chapter
is based primarily on (a) immediately above — which implies (b) immediately above always,
and, apart from difficulties in the quantum regime [6s–6ff], also (c) [and (d)] immediately
above. Nevertheless: Insofar as this present chapter is concerned, certainly outside of Sect.
6 — and, owing to the limited nature of said quantum aspects, probably even in Sect. 6
— (c) immediately above [which justifies the employment of entropy in (29)], and also (d)
immediately above, still retain validity. [As an aside, note that the usual statement of (b)
immediately above — no extractable work via cyclic processes at TEQ — is too restrictive. If a
system is capable of doing work even only on a one-time basis via a noncyclic process — e.g., via a
one-time isothermal expansion of a gas initially constrained to within less than the total volume
of its container — then it is not initially at TEQ: it is at TEQ only after the gas has expanded to
occupy the total volume of its container and hence is no longer capable of doing work. Thus,
deleting “via cyclic processes” yields a more general statement as per (b) immediately above,
and in accordance with the first two paragraphs of Sect. 1.]
In both the classical and the quantum regimes — but primarily in the quantum regime
(particularly for finite quantum systems [6ee]), wherein different formulations of the second
law can be inequivalent [6s–6ff]: The Zhang [1] formulation of the second law [(a) immediately
above)] is a maximally strong formulation thereof, i.e., as strong a formulation thereof as is
possible {some other formulation(s), e.g., the Thomson formulation [(b) immediately above],
may be equally strong [6s–6dd], but no other formulation can be stronger}: Thus: A challenge
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to the Zhang [1] formulation of the second law is a challenge to all formulations [6s–6ff] thereof
— and hence a challenge to the second law [6dd]. By contrast (particularly in the quantum
regime [6s–6ff]), a challenge to any other formulation(s) [6s–6ff] of the second law (i) may or
(ii) may not be a challenge to the Zhang [1] formulation thereof, and hence to all formulations,
thereof — and hence may be a challenge, respectively, (i) to the second law [6dd] or (ii) merely
to a second law [6dd]. And a true challenge must be to the — not merely to a — second law.
There has recently been discovered a classical situation [6gg] wherein the
minimal-work-principle formulation of the second law can be invalid. [The
minimal-work-principle formulation of the second law has previously been investigated in
the quantum regime (where it also can be invalid) [6v,6w].] But this is not applicable insofar
as this present chapter is concerned, and in any case does not alter the maximally strong status
of the Zhang [1] formulation of the second law.

4. Details of Markovian time evolution, and maximization of challenges to the

second law

Time evolution is complete at N = 1 if F + R − 1 = 0 =⇒ A = ln 2. This corresponds to an
overall probability (considering both Forward and Reverse DP Brownian motion) of 1

2 (correct
to first order in |V| /c for all N ≥ 1 and exact at N = 0) that any given pawl-peg interaction is
either a jump or a bounce, i.e., to P(> |F + R − 1 = 0 =⇒ A = ln 2)N = P(< |F + R − 1 =
0 =⇒ A = ln 2)N = 1

2 (correct to first order in |V| /c for all N ≥ 1 and exact at N = 0).
As F + R − 1 −→ 1 =⇒ A −→ 0, pawl-peg bounces become ever rarer, and hence time
evolution becomes ever slower. As F + R − 1 −→ −1 =⇒ A −→ ∞, pawl-over-peg jumps
become ever rarer, and hence time evolution becomes ever slower.
Time evolution of 〈V〉N and P(V)N − 1

2 , and likewise of 〈〈V〉〉N and P(V)N − P(V)mw,
towards final steady-state values as N −→ ∞ is monotonic and asymptotic if 0 < F + R − 1 <

1 =⇒ ln 2 > A > 0, diminishing-oscillatory if −1 < F + R − 1 < 0 =⇒ ∞ > A > ln 2, and
complete at N = 1 if F + R − 1 = 0 =⇒ A = ln 2.
For general F and R that [as per the sentence immediately following (9d)] are at most functions
of |V| only, and hence constant for any one given |V| — not merely for the specific F and R

given by the rightmost terms of (5) and (6), respectively — the functional form of any 〈Q〉N
with respect to F, R, and N (and hence with respect to A and N) is independent of |V|. Thus,
the values of F, R, and N (and hence of A and N) yielding maximization of any 〈Q〉N are
also independent of |V| — and thus likewise also yield maximization of the corresponding
〈〈Q〉〉N .

By inspection of (10) – (14), (19), (20), (25), and (26), 〈V〉N and
∣

∣

∣P(V)N − 1
2

∣

∣

∣, and likewise

〈〈V〉〉N and |P(V)N − P(V)mw|, are maximized by maximizing (F − R)[1 − (F + R −
1)N ]/(2 − F − R) =⇒ maximizing A[1 − (2e−A − 1)N ]/(eA − 1): maximization obtains
given 0 < A ≪ 1 — implying maximization of (1 − 1

2 A)[1 − (1 − 2A)N ] — which is
maximized at unity by letting A −→ 0 and N −→ ∞, but with N −→ ∞ sufficiently faster
than A −→ 0 such that (1 − 2A)N −→ 0. We thus obtain the absolute maxima

〈V〉N,max = 〈V〉∞ |(A −→ 0) = 2V2/3c

=⇒ 〈〈V〉〉N,max = 〈〈V〉〉∞ |(A −→ 0) = 2
〈〈

V2
〉〉

mw

/

3c = 2kT/3Mc (30)
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and
∣

∣

∣

∣

P(V)N −
1
2

∣

∣

∣

∣

max

/

1
2

=

∣

∣

∣

∣

P(V|A −→ 0)∞ −
1
2

∣

∣

∣

∣

/

1
2

= |P(V)N − P(V)mw|max
/

P(V)mw

= |P(V|A −→ 0)∞ − P(V)mw | P(V)mw

= 2 |V| /3c. (31)

If F + R − 1 −→ 1 =⇒ A −→ 0, then time evolution becomes infinitely slow —
requiring N −→ ∞ — because then pawl-peg bounces become infinitely rare. But any
“practical” time evolution is limited to at most a large but finite number N of pawl-peg

interactions. Hence, 〈V〉N and
∣

∣

∣
P(V)N − 1

2

∣

∣

∣
, and likewise 〈〈V〉〉N and |P(V)N − P(V)mw|,

attain “practical” maxima — corresponding to small but not infinitesimal 1 − (F + R − 1) =⇒
small but not infinitesimal A and to large but not infinite N — that are almost but not quite as large
as the absolute maxima given in (30) and (31) corresponding to F + R − 1 −→ 1 =⇒ A −→ 0
and to N −→ ∞. [This is especially true because, if pawl-peg bounces are extremely rare,
then the DP has sufficient time between pawl-peg bounces so that its X-directional momentum
exchanges with the EBR are no longer (as is assumed in our analyses) negligible compared
with its X-directional momentum exchanges at pawl-peg bounces [12].]
For small N ≥ 1, maximizing 〈V〉N and 〈〈V〉〉N with respect to A by setting ∂ 〈V〉N /∂A =
0 =⇒ ∂ 〈〈V〉〉N /∂A = 0 yields maxima at moderate A, because small N ≥ 1 implies only one
or a few pawl-peg interactions — not the many pawl-peg interactions that would be required to
compensate (or overcompensate) for the small probability of pawl-peg bounces corresponding
to small A. For example, 〈V〉1 and 〈〈V〉〉1 are maximized at A = 1, with 〈V〉1,max =

〈V〉1 |(A = 1) = 4V2/3ec =⇒ 〈〈V〉〉1,max = 〈〈V〉〉1 |(A = 1) = 4
〈〈

V2〉〉

mw

/

3ec =
4kT/3Mec. Note that these maxima lie in the diminishing-oscillatory regime, as per the
second paragraph of this Sect. 4, and hence are larger [by a factor of 2(1 − e−1)] than
〈V〉∞ |(A = 1) = 2V2/[3c(e − 1)] =⇒ 〈〈V〉〉∞ |(A = 1) = 2

〈〈

V2〉〉

mw

/

[3c(e −
1)] = 2kT/[3Mc(e − 1)], [obtained by putting N = ∞ and A = 1 into (19) and (25)]
— but smaller (by a factor of 2/e) than the absolute maxima as per (30). [Similar results

obtain for
∣

∣

∣
P(V)1 −

1
2

∣

∣

∣

/

1
2 = |P(V)1 − P(V)mw| /P(V)mw, whose maximization at A = 1

yields
∣

∣

∣P(V)1 −
1
2

∣

∣

∣

max

/

1
2 = |P(V)1 − P(V)mw|max

/

P(V)mw =
∣

∣

∣P(V|A = 1)1 −
1
2

∣

∣

∣

/

1
2 =

|P(V|A = 1)1 − P(V)mw |P(V)mw = 4 |V| /3ec.] For another example, 〈V〉2 and 〈〈V〉〉2
are maximized at A = 1

2 (< 1 as expected), but at the same values as 〈V〉1 and 〈〈V〉〉1,

respectively; and similarly for
∣

∣

∣
P(V)2 −

1
2

∣

∣

∣

/

1
2 = |P(V)2 − P(V)mw| /P(V)mw.

By contrast, via inspection of (17), (21), and (27), 〈 f 〉N+ 1
2

(〈〈 f 〉〉N+ 1
2
) are maximized by: (a)

first, setting 〈 f 〉N+ 1
2
= 〈 f 〉 1

2
(〈〈 f 〉〉N+ 1

2
= 〈〈 f 〉〉 1

2
), thereby maximizing (F + R − 1)N at unity

=⇒ maximizing (2e−A − 1)N at unity; and (b) then, setting d(Ae−A)/dA = 0 =⇒ A =
1 =⇒ (Ae−A)max = e−1. We thus obtain the absolute maxima

〈 f 〉N+ 1
2 ,max = 〈 f 〉 1

2

∣

∣

∣
(A = 1) = 4M |V|3 /3ecL

=⇒ 〈〈 f 〉〉N+ 1
2 ,max = 〈〈 f 〉〉 1

2

∣

∣

∣ (A = 1) = 4M
〈〈

|V|3
〉〉

mw

/

3ecL =
4[2(kT)3/M]1/2

3ecL
. (32)
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Time evolution of 〈 f 〉N+ 1
2

and 〈〈 f 〉〉N+ 1
2

towards 0 as N −→ ∞ is monotonic and asymptotic
through positive values for all N ≥ 0 if 0 < F + R − 1 < 1 =⇒ ln 2 > A > 0,
diminishing-oscillatory through positive (negative) values at all even (odd) N ≥ 0 if −1 <

F + R − 1 < 0 =⇒ ∞ > A > ln 2, and complete at N = 1 if F + R − 1 = 0 =⇒ A = ln 2.
Thus, as per (18) and (28), in order to maximize 〈P∗〉N+ 1

2
(〈〈P∗〉〉N+ 1

2
) and hence, by Sect. 3,

−dS/dt — our primary challenge to the second law — we should not allow the Markovian
time evolution of our DP to approach as closely as is “practical” (as per the fifth paragraph
of this Sect. 4) to its final steady state N −→ ∞. Rather, we should allow this time
evolution to proceed only to Nopt + 1, where Nopt is the optimum finite value of N; also set
A at its corresponding optimum finite value Aopt (not A −→ 0); and then let the DP do work
against a conservative resisting force equal in magnitude but opposite in direction to 〈 f 〉Nopt+

1
2

(〈〈 f 〉〉Nopt+
1
2
) in this imposed steady state: Nopt and Aopt will be derived shortly. {If, instead, the

resisting force is nonconservative, e.g., friction, then 〈P∗〉N+ 1
2

and 〈〈P∗〉〉N+ 1
2

are still thereby
maximized, even though −dS/dt is then dissipated as fast as it is (re)generated via recycling
[recall the last two sentences of the paragraph containing (29)].} In special cases, particular
optimizations may correspond to the immediately aforementioned general ones, e.g., setting
θ = θopt (with θopt > 0 and finite) if 〈〈 f 〉〉N+ 1

2
= Mg sin θ

.
= Mgθ as per the sentence

immediately following (29).
As an aside, note that the DP’s Carnot-engine [17] power outputs, are maximized (at θ = 0) if
the Markovian time evolution of our DP is allowed to approach as closely as is “practical” (as
per the fifth paragraph of this Sect. 4) to its final steady state, with A −→ 0 and N −→ ∞ as
per the first sentence of the paragraph containing (30) and (31) [17], corresponding (as closely
as “practical”) to the absolute maxima given by (30) and (31).
Maximizing 〈P∗〉N+ 1

2
and 〈〈P∗〉〉N+ 1

2
with respect to N at given fixed F + R − 1 =⇒ given

fixed A, by setting

∂ 〈P∗〉N+ 1
2

/

∂N = 0 =⇒ ∂ 〈〈P∗〉〉N+ 1
2

/

∂N = 0, (33)

yields, for the optimum value of N,

Nopt = − ln(F + R)/ ln(F + R − 1) =⇒ Nopt = − ln(2e−A)/ ln(2e−A − 1). (34)

Obviously, (34) is valid only if 0 ≤ F + R − 1 < 1 =⇒ ln 2 ≥ A > 0. Also,
obviously, if (34) yields a non-whole-number value for Nopt, then the actual value of Nopt
equals the whole-number value either immediately smaller or immediately larger than the
non-whole-number value yielded by (34). If −1 < F + R − 1 ≤ 0 =⇒ ∞ > A ≥ ln 2, and
also if 0 ≤ F + R − 1 < 1 =⇒ ln 2 ≥ A > 0 but with F + R − 1 sufficiently close to 0 =⇒ A
sufficiently close to ln 2 such that (34) yields Nopt sufficiently close to 0 as opposed to 1, then
Nopt = 0.
By (34) and the three immediately following sentences: As F + R − 1 increases from 0 to
1 =⇒ A decreases from ln 2 to 0, Nopt increases monotonically from 0 to ∞. (By the fifth
paragraph of this Sect. 4, infinitesimally small 1 − (F + R − 1) =⇒ infinitesimally small A
and infinitely large N are not “practical”.) By (18), (22), and (28), the immediately preceding
paragraph, and anticipating the two immediately following paragraphs: (a) If F + R − 1 =
0 =⇒ A = ln 2, then 〈P∗〉 1

2
> 0, 〈〈P∗〉〉 1

2
> 0, and, for all N ≥ 1, 〈P∗〉N+ 1

2
= 〈〈P∗〉〉N+ 1

2
= 0.
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(b) If −1 < F + R − 1 < 0 =⇒ ∞ > A > ln 2, then 〈P∗〉N+ 1
2
−→ 0 and 〈〈P∗〉〉N+ 1

2
−→ 0 via

ever-diminishing oscillations as N −→ ∞, being positive (negative) at all even (odd) N ≥ 0.
(c) If 0 < F + R − 1 < 1 =⇒ ln 2 > A > 0, then 〈P∗〉N+ 1

2
and 〈〈P∗〉〉N+ 1

2
may reach their

maxima at any N ≥ 0.
Only for N = 0 can 〈P∗〉N+ 1

2
and 〈〈P∗〉〉N+ 1

2
be maximized analytically with respect to A at

given fixed N by setting

∂ 〈P∗〉N+ 1
2

/

∂A = 0 =⇒ ∂ 〈〈P∗〉〉N+ 1
2

/

∂A = 0. (35)

For all N ≥ 1, (35) must be solved numerically. [We neglect the trivial analytical solution
of (35), which yields A = 0 and corresponds to 〈P∗〉N+ 1

2
= 〈〈P∗〉〉N+ 1

2
= 0 for all N ≥ 0.]

Solving (35) analytically for N = 0 yields, for the corresponding optimum value of A,

Aopt|(N = 0) = 1, (36)

and, for the corresponding maximum values of 〈P∗〉 1
2

and 〈〈P∗〉〉 1
2
,

〈P∗〉 1
2 ,max = 〈P∗〉 1

2

∣

∣

∣
(A = 1) = 8M |V|5 /[(3ec)2L] (37)

and

〈〈P∗〉〉 1
2 ,max = 〈〈P∗〉〉 1

2

∣

∣

∣
(A = 1) =

8M
〈〈

|V|5
〉〉

mw
(3ec)2L

=
64[2(kT)5/M3)]1/2

(3ec)2L
, (38)

respectively. Note that (36) is consistent with the third sentence following (34). Equal and/or
higher maxima — if any exist — of 〈P∗〉N+ 1

2
and 〈〈P∗〉〉N+ 1

2
for N ≥ 1 [corresponding to

Aopt(N) in the range to be given shortly by (39)], can be found numerically.
By (34) and the three immediately following sentences, corresponding to all maxima of
〈P∗〉N+ 1

2
[〈〈P∗〉〉N+ 1

2
] for all N ≥ 1 {whether or not any of these maxima equal or exceed

〈P∗〉 1
2 ,max of (37) [〈〈P∗〉〉 1

2 ,max of (38)]},

0 < Aopt|(N ≥ 1) ≤ [Aopt|(N = 1)]max < ln 2, (39)

where [Aopt|(N = 1)]max is, as per the third sentence following (34), the maximum value of
Aopt(N) that corresponds to N = 1 rather than to N = 0. Aopt(N) decreases monotonically
and asymptotically towards 0 as N −→ ∞. (But note the “practical” limits as per the fifth
paragraph of this Sect. 4.)
We conclude this Sect. 4 by considering [assuming, for simplicity, the specific F and R given by
the rightmost terms of (5) and (6), respectively], the quantity

F − R = 4Ae−A |V| /3c

=⇒ 〈〈F − R〉〉mw = 4Ae−A 〈〈|V|〉〉mw 3c = 4Ae−A(2kT/πM)1/2/3c, (40)

an important measure of the degree to which the randomness of our DP’s Brownian motion
is broken — and maximization thereof. [Considering any one given ± |V| pair, F − R does not
involve an average, and hence is not enclosed within single angular brackets in (40) and (41).]
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Maximizing F − R and 〈〈F − R〉〉mw with respect to A, i.e., setting d(Ae−A)/dA = 0 =⇒
A = 1 =⇒ (Ae−A)max = e−1, yields

(F − R)max = 4 |V| /3ec

=⇒ 〈〈F − R〉〉mw,max = 4 〈〈|V|〉〉mw /3ec = 4(2kT/πM)1/2/3ec. (41)

Given (41), all other measures of the degree to which the randomness of our DP’s Brownian
motion is broken are also maximized immediately following the first step of time evolution,
i.e., all other 〈Q〉N and 〈〈Q〉〉N are also maximized at N = 1 (if, e.g., Q = f or Q = P∗,
at the N = 0 −→ N = 1 transition, i.e., at the 1 st pawl-peg interaction) and at A = 1. If
Q = f , and possibly if Q = P∗, these maxima are absolute, i.e., not equaled or exceeded for
any transition ending at N > 1 — in contrast with maximization if, e.g., Q = V. For N > 1
(and for transitions ending at N > 1), (41) does not, in general, correspond to maximization of
〈Q〉N and 〈〈Q〉〉N (whether absolute or merely for the given N). [Note that, in contrast with
(41) — which corresponds to maximization at N = 1 (or at the N = 0 −→ N = 1 transition,
i.e., at the 1 st pawl-peg interaction) given A = 1 — completion of time evolution at N = 1
corresponds to F + R − 1 = 0 =⇒ A = ln 2.]

5. Scaling

Assuming uniform scaling and the validity of (28) and (38), DP size ∝ L and M ∝ L3,

so 〈〈P∗〉〉N+ 1
2

∝ L−11/2; and power density ∝ 〈〈P∗〉〉N+ 1
2

/

L3 ∝ 〈〈P∗〉〉N+ 1
2

/

M ∝

L−17/2. Thus, 〈〈P∗〉〉N+ 1
2

is maximized by minimizing system size, and 〈〈P∗〉〉N+ 1
2

/

L3 ∝

〈〈P∗〉〉N+ 1
2

/

M is maximized even more strongly by both minimizing system size and
maximizing the number of systems operating in parallel [18]. Also, both power and power
density scale as T5/2. As per (29), maximizing power (power density) also maximizes the time
rate of the associated total negentropy production (total negentropy production density).
In correction of a previous error [19], |T+(V)− T−(V)| = 4T |V| /3c, the magnitude of the
temperature difference between the +X and −X disk faces corresponding to V = ± |V| [as
per (2), the two immediately following sentences, and the paragraph immediately thereafter],
cannot be reduced via diffraction of EBR around the disk, not even if the disk’s diameter
and thickness are small (linear dimensions � hc/kT) or even very small (linear dimensions
≪ hc/kT) compared with the wavelength of a typical EBR photon at temperature T (≈ hc/kT)
[20]. An EBR photon approaching the disk from, e.g., the +X direction cannot, say, be
diffracted into a “U-turn” path, thence impinging on the disk from the −X direction: this
requires (forbidden) backwards propagation of Huygens’ wavelets [20b,20c] and violates
conservation of momentum [20c]! (Diffraction can, of course, occur “around a corner”, but
not into a U-turn path [20b,20c].) Diffraction is thereby forbidden from reducing the opacity
of a small (linear dimensions � hc/kT) or even of a very small (linear dimensions ≪ hc/kT)
disk and hence from degrading |T+(V)− T−(V)| [20b,20c].
Nevertheless, diffraction aside, a small (linear dimensions � hc/kT) disk, and especially a very
small (linear dimensions ≪ hc/kT) disk, typically does suffer from small opacity. For a typical
very small (linear dimensions ≪ hc/kT) disk, the efficiency of absorption/(re)radiation of
EBR per unit of DP volume (and hence, assuming uniform scaling, also per unit of DP mass)
is independent of DP size [21] — thereby rendering a very thin (thickness ≪ hc/kT) disk

293Time Evolution of a Modified Feynman Ratchet 
with Velocity-Dependent Fluctuations and the Second Law of Thermodynamics

www.intechopen.com
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highly transparent. Said transparency degrades DP performance by (a) reduced probability
of absorption/(re)radiation of any given EBR photon, and (b) rendering the pawl almost as
likely to be impinged on by an EBR photon that is absorbed/(re)radiated emanating from the
−X direction as by one emanating from the +X direction. Hence, typically, for such a pawl,

T+(V) = T
(

1 + 2γV
3c

)

, where 0 < γ ≪ 1, i.e., |T+(V)− T| = 1
2 |T+(V)− T−(V)| is seriously

degraded in comparison with (2) — and thus DP performance is also seriously degraded. Since
small DP size (and mass) without appreciable degradation of DP performance is necessary for
significant — or even measurable — power and negentropy production densities, the question
arises as to whether or not said degradation in small (linear dimensions � hc/kT), and even
very small (linear dimensions ≪ hc/kT), DPs can be overcome.
Perhaps, it can be overcome via a DP possessing one or more of the following untypical
properties: (a) Overlapping resonances: If the DP is comprised of atoms and/or molecules
whose resonances overlap to significantly “cover” the Planck spectrum corresponding to T,
then the DP might be highly opaque even if it is very small (linear dimensions ≪ hc/kT)
[22]. (b) An internal reflective shield: A nonreflective [purely absorptive/(re)radiative]
nonresonant material cannot be both thin (� hc/kT) and opaque to EBR corresponding
to T [23]. But a reflective material (even if nonresonant) can be [24]. Therefore, a thin
reflective (if also resonant, so much the better) midsection comprising the “center slab” of
the disk separates its absorptive/(re)radiative +X and −X faces not only spatially, but
— more importantly — thermally. [Of course, whether or not such a reflective shield
is present, the +X and −X disk faces themselves must be absorptive/(re)radiative — not
reflective: any purely reflective material obviously can never (re)thermalize!] (c) Alternatively,
perhaps a nonrelativistic positive-rest-mass thermal background medium at temperature T
might be made preponderant over the EBR [25], in which case c −→ |U|, with |U| on the
order of a typical thermal or sonic molecular speed in said medium, rather than the speed
of light in vacuum — which yields the advantage, for any given DP size and mass, of
|U| ≪ c =⇒ |V| / |U| ≫ |V| /c [25]. A further advantage obtains if DP size and mass
given a nonrelativistic positive-rest-mass thermal background medium being preponderant
over the EBR can be smaller than those given the EBR being the sole thermal background
medium. (Even given a nonrelativistic positive-rest-mass thermal background medium
being preponderant over the EBR, there seems to be no advantage in “excluding” the EBR
corresponding to T: such “exclusion” begins to obtain if the DP is enclosed within, say, a
conducting shell of diameter � hc/kT ≈ wavelength of typical EBR photon at temperature T,
and obtains strongly if said diameter ≪ hc/kT.)

6. A digression concerning limited aspects of DP operation in the quantum regime

For brevity in notation in this Sect. 6, we first define, in the classical regime,

F ≡
1
2
(μ + ǫ) (42)

and
R ≡

1
2
(μ − ǫ). (43)
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Note that (42) and (43) imply, and are implied by,

μ ≡ F + R (44)

and
ǫ ≡ F − R. (45)

Also, for simplicity, in this Sect. 6, we consider any one given ± |V| pair, i.e., any one given |V|;
except for the last paragraph thereof, wherein averages over all ± |V| pairs, i.e., over all |V|,
are briefly mentioned.
Applying (44) and (45) in the classical regime, we can rewrite the last line of (10), (11), (15),
(16), (17), and (18), respectively, as

P(±)N =
1
2

{

1 ±
ǫ[1 − (μ − 1)N ]

2 − μ

}

, (46)

〈V〉N = |V|
ǫ[1 − (μ − 1)N ]

2 − μ
, (47)

〈V〉N+ 1
2
= |V|

ǫ[2 − μ(μ − 1)N ]

2(2 − μ)
, (48)

〈∆V〉N+ 1
2
= |V| ǫ(μ − 1)N , (49)

〈 f 〉N+ 1
2
=

(

MV2

L

)

ǫ(μ − 1)N , (50)

and

〈P∗〉N+ 1
2
=

(

M |V|3

2L

)

ǫ2(μ − 1)N [2 − μ(μ − 1)N ]

2 − μ
. (51)

The ǫ-, μ-, and N-functionalities are mutually independent. At constant μ and N [except for

the trivial case N = 0 in (46) and (47), corresponding to
∣

∣

∣
P(±)0 −

1
2

∣

∣

∣
= 0 and to 〈V〉0 = 0,

respectively], all 〈Q〉N , as per (46) – (51), are ∝ ǫ (except 〈P∗〉N+ 1
2

∝ ǫ2).
We now explore limited aspects of DP operation in the quantum regime, considering
the pawl’s quantum-mechanical tunneling through [26a] (or quantum-mechanical — as
opposed to classical — jumping over [26b]) pegs when it would classically bounce, and its
quantum-mechanical reflection or bouncing from pegs when it would classically jump [26].
For simplicity, we assume in this Sect. 6 — as we do throughout this chapter — (in addition
to our nonrelativistic assumptions as per the last sentence of the paragraph immediately
following Fig. 1): (a) that m 〈|v|〉mw (Z − Zmin)scale = m(2kT/πm)1/2(kT/mg) =
(2/πm)1/2(kT)3/2/g ≈ (kT)3/2/m1/2g ≫ h, so that the pawl’s Z-directional thermal
(Brownian) motion can still be treated classically; (b) that M 〈|V|〉mw L = M(2kT/πM)1/2L =
(2kTM/π)1/2L ≈ (kTM)1/2L ≫ h, so that the DP’s X-directional thermal (Brownian) motion
can still be treated classically; and (c) that the combined pawl-plus-peg X-directional thickness
is ≪ L, so that quantum-mechanically (as well as classically) ∆t is only negligibly affected
thereby.
Classically, given DP Brownian motion at V = + |V|, the pawl’s altitude at pawl-peg
interaction is Z > H (Zmin ≤ Z < H) with probability F (1 − F), corresponding — with
certainty — to the interaction being a jump (bounce). By contrast, in the quantum regime,
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the pawl can, with nonzero probability, tunnel through [26a] (or quantum-mechanically — as
opposed to classically — jump over [26b]) a peg if Zmin ≤ Z < H, and reflect or bounce
from a peg if Z > H [26]. Within approximations (a) and (b) as per the immediately
preceding paragraph, quantum-mechanically — as classically — given DP Brownian motion
at V = + |V|, the pawl’s altitude at pawl-peg interaction is Z > H (Zmin ≤ Z < H)
with probability F (1 − F). But, quantum-mechanically [26]: (i) if Zmin ≤ Z < H, then
the pawl will jump with probability (1 − F)τ+ and bounce with probability (1 − F)(1 − τ+),
where τ(+ |V|) ≡ τ+ is the quantum-mechanical probability of tunneling given V = + |V|,
integrated over the range Zmin ≤ Z < H. And, (ii) if Z > H, then the pawl will jump
with probability F(1 − ρ+) and bounce with probability Fρ+, where ρ(+ |V|) ≡ ρ+ is the
quantum-mechanical probability of reflection or bouncing given V = + |V|, integrated over
the range Z > H. This paragraph obviously also obtains given DP Brownian motion at
V = − |V|, as per the substitutions V = + |V| −→ V = − |V|, F −→ R, τ(+ |V|) ≡ τ+ −→
τ(− |V|) ≡ τ−, and ρ(+ |V|) ≡ ρ+ −→ ρ(− |V|) ≡ ρ−. Explicitly, applying (3) – (6) with
Hnet ≡ H − Zmin −→ Z − Zmin, to first order in |V| /c,

τ± ≡ τ(± |V|) = 〈τ(± |V| , Z)〉 =

∫ H
Zmin

τ±(Z)P(Z|V = ± |V|)dZ
∫ H

Zmin
P(Z|V = ± |V|)dZ

=

∫ H
Zmin

τ±(Z)
(

1 ± 2mg(Z−Zmin)|V|
3kTc

)

e−mg(Z−Zmin)/kTdZ
∫ H

Zmin

(

1 ± 2mg(Z−Zmin)|V|
3kTc

)

e−mg(Z−Zmin)/kTdZ
(52)

and

ρ± ≡ ρ(± |V|) = 〈ρ(± |V| , Z)〉 =

∫ ∞

H ρ±(Z)P(Z|V = ± |V|)dZ
∫ ∞

H P(Z|V = ± |V|)dZ

=

∫ ∞

H ρ±(Z)
(

1 ± 2mg(Z−Zmin)|V|
3kTc

)

e−mg(Z−Zmin)/kTdZ
∫ ∞

H

(

1 ± 2mg(Z−Zmin)|V|
3kTc

)

e−mg(Z−Zmin)/kTdZ
. (53)

Applying (52) qualitatively [26], for any |V| > 0, τ+ > τ−, because, given Zmin ≤ Z < H, Z is
[as per (3) – (6) with Hnet ≡ H − Zmin −→ Z − Zmin] more probably closer to H if V = + |V|
than if V = − |V|. Similarly, applying (53) qualitatively [26], for any |V| > 0, ρ− > ρ+,
because, given Z > H, Z is [as per (3) – (6) with Hnet ≡ H − Zmin −→ Z − Zmin] more
probably closer to H if V = − |V| than if V = + |V|.
Thus, letting the subscript “q” denote “quantum-mechanical”, we have {as the
quantum-mechanical analog of (5), (9a), and (42) [within said approximations (a) and (b)]}, for
the overall probability, integrated over all Z ≥ Zmin, given DP Brownian motion at V = + |V|,
of a pawl-over-peg jump in the +X direction,

Fq = F(1 − ρ+) + (1 − F)τ+. (54)

Similarly, {as the quantum-mechanical analog of (6), (9b), and (43) [within said
approximations (a) and (b)]}, the overall probability, integrated over all Z ≥ Zmin, simply
via DP Brownian motion at V = − |V|, of a pawl-over-peg jump in the −X direction is
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Rq = R(1 − ρ−) + (1 − R)τ−. (55)

All classical results in this chapter are modified in the quantum regime — within said
approximations (a) and (b) — simply via the substitutions F −→ Fq and R −→ Rq. Also,
note that the correspondence principle is obeyed: purely classical behavior is recovered in the
limits τ+ −→ 0, τ− −→ 0, ρ− −→ 0, and ρ+ −→ 0.
For still greater brevity in notation, we define, for the remainder of this Sect. 6,

Στ ≡ τ+ + τ−, (56)

Σρ ≡ ρ− + ρ+, (57)

∆τ ≡ τ+ − τ− > 0, (58)

and
∆ρ ≡ ρ− − ρ+ > 0. (59)

The inequalities in (58) and (59) are justified by the two sentences immediately following (53).
Applying (42) – (45) and (54) – (59), we have, as the quantum-mechanical analogs — within
said approximations (a) and (b) — of (44) and (45), respectively,

μq ≡ Fq + Rq

= F(1 − ρ+) + (1 − F)τ+ + R(1 − ρ−) + (1 − R)τ−

= F + R − F(ρ+ + τ+)− R(ρ− + τ−) + τ+ + τ−

= μ −
1
2
(μ + ǫ)(ρ+ + τ+)−

1
2
(μ − ǫ)(ρ− + τ−) + τ+ + τ−

= μ −
μ

2
(Σρ + Στ) +

ǫ

2
(∆ρ − ∆τ) + Στ (60)

and

ǫq ≡ Fq − Rq

= F(1 − ρ+) + (1 − F)τ+ − [R(1 − ρ−) + (1 − R)τ−]

= F − R − F(ρ+ + τ+) + R(ρ− + τ−) + τ+ − τ−

= ǫ −
1
2
(μ + ǫ)(ρ+ + τ+) +

1
2
(μ − ǫ)(ρ− + τ−) + τ+ − τ−

= ǫ +
μ

2
(∆ρ − ∆τ)−

ǫ

2
(Σρ + Στ) + ∆τ. (61)

As per the sentence containing (46) and the two sentences immediately following (55), the
classical (46) – (51) are modified in the quantum regime — within said approximations (a) and
(b) — simply via the substitutions ǫ −→ ǫq and μ −→ μq.
We now consider the simplest nontrivial special case, which obtains at N = 1 in (46) and (47),
and at the N = 0 −→ N = 1 transition in (48) – (51). [The trivial case is: N = 0 in (46)
and (47): recall the second sentence following (51).] In this simplest nontrivial special case,
ǫ-dependence alone obtains [recall the paragraph immediately following (51)]. Can ǫq > ǫ
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obtain, i.e., can a quantum DP [within said approximations (a) and (b)] outperform a classical
DP in this simplest nontrivial special case? Applying (45) and (61) yields

ǫq > ǫ =⇒
μ

2
(∆ρ − ∆τ)−

ǫ

2
(Σρ + Στ) + ∆τ > 0

=⇒
ǫ(Σρ + Στ)

∆τ
+ μ

(

1 −
∆ρ

∆τ

)

< 2. (62)

Owing to algebraic difficulty, it is unclear whether or not (62) can be fulfilled for any physically
realistic values of quantities appearing therein, let alone whether or not ǫq,max > ǫmax.
The second-simplest nontrivial special case — entailing the (mutually independent) ǫ- and μ-
functionalities — obtains in the limit N −→ ∞ (within “practical” limits as per the fifth
paragraph of Sect. 4) in (46) – (48). Applying (44), (45), (60), and (61) yields, in this
second-simplest nontrivial special case, as the requirement for a quantum DP [within said
approximations (a) and (b)] to outperform a classical DP,

ǫq

2 − μq
>

ǫ

2 − μ

=⇒
ǫ +

μ
2 (∆ρ − ∆τ)− ǫ

2 (Σρ + Στ) + ∆τ

2 − [μ −
μ
2 (Σρ + Στ) + ǫ

2 (∆ρ − ∆τ) + Στ]
>

ǫ

2 − μ

=⇒ (2 − μ) [ǫ +
μ

2
(∆ρ − ∆τ)−

ǫ

2
(Σρ + Στ) + ∆τ]

> ǫ{2 − [μ −
μ

2
(Σρ + Στ) +

ǫ

2
(∆ρ − ∆τ) + Στ]}

=⇒

[

μ −
1
2
(μ2 − ǫ2)

]

(∆ρ − ∆τ) + (2 − μ)∆τ > ǫΣρ

=⇒ μ

(

1 −
1
2

μ

)

(∆ρ − ∆τ) + (2 − μ)∆τ > ǫΣρ. (63)

The last step of (63) is justified because [given the specific F and R as per the rightmost terms
of (5) and (6), respectively, and applying (42) – (45)] ǫ2 ≪ μ2. It is even less clear — owing to
greater algebraic difficulty — whether or not (63) can be fulfilled for any physically realistic
values of quantities appearing therein, let alone whether or not [ǫq/(2 − μq)]max > [ǫ/(2 −
μ)]max can obtain.
Owing to still greater algebraic difficulty, we will not specifically consider the completely
general case — entailing all three (mutually independent) ǫ-, μ-, and N-functionalities.
By averaging over all ± |V| pairs, i.e., over all |V| — similarly as for our classical DP [as per
the third paragraph and last four paragraphs of Sect. 2, and in light of the two sentences
immediately following (55) and that immediately following (61)] — overall quantum DP
behavior [within said approximations (a) and (b)] can be similarly derived.

7. Conclusion

In the original classic “Ratchet and Pawl” chapter [4], Feynman’s upshot concerning the
“Ratchet and Pawl” elucidates the Zhang [1] formulation of the second law:

“In spite of all our cleverness of lopsided design, if the two temperatures are exactly
equal there is no more propensity to turn one way than the other. The moment we
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look at it, it may be turning one way or the other, but in the long run it gets nowhere.
The fact that it gets nowhere is really the fundamental deep principle on which all of
thermodynamics is based.”

Feynman’s ratchet (which manifests only non-velocity-dependent fluctuations) can operate —
albeit not in violation of the second law — if negentropy (and hence free energy) is supplied
thereto, i.e., at non-TEQ; e.g., (a) if the two temperatures are unequal, or (b) if the pawl —
assumed to have a sufficiently short thermal response time — is heated (cooled) whenever the
wheel turns in the Forward (Reverse) direction.
But Feynman’s classic ratchet and pawl manifests asymmetry, i.e., lopsidedness, only
geometrically, i.e., only in coordinate space alone. By contrast, velocity-dependent fluctuations
— which spontaneously break the randomness of our DP’s Brownian motion at TEQ —
manifest asymmetry, i.e., lopsidedness, in velocity or momentum space, hence allowing
operation despite TEQ: Velocity-dependent fluctuations execute procedure (b) as stated in the
immediately preceding paragraph, but spontaneously, i.e., without cost in negentropy (and
hence in free energy). Of course, our DP is also asymmetrical geometrically: geometrical
(coordinate-space) asymmetry plays an auxiliary yet necessary role in the case of our
DP — and perhaps in general — to momentum-space-asymmetrical velocity-dependence
of fluctuations in the spontaneous breaking of the randomness of Brownian motion at
TEQ. But geometrical (coordinate-space) asymmetry alone does not imply the velocity- or
momentum-space asymmetry that seems to be the central requirement for this spontaneous
randomness-breaking.
If the impedance to Brownian-motional velocity V is thus an asymmetrical function of V itself,
then can the randomness of V be spontaneously broken, thereby challenging the Zhang [1]
formulation — and hence, as per the last four paragraphs of Sect. 3, all formulations — of the
second law?
The correspondence principle requires that the following necessary — albeit, of course, not
sufficient — condition must be satisfied by any valid new and/or generalized scientific theory:
the new and/or generalized theory must reduce to any more restricted theory that is a special
case thereof within the more restricted theory’s (narrower) range of validity. Our theory
challenging the second law via velocity-dependence of fluctuations is in accordance with the
correspondence principle: it predicts that the second law and all results based thereon remain
inviolate if velocity-dependence of fluctuations vanishes.
Of course, the five immediately preceding paragraphs do not preclude unrelated challenges
to the second law that are not based on velocity-dependence of fluctuations [5–10].
Also, obviously, the five immediately preceding paragraphs do not imply that every
velocity-dependent effect can spontaneously break the randomness of Brownian motion
at TEQ — challenging the second law. For example, it seems unlikely that the Lorentz
force — and hence, by extension, any nondissipative velocity-dependent force that acts
perpendicularly to the velocity itself (i.e., to the direction of motion), and hence which can
do no work — can thus challenge the second law [27]. [Note: The Zhang formulation
of the second law, enunciated in Ref. [1a] (and restated in the first two paragraphs of
Sect. 1, with further discussions in the last four paragraphs of Sect. 3, of this present
chapter), is valid irrespective of whether or not (nondissipative) velocity-dependent forces
acting perpendicularly to the velocity itself (i.e., to the direction of motion), and hence which
can do no work — such as the Lorentz force — can challenge the second law.] Also, of course,
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(in general, velocity-dependent) dissipative frictional forces do not challenge the second law —
rather, friction (whether velocity-dependent or not) manifests the second law.
Questions that have not been addressed or answered in this present chapter imply the
following: (i) resolving the challenge to the second law (pro or con) posed by our classical
velocity-dependent DP model, i.e., posed by our DP per se [as developed initially in
Ref. [3k] and more quantitatively both in this present chapter and in previous shorter
versions [28] thereof], and posed by possible classical generalizations of our DP model; (ii)
investigating alternative derivations relevant to our DP model; (iii) more thorough study
of quantum-mechanical velocity-dependent models; (iv) possible generalization of source(s)
of velocity-dependence — in both the classical and quantum regimes — to other than the
Doppler effect, if such source(s) exist; (v) investigating whether or not geometrical asymmetry
is always an auxiliary requirement to velocity-dependence of fluctuations for our challenge to
the second law, and the issue of auxiliary requirement(s) in general (in both the classical and
quantum regimes); (vi) understanding which manifestation(s) of velocity-dependence can or
cannot challenge the second law in both the classical and quantum regimes — recall the last
four sentences of the immediately preceding paragraph; and (vii) investigating relationship(s)
to other (classical and quantum) challenges to the second law [5–10], including a search for
unifying principle(s) behind challenges thereto — whether based on velocity-dependence of
fluctuations or not (recall the immediately preceding paragraph).
Perhaps, in passing, it might be noted that there have also been challenges — albeit unrelated
to this present chapter — to the first [29] and third [30] laws of thermodynamics.
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9. List of symbols

thermodynamic equilibrium TEQ
Cartesian coordinates in right-handed Cartesian coordinate
system in 3-dimensional Euclidean space
right-left directional axis, positive to right X
into-page/out-of-page directional axis, positive into page Y
vertical directional axis, positive upwards Z
(Z-directional) height of pegs H
Z is also used for the altitude of the pawl, which is constrained
from below at Zmin. Thus, the net height of the pegs is Hnet ≡
Z − Zmin .
X-directional spatial separation between adjacent pegs L
disk-and-pawl system DP
mass of disk m′

mass of pawl m
mass of disk-and-pawl system M = m′ + m
X-directional velocity of disk-and-pawl system (DP) V
gravitational acceleration g
speed of light c
Kelvin temperature T
Boltzmann’s constant k
equilibrium blackbody radiation EBR
dimensionless gravitational potential energy parameter of pawl
corresponding to it just barely clearing the pegs

A ≡ mgHnet/kT

angle of impingement, away from the normal or perpendicular,
of a given EBR photon on the right disk face (which includes the
pawl)

α

Kelvin temperature of EBR impinging on the right disk face,
including the pawl

T+

Kelvin temperature of EBR impinging on the left disk face T−
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probability P
probability of the pawl clearing a peg when the DP is moving in
the forward or +X direction

F

probability of the pawl clearing a peg when the DP is moving in
the reverse or −X direction

R

time t
time interval between consecutive pawl-peg interactions (which
could be either jumps or bounces)

∆t

time step in discrete Markovian time evolution (discrete time) N
change in V between consecutive pawl-peg interactions (which
could be either jumps or bounces)

∆V

force exerted on DP by pegs f
power output of DP P∗

general quantity Q
entropy S
angle of incline (upwards towards the right, i.e., towards the +X
direction)

θ

Planck’s constant h

speed of gas molecules surrounding DP if DP is not (as we
usually assume) surrounded only by EBR in vacuum

U

μ ≡ F + R
ǫ ≡ F − R
quantum-mechanical probability of the pawl tunneling through
a peg when it is not high enough to clear a peg classically, i.e.,
when Zmin ≤ Z < H

τ

quantum-mechanical probability of the pawl bouncing from a
peg when it is high enough to clear a peg classically, i.e., when
Z > H

ρ

List of subscripts

minimum min
net net
maximum max
optimum opt
Maxwellian mw
quantum q
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