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1. Introduction 

While the worldwide energy consumption is projected to grow by 57 % until 2030 (U. S. 
Energy Information Administration [EIA], 2007) fossil sources are limited and it is 
questionable how long they will last. Meanwhile, even unconventional sources such as tar 
sands and oil shales become economically producible since crude oil prices have reached 
sustained highs and even surpassed a historic mark of US$ 145 per barrel in June 2008 
(EIA, 2011). 
Besides concerns about avaibility and prices of fossil fuels as well as the quest for energy 
independence, there is also an intense discussion about environmental impacts. Burning of 
fossil fuels leads to a massive increase of the greenhouse gas CO2 in the atmosphere and is 
thus contributing to global warming (Intergovernmental Panel on Climate Change [IPCC], 
2007). This could be counterbalanced by using alternative energy sources. Biofuels are the 
most promising alternative energy for the transportation sector, which is most rapidly 
growing (an annual average of 3 % is projected until 2030, especially due to increasing 
mobility in China and India) and accounts for over 20 % of the worldwide primary energy 
(EIA, 2010). 
Biofuels can either be produced microbially or chemically from renewable biomass and are 
therefore CO2 neutral. However, only few compounds such as alcohols (ethanol, butanol), 
alkyl esters of fatty acids (biodiesel), and alkanes (renewable diesel) have the required 
properties. Today, only bioethanol, biodiesel, and renewable diesel are produced at 
industrial scale, but several second generation technologies are on path to 
commercialization. Especially biobutanol fermentation seems to be a promising alternative.  

2. The past: History of biofuels 

The use of biofuels is no novel invention. Fueling up with vegetable oils or ethanol was 
popular long before the development of the combustion engine. Vegetable and animal oil 
lamps have been used since the dawn of civilization. Already in 1834, the first US patent for 
alcohol as a lamp fuel was awarded to S. Casey (Kovarik, 1998). Around 1850, thousands of 
distilleries produced an estimated 24 million liters (90 million gallons) of “Camphene” (a 
camphor oil scented blend of turpentine and ethanol) per year (Kovarik, 1998). 
Biofuels have also been used since the early days of the car industry. Even the invention of 
the first combustion engine, the “Otto cycle”, was performed with biofuels. German 
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engineer Nikolaus August Otto ran his early engines in the 1860s on ethanol, a fermentation 
product of yeasts. Interestingly, Otto’s initial financing came from Eugen Langen, who 
owned a sugar refining company having links to the alcohol markets of Europe (Kovarik, 
1998). Furthermore, Henry Ford’s first prototype automobile, the “Quadricycle”, in the 
1880s could be operated with ethanol as fuel and his “Model T”, the “Tin Lizzie”, the most 
popular car produced between 1908 and 1927, was originally designed to run on pure 
ethanol. Ford was a big supporter of alcoholic fuels and told a New York Times reporter in 
1925 (Ford, 1925): “The fuel of the future is going to come from fruit like that sumach out by the 
road, or from apples, weeds, sawdust -- almost anything. There is fuel in every bit of vegetable matter 
that can be fermented. There's enough alcohol in one year’s yield of an acre of potatoes to drive the 
machinery necessary to cultivate the fields for a hundred years.” 
However, due to economic issues, pure ethanol was not able to prevail over gasoline. Before 
1906, high taxes were levied on ethanol in the United States and later, gasoline became 
cheaply available due to the discovery of large oil reserves in Texas and Pennsylvania. Soon 
however, ethanol was recognized as an effective anti-knocking additive for combustion 
engines when mixed with gasoline. Blends such as “Agrol” (up to 17 % ethanol fermented 
from grain) in the United States, “Koolmotor” and “Cleveland Discol” (up to 30 % ethanol 
fermented from grain) in Britain, “Monopolin” (25 % ethanol fermented from potatoes) in 
Germany, “Benzalcool”   (20 % ethanol) and “Robur” (30 % ethanol and 22 % methanol) in 
Italy, “Lattbentyl” (25 % ethanol fermented from paper mill wastes) in Sweden, “Moltaco” 
(20 % ethanol) in Hungary, “Benzolite” (55 % ethanol) in China, “Natalite” (up to 40 % 
ethanol fermented from sugar cane) in South Africa, “Gasonol” (20 % ethanol fermented 
from sugar cane) in the Philippines, “Shellkol” (up to 35 % ethanol fermented from 
molasses) in Australia, and “Espiritu” (20 % ethanol fermented from molasses) in Cuba 
were common between 1925-1945 (Kovarik, 1998; Giebelhaus, 1980; Finaly, 2004). 
Ethanol was not the only biofuel used in the car industry at that time. Rudolph Diesel, 
inventor of the “Diesel oil-engine”, tested his engine with peanut oil at the world’s fair 
“Exposition Universelle Internationale” of 1900 in Paris (Nitske & Wilson, 1965; Knothe,  
2001.) In 1912, Diesel published two articles (Diesel, 1912a, 1912b) in which he reflected: 
“The fact that fat oils from vegetable sources can be used may seem insignificant to-day, but such oils 
may perhaps become in course of time of the same importance as some natural mineral oils and the tar 
products are now. (…) In any case, they make it certain that motor power can still be produced from 
the heat of the sun, which is always available for agricultural purposes, even when all our natural 
stores of solid and liquid fuels are exhausted.” During the 1920s however, diesel engine 
manufacturers altered their engines to petroleum-derived diesel fuel due to cheaper prices 
and lower viscosity (the viscosity of vegetable oil is about an order of magnitude higher), 
which led to better atomization of the fuel in the engine’s combustion chamber (Knothe, 
2001). This problem was solved when the Belgian patent 422,877 was granted on August 31st 
1937 to George Chavanne of the University of Brussels (Chavanne, 1937). It describes the use 
of methyl and ethyl esters of vegetable oil, obtained by acid-catalyzed transesterification, as 
diesel fuel, being the first report on what is today known as biodiesel (Chavanne, 1943). 
During World War II, vegetable oils and alcohols were used as supplementary or 
emergency fuels in most belligerent nations. For instance, it was reported that the Japanese 
battleship “Yamato” used refined soybean oil as bunker fuel (Knothe, 2001). Nevertheless, 
with the outbreak of WW II, virtually all resources were diverted from industrial alcohol 
production to synthetic rubber or ammunition (Finaly, 2004). After the war, gasoline 
dominated the market almost completely because of cheap Middle East oil. Only during 
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periods of scarcity such as the oil crises 1973-74 and 1979-80, many countries showed 
renewed interest in biofuels. The only nation that revived the bioethanol industry 
permanently was Brazil. Government, farmers, alcohol producers, and car manufactures 
cooperated in the 1970s to launch the alcohol program “Pró-álcool”. Brazil began to produce 
ethanol by fermentation of sugar cane. Initially, gasoline was blended with 20 % (“E20”) or 
25 % (“E25”) ethanol, and after the second oil crisis pure ethanol (“AEHC” (“Álcool etílico 
hidratado combustível”, hydrated ethyl alcohol fuel) or “E96”) was also available as fuel, 
causing the car industry to implement the necessary engine modifications. The Brazilian 
bioethanol production increased from 600 million liters (160 million gallons) in 1975 to 13.7 
billion liters (3.6 billion gallons) in 1997, by far the highest in the world (International 
Energy Agency [IEA], 2004). 
Not until 2006, the United States surpassed the Brazilian bioethanol production with an 
annual capacity of 18.4 billion liters (4.9 billion gallons) compared to 17 billion liters (4.5 
billion gallons). This was a dramatic increase taking into account that the US had produced 
only a comparatively low amount of 4.9 billion liters (1.3 billion gallons) bioethanol in 1997 
(Figure 1a; Renewable Fuels Association [RFA], 2011). Today, the US doubled this number 
and produces around 40.1 billion liters (10.6 billion gallons) bioethanol (Figure 1a; RFA, 
2011). The major comeback of biofuels in the United States and most other nations was 
driven by the enormous rise of the crude oil prices since the late 1990s (Figure 1b; EIA, 
2011). Meanwhile, oil prices have reached sustained highs of over US$ 80 per barrel and 
might well continue to increase due to political instability in the Middle East and concerns 
over the potential oil peak (highest production rate), demonstrated in July 2008 when the oil 
price surpassed US$ 145 per barrel for a short time.  
Other important drivers include the quest to gain energy independence (Schubert, 2006) and 
growing concerns on the effect of greenhouse gas emissions on the world’s climate, which 
could be counterbalanced by using renewable biomass for biofuel production. Also, MTBE 
(Methyl tert-butyl ether), an oxygenated anti-knocking additive for engines, was restricted 
in many countries and banned in some US states such as California and New York (which 
account for app. 45 % of the United States MTBE consumption) in response to 
environmental and health concerns (EIA, 2003; IEA, 2004). As a suspected carcinogenic 
agent, MTBE began turning up in significant amounts in ground water, since it is highly 
soluble in water, binds weakly to soil, and is not readily biodegradable in the environment 
(Squillance et al., 1997; EIA, 2003; IEA, 2004). This created an additional 10 billion liters (2.7 
billion gallon) market for ethanol, which can be used as substitute directly or can be 
converted to the more environmental friendly ETBE (Ethyl tert-butyl ether) (EIA, 2003 & 
2007). Moreover, many countries all over the world granted tax exemptions or paid 
subsidies for biofuels and set mandatory targets for the use of biofuels. The US congress for 
example established a renewable fuels mandate of 136 billion liter (36 billion gallons) by 
2022 (Department of Energy [DOE], 2010), while the  European Union agreed to satisfy 10 % 
of its transport fuel needs from renewable sources, including biofuels, hydrogen, and green 
electricity (EurActive Network, 2008). As a consequence, research and development of new, 
second generation biofuels got another push forward. 
However, presently only first generation bioethanol and biodiesel are produced at a large 
industrial scale. While most countries produce mainly bioethanol, some European nations 
such as Germany, France, Spain and Italy focus on biodiesel, too. In 2009, Brazil and the 
United States produced app. 85 % of the world’s bioethanol, whereas Europe produced 
about 85 % of all biodiesel (Table 1; RFA, 2010;  EIA, 2007; Biofuels platform, 2010; European 
Biodiesel Board, 2010). 
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Fig. 1. Bioethanol production and crude oil price. A, development of the bioethanol 
production in the United States (RFA, 2010). B, development of the crude oil price (West 
Texas Intermediate) (EIA, 2011). 
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Biofuels are even used in motor sports nowadays. In 2007, the Scotsman Dario Franchetti 
won the iconic “Indianapolis 500” race with his 670-horsepower “Indy car” running on pure 
bioethanol. Moreover, in February 2008 a Virgin Atlantic Boeing 747-400 was the first 
commercial aircraft testing a 20 % blend of biofuel (a mixture of coconut and babassu nut 
oils) with 80 % fossil jet fuel (kerosene, C9-C18) in one of its four engines on a flight from 
London Heathrow to Amsterdam Shiphol airport (Virgin Atlantic, 2008). Airplanes in 
general have problems using ethanol because it freezes at an altitude of about 5 kilometers 
(16,400 feet). Long chain fatty acids, alkanes and also biobutanol have been identified as 
potential alternative by the Virgin Group, which announced to invest over US$ 3 billion 
over the next 10 years in renewable energy initiatives (Ernsting, 2008). One of Virgin Fuels 
partners, Gevo, Inc. is working on production of this biofuel with metabolic engineered 
Escherichia coli and yeast (Atsumi et al., 2008a, 2008b, Liao et al., 2008; Gunawardena et al., 
2008; Buelter et al., 2008; Hawkins et al., 2009). 
 

Country 
Bioethanol Biodiesel Total production 

[Ml] [Mgal] [Ml] [Mgal] [Ml] [Mgal] 

US 40,125 10,600 1,703 450 41,828 11,050 
Brazil 24,900 6,578 n. d. a. 24,900 6,578 
Germany 750 198 3,218 850 3,968 1,048 
France 1,250 330 2,483 656 3,733 986 
China 2,052 542 n. d. a. 2,052 542 
Thailand 1,647 435 n. d. a. 1,647 435 
Spain 465 123 1,089 288 1,554 410 
Canada 1,102 291 n. d. a. 1,102 291 
Italy 72 19 934 247 1,006 266 
Belgium 143 38 527 139 670 177 
Poland 166 44 421 111 587 155 
Austria 180 48 393 104 573 151 
Sweden 175 46 295 78 470 124 
Netherlands 0 0 409 108 409 108 
India 348 92 n. d. a. 348 92 
Czech Rep. 113 30 208 55 321 85 
Portugal 0 0 317 84 317 84 
Hungary 150 40 169 45 319 84 
Columbia 314 83 n. d. a. 314 83 
Finland 4 1 279 74 283 75 
UK 70 18 174 46 244 64 
Australia 216 57 n. d. a. 216 57 
Rest EU 163 43 549 146 712 189 
Others 935 247 n. d. a. 935 247 
Total 75,340 19,903 13,168 3,481 88,509 23,381 

n. d. a. = no data available. Data were taken from RFA, 2010;  EIA, 2007; Biofuels platform; 2010; 
European Biodiesel Board, 2010. 

Table 1. Production of biofuels in 2009 
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The use of butanol as biofuel has already been reported in 2005, when David Ramey toured 
the United States in a 13-year old Buick fueled by pure butanol. Although consumption was 
9 % higher, emissions of carbon monoxide (CO), hydrocarbons, and nitrogen oxides (NOx) 
were decreased enormously. He meanwhile started the company Butyl Fuel, LLC. While 
this is a fairly small enterprise, two major global players, BP and DuPont, also announced to 
start fermentative biobutanol production from sugar beet in June 2006 and formed the joint-
venture Butamax™Advanced Biofuels, LLC in 2009 with the aim to commercialize 
biobutanol by 2013. A first commercial plant with a capacity of 420 million liters (111 million 
gallons) will be built in Saltend, UK (Butamax, 2011a). 
About 150 years ago, Louis Pasteur discovered that butanol can be formed by microbes 
(Pasteur, 1862). The culture he used for his experiments was probably a mixture of different 
clostridia (strictly or moderately anaerobic, spore-forming, Gram-positive bacteria, unable of 
dissimilatory sulfate reduction). More detailed studies on butanol producing bacteria were 
then conducted by Albert Fitz, who finally described the isolation of pure cultures of 
“Bacillus butylicus” from cow feces and hay (Fitz, 1876; Fitz, 1877; Fitz, 1878; Fitz, 1882). 
Other scientists, e. g. Martinus Beijerinck and Sergei Winogradsky, isolated further solvent-
forming bacteria around 1900. These organisms received names such as “Granulobacter 
saccharobutyricum”, “Amylobacter butylicus”, and “Bacillus orthobutylicus”, which are no 
longer taxonomically valid (Dürre & Bahl, 1996). Presumably all of them belong to the genus 
Clostridium, which was back then only used as a morphological description, meaning small 
spindle (Dürre, 2001). 
Almost at the same time, considerable interest in synthetic rubber started as a result of the 
increase in the price of natural material due to its use in automobile tires. In 1910, the British 
company Strange and Graham, Ltd. launched a project to study butanol formation by 
microbial fermentation because of its use as precursor of butadiene, the starting material for 
the synthetic rubber production (as well as of isoamyl alcohol as a precursor of isoprene). 
The project was pursued by help of Auguste Fernbach and Moïse Schoen from the Institute 
Pasteur in Paris and William Perkins and Charles Weizmann from Manchester University. 
Fernbach isolated an acetone-butanol producer in 1911, but Weizmann separated in 1912, 
continuing his work at Manchester University. He succeeded in isolating an organism, later 
named Clostridium acetobutylicum, which produced significantly larger amounts of acetone 
and butanol than the strain isolated by Fernbach (McCoy et al., 1926). Patent applications 
were filed for the Fernbach process in 1911 and 1912 (Fernbach & Strange, 1911ab & 1912) 
and for the Weizmann process in 1915 (Weizmann, 1915). In 1913, Strange and Graham, Ltd. 
started production with the so-called ABE fermentation (for acetone-butanol-ethanol) based 
on the Fernbach process, first at Rainham, UK and later at King’s Lynn, UK (Gabriel, 1928; 
Jones & Woods, 1986; Dürre & Bahl, 1996). 
As an irony of fate, natural rubber became available at this time at much cheaper prices and 
in large quantities, because the new plantations in Asia started to be fully productive. 
However, the outbreak of World War I led to a sudden and large demand for acetone as a 
solvent for the production of cordite (smokeless gunpowder). The dominant source for 
acetone up to this time was calcium acetate imported from Austria, Germany, and the 
United States. As acetate imports from Austria and Germany were not available during that 
time and the production capacity in the US was almost negligible compared to the required 
quantities, Strange and Graham, Ltd. were contracted by the British War Office to supply 
acetone. However, their production was relatively inefficient, with an average capacity of 
about 440 kg (970 pounds) of acetone per week. Therefore, a switch to the Weizmann 
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process was requested. Thus, production could be increased to app. 900 kg (2,000 pounds) 
acetone per week. Hence, the disregarded by-product acetone helped the ABE fermentation 
process to an international breakthrough, becoming eventually the second largest 
biotechnological process ever performed (Jones & Woods, 1986; Dürre & Bahl, 1996). Due to 
the threat by German submarines, grain and corn could not be imported to the United 
Kingdom in the required quantities any longer. Therefore, the Weizmann process was 
transferred to Canada and the United States. Plants were built in Toronto in 1916 and Terre 
Haute, Indiana in 1917 (Gabriel, 1928; Ross, 1961; Jones & Woods, 1986; Dürre & Bahl, 1996). 
The constant supply of acetone was certainly a decisive factor in winning World War I. 
Weizmann declined any rewards or personal honors by the British government, but, being a 
member of the Zionist movement, clarified that his only wish was to see a home established 
for the Jews in Palestine. There is no doubt that this attitude affected the Balfour declaration 
of 1917, leading to the foundation of the State of Israel. In succession, Weizmann became its 
first president (Ross, 1961; Dürre & Bahl, 1996). 
At the end of the war in 1918, there was no longer a high demand for acetone and 
consequently all production plants were closed. During the whole war, butanol (about twice 
the amount of the produced acetone) was considered a white elephant and simply stored in 
huge containers (Killeffer, 1927). However, the situation changed in 1920, when the United 
States implemented the prohibition. As a result no amyl alcohol, obtained as a by-product of 
the ethanol fermentation, was available for the production of amyl acetate, needed in large 
amounts by the rapidly growing automobile industry as solvent for lacquers. Butanol and its 
ester butyl acetate proved to be a well-suited alternative. The Commercial Solvents 
Corporation (CSC) was founded, obtained the patent rights to the Weizmann process, took 
over the plant at Terre Haute from the Allied War Board in 1919, and started butanol 
production in 1920. Despite the general recession of 1920, which forced a shutdown of several 
months, and a bacteriophage infection in 1923, which cut the yields dramatically, the plant was 
enlarged. Additionally, a new plant was opened in Peoria, Illinois in 1923, consisting of 32 
189,000-liter (50,000-gallon) fermenters and enlarged in 1927 to 96 fermenters (Gabriel, 1928; 
Gabriel & Crawford, 1930; Ross, 1961; Jones & Woods, 1986; Dürre & Bahl, 1996). 
After expiration of the Weizmann patent, many new strains were isolated (McCutchan & 
Hickey, 1954) and patented and new fermentation plants were built in the United States, 
Puerto Rico, South Africa, Egypt, the former Soviet Union, India, China, Japan, and 
Australia. Until 1945, two-thirds of the butanol in the United States was produced by 
fermentation. During World War II, the focus shifted to acetone production again (Jones & 
Woods, 1986; Dürre & Bahl, 1996). However, a few years after the end of the war, most of 
the plants in Western countries were closed because of rising substrate prices and 
competition by the growing petrochemical industry. The ABE fermentation was only 
continued in countries that were cut off from international supplies for political or monetary 
reasons. For instance, the South African apartheid regime ran a plant in Germiston with a 
capacity of 1,080 m³ (11,625 cubic foot) until 1982 (Jones & Woods, 1986; Jones, 2001). The 
former USSR operated at least eight plants, some of them up to the late 1980s. Continuous 
fermentations with lignocellulose hydrolates as substrate and working volumes of more 
than 2,000 m³ (21,530 cubic foot) were carried out. During the 1960s and 1970s more than 
100,000 tons of butanol per year were produced (Zverlov, 2006). China also developed the 
continuous fermentation process and about 30 plants produced an annual amount of 170,000 
tons of solvents at its peak in the 1980s. Afterwards the production decreased successively 
and the last plant was closed in 2004 (Chiao & Sun, 2007). 
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Meanwhile, China reopened some of its fermentation plants and constructed new ones, with 
an expected annual solvent production of up to 1,000,000 tons in the next five years (Chiao 
& Sun, 2007; Ni & Sun, 2009). New plants were also built or are planned in the United States 
(Gevo, 2009; Cobalt Technologies, 2010), the United Kingdom (Butamax, 2011a), Brazil 
(Afschar et al., 1990), France (Marchal et al., 1992; Nimcevic & Gapes, 2000), and Austria 
(Nimcevic & Gapes, 2000; Gapes, 2000). Thus, the biological butanol production faces bright 
prospects in the future. 

3. Specifications for biofuels 

Biofuels have to meet defined physical and chemical criteria for the use in modern 
combustion engines and for the use of the existing distribution infrastructure. First, the state 
of aggregation is of particular importance. Biofuels for transportation should be liquid at 
ambient temperature and atmospheric pressure which is true for alcohols, biodiesel, and 
renewable diesel. Gaseous biofuels such as hydrogen and methane (biogas) will require the 
development of a new infrastructure and modified engines. Second, biofuels should have 
the same properties as petrochemical-based fuels (Table 2). 
 

Fuel Gasoline Ethanol Butanol Diesel Biodiesel 
Energy density 

[MJ/l] 
32-35 21.2 29.2 35-42 32-42 

Mileage 
[%] 

100 61-66 83-91 100 90-100 

Air-fuel ratio 14.6 9.0 11.2 15.0 13.8 

Research octane 
number (RON) 

91-99 129 96 - - 

Motor octane 
number (MON) 

81-89 102 78 - - 

Cetane number 
(CN) 

- - - 50-60 45-70 

Vapor pressure 
[hPa] 

35-90 
(at 20 °C) 

58 
(at 20 °C) 

6.7 
(at 20 °C) 

- - 

Flashpoint 
[°C] 

< -20 12 35-37 55-60 100-190 

Enthalpy of 
vaporization 

[MJ/kg] 
0.36 0.92 0.43 - - 

Kinematic 
viscosity 
[mm²/s] 

0.4-0.8 
(at 20 °C) 

1.5 
(at 20 °C) 

3.6 
(at 20 °C) 

1.2-3.5 
(at 40 °C) 

2-9.5 
(at 40 °C) 

Table 2. Physical and chemical properties of biofuels 

Basically, biodiesel has similar characteristics as regular diesel. However, there are 
significant differences between biodiesel fuels produced from various vegetable sources 
(Fukuda et al., 2001), which can lead to damage of diesel engines. Critical points are dilution 
of motor oil, coking of piston rings, corrosion of hydraulic components, and depositions in 
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the injection system, resulting from the production process and fuel aging. Hence, this is 
perhaps the biggest problem of biodiesel fuels, causing a couple of automotive 
manufacturers to refuse the use of biodiesel in some of their models. Newly developed, 
highly efficient motor technologies require low sulfur and saturated hydrocarbons, without 
aromatic compounds. A way out of this problem will be the use of renewable diesel and 
diesel from BtL (biomass to liquid) biofuels. 
Similarly, ethanol has a number of disadvantages that can be avoided when using butanol 
as a biofuel (see section 5.5). The reason why currently so many countries use biodiesel and 
ethanol despite a number of disadvantages is simply the fact that they are currently 
available in large quantities. In future, however, superior second generation biofuels such as 
renewable diesel, butanol, renewable gasoline, and BtL fuels will gain much more 
importance. 

4. The present: First generation biofuels 

4.1 Bioethanol 

The bioethanol fermentation is by far the largest biotechnological process worldwide. Most 
common are batch fermentations with the yeast Saccharomyces cerevisiae from corn, sugar 
cane, cassava, wheat, or rye as substrate. Sugar beet has recently been introduced as well.  
During the last few years, industrial production strains have been improved for higher 
ethanol yields, specific ethanol productivity, inhibitor insensitivity, and product tolerance 
(up to 20 % ethanol). Meanwhile, the bioethanol fermentation is a mature technology. 
Worldwide, a total of around 75 billion liters (20 billion gallons) bioethanol were used in 
2009 as biofuel (Table 1). The worlds largest bioethanol producer is POET, LLC 
(www.poet.com/) with over 27 plants producing more than 6 billion liters (1.5 billion 
gallons) (POET, 2011). 
However, the increasing demands for sugar cane and especially corn are in serious 
competition with the food industry (food-vs-fuel discussion). Mexico has already seen huge 
demonstrations about the rising costs of the national dish tortillas, which are made from 
corn. A world bank report blamed the increasing biofuel use as one of the prime causes of 
raising food prices (Mitchell, 2008), and Oxfam claimed that current biofuel policies will 
push millions of people into poverty (Oxfam, 2008). The use of large land areas for growing 
monocultures is criticized as environmentally hazardous as well, and the suger cane fields 
in Brazil are usually burned before harvest (to kill snakes and make the suger cane easier to 
handle), releasing green house gases methane and nitrous oxide. Thus, corn and sugar cane 
ethanol can only be an interim solution, until second generation biofuels are 
commercialized, which are sustainable and independent of the use of food. 

4.2 Biodiesel 

Biodiesel is a chemically synthesized biofuel. Worldwide, more than 13.1 billion liters (3.5 
billion gallons) have been used in 2009 as a pure fuel or fuel additive (Table 1). Biodiesel is 
defined as monoalkyl esters of fatty acids from vegetable oil or animal fats. It is produced by 
transesterification of the parent oil with an alcohol and this process is therefore also 
designated alcoholysis (Figure 2). The alcohol generally used for this process is chemically 
synthesized methanol because of its cheap price, but it is also possible to use higher alcohols 
from microbial fermentation such as ethanol or butanol. The resulting products are FAME 
(fatty acid methyl esters), FAEE (fatty acid ethyl esters), or FABE (fatty acid butyl esters), 
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respectively. The reaction is catalyzed by acids, alkalis, or lipase enzymes (Fukuda et al. 
2001; Akoh et al., 2007). 
Many different sources can be used as parent oil. Most common are vegetable oils. Primarily 
important is the oil yield per area, but climate and economics finally determine which 
vegetable oil is used. While the US rely on soybean oil (400-446 liter oil/ha (43-48 gallons 
per acre)) as major feedstock, European countries prefer rapeseed (canola) oil (1,100-1,190 
liter oil/ha (118-127 gallons per acre)), and tropical countries palm oil (2,400-5,950 liter 
oil/ha (257-636 gallos per acre)). Sunflower oil (690 liter oil/ha (73 gallons per acre)), 
peanut/groundnut oil, cottonseed oil, castor oil, and safflower oil are also used 
commercially (Akoh et al., 2007; Chisti, 2007; Fairless, 2007). 
 

 
Fig. 2. Chemical reactions leading to biodiesel. R1-R3: saturated and/or unsaturated 
hydrocarbons of different chain length. 

Moreover, the use of jatropha seed oil (1,300-1,892 liter oil/ha (139-202 gallons per acre)) 
seems to be very attractive because it does not compete with the food industry and the plant 
Jatropha curcas produces seeds containing up to 35 % oil and is resilient to pests and drought. 
Therefore, it can even grow in dry savanna. Hundreds of thousands hectares (respectively 
acres) are already in cultivation in South Asia, Africa, Middle and South America, and 
already in 2007, BP and D1 Oils launched a corresponding project (Fairless, 2007; BP, 2007). 
Jatropha-based biodiesel is also considered as aviation fuel (Air New Zealand, 2008). Other 
sources are animal fats (fish oils, blubber, lards, tallow, etc.) and even waste oils (frying oils, 
soapstocks, etc.). 
However, microbial oils can also be used. Especially microalgal oils show great potential 
and are theoretically CO2 neutral (like vegetable oils). Microalgae grow fast (biomass 
doubling time of 3.5 hours during exponential growth) and are rich in oil (up to 80 % weight 
of dry biomass). Photobioreactor experiments demonstrated an oil yield of 136,900 liter oil 
per hectar (14,635 gallons per acre) (with 70 % oil in biomass). Nevertheless, microalgal 
biomass production is generally considered more expensive than growing crops, despite 
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having a higher energy yield per area (Schubert, 2006; Chisti, 2007; Chisti, 2008) . Another 
big challenge is the high demand for water and especially fertilizers. As result,  
algae biofuels had a worse environmental footprint than corn ethanol in a recent life  
cycle analysis (Clarens et al., 2010). However, algae oils have big potential as jet fuel. 
Companies trying to commerzialize algae biofuels include Algenol Biofuels 
(www.algenolbiofuels.com/), Aquaflow (www.aquaflowgroup.com/), Sapphire Energy, 
Inc. (www.sapphireenergy.com/), or Solazyme, Inc. (www.solazyme.com/). 
In addition, oil production with some yeasts, fungi, or bacteria has also been evaluated 
(Ratledge, 1993). Metabolically engineered E. coli were not only shown to produce free fatty 
acids, but also biodiesel directly (up to 26 % FAEE of dry cellmass), referred to as 
microdiesel. The genes for the pyruvate decarboxylase (pdc) and alcohol dehydrogenase 
(adhB) of Z. mobilis have been introduced in E. coli to produce large amounts of ethanol. 
Additionally, the gene for the acyltransferase (atfA) of Acinetobacter baylyi strain ADP1 has 
been subcloned on the same plasmid in E. coli. The corresponding enzyme has an 
extraordinary low substrate specificity and is able to esterify ethanol with the acyl moieties 
of coenzyme A thioesters of fatty acids. However, supplementation of exogenic fatty acids 
(oleic acid) was necessary for a substantial FAEE yield, because the acyltransferase did not 
use the de novo synthesized fatty acids properly. Nevertheless, the feasibility of a new 
microbiological biodiesel production process was demonstrated and can now be further 
developed (Kalscheuer et al., 2006). 
In general, biodiesel shows lower emissions of particulate matter and carbon monoxide 
(CO) than regular diesel fuel, but slightly enhanced nitrogen oxides (NOx) production. It is 
also only moderately more mutagenic. However, rapeseed oil used directly as a fuel for a 
diesel engine showed a strong increase in mutagenicity as measured by the Ames test 
(Bünger et al., 2006; Bünger et al., 2007). In general, vegetable oil represents currently only a 
niche application. Although pure fuel costs are lower than those for diesel, modification of 
engines is required and the higher viscosity leads to cold start problems. 

4.3 Renewable diesel 

The expression "renewable diesel" became meanwhile standard in the US, while 
"hydrotreated vegetable oil" (HVO) is still more common in Europe. However, HVO is a 
term lacking precision, as except for vegetable oil also animal fat components such as lard 
and tallow are used for production. The triglycerides react with hydrogen at a catalyst, 
thereby forming propane (from the glycerol moiety), CO2, H2O, and hydrocarbons (from the 
fatty acids by splitting the ester bond and removal of the carboxy group) (Figure 3). Propane 
can be used as a fuel as well or as feedstock for the chemical industry. Gasoline (in fact: 
biogasoline; chain lengths from C4 to C12) is produced as a side product. The major 
hydrocarbons of a chain length between C12 and C20 (well in the diesel range of C10 to C25) 
are fully saturated, free of oxygen and aromatic compounds as well as low in sulfur content 
and producing less nitrous oxide upon burning, thus representing a superior bio-based 
diesel fuel, chemically equivalent to the crude oil-based product. Renewable diesel is about 
to enter the market in large quantities. ConocoPhillips (www.conocophillips.com/) started 
in 2006 to produce renewable diesel commercially, now reaching 150,000 liters (39,600 
gallons) per day in its Whitegate refinery in Cork, Ireland (Mason & Ghonasgi, 2008). Neste 
Oil Corporation (www.nesteoil.com/) announced in May 2008 to produce an annual 170,000 
tons of renewable synthetic diesel under the brand name NExBTL in its Provoo refinery, 
Finland. Feedstocks include palm oil, rapeseed oil, and animal fats (Oja, 2008) .  
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Fig. 3. Chemical reactions leading to renewable diesel. R1-R3: saturated and/or unsaturated 
hydrocarbons of different chain length. 

5. The future: Second generation biofuels 

5.1 Cellulosic biofuels 

The use of biomass such as wood, dedicated energy crops, agricultural residues, and 
municipal solid waste would be a very attractive alternative. Production of up to 4,000 dry 
tons biomass per km2 (1,545 tons per square mile) and year have been reported in field tries 
and an annual global biomass average of about 1,000 dry tons per km2 (390 tons per square 
mile) is conservatively estimated (Ragauskas et al., 2006). The US can app. yield over 1 
billion dry tons of biomass and continue to meet food, feed, and export demands (Perlack et 
al., 2005). 
Whereas corn grain consist of starch and sugar cane of sucrose, biomass is composed of 
lignocellulose (typically 40-50 % cellulose, 25-35 % hemicellulose and 15-20 % lignin), which 
is the main component of the plant cell wall and therefore very resistant to degradation 
(Schubert, 2006; Gray et al., 2006). One approach towards degradation is based on thermo-
chemical pretreatment and enzymatic hydrolysis of the lignocellulose into fermentable 
sugars and afterwards into so-called cellulose (or cellulosic) biofuels such as bioethanol.  
However, the enzymatic hydrolysis reaction (most commonly with cellulases from the 
fungus Trichoderma reesei) is (still) too expensive (2.5-5 US cent per liter (10-20 US cents per 
gallon) of ethanol produced) and time-consuming (about 100-fold slower than the average 
fermentation rate with yeast) (Schubert, 2006; Gray et al., 2006). Many new enzymes from 
bacteria and fungi have been isolated and characterized in the last few years (Hildén & 
Johansson, 2004). Recently, the metagenome of the hindgut of the wood-feeding termite 
Nasutitermes has been analyzed with the aim to find novel cellulases (Warnecke et al., 2007). 
Moreover, well-known enzymes have either been engineered to improve their performance 
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or produced heterologously in an existing system such as T. reesei (Warnecke et al., 2007; 
Viikari, 2007). Companies such as Codexis, Inc. (www.codexis.com/), Genencor® 
(www.genencor.com/), or Novozymes (www.novozymes.com/) are working on efficient 
enzyme solutions, while others such as ZeaChem, Inc. (www.zeachem.com/) try to 
optimize the thermochemical breakdown route. 
Cellulose consists exclusively of glucose, hemicellulose contains a complex mixture of 
carbohydrates with 15-50 % pentoses such as xylose and arabinose (Schubert, 2006; Gray et 
al., 2006). S. cerevisiae as well as the bacterial work horse Zymomonas mobilis (which has even 
a higher ethanol yield on starch than S. cerevisiae) are naturally not able to ferment pentose 
sugars. Therefore, new strains of both organisms have been developed in the last few years 
by metabolic engineering with additional pentose metabolic pathways (Hahn-Hägerdal, 
2007; Jeffries & Yin, 2003; Dien et al., 2003) . Furthermore, bacteria such as E. coli or Klebsiella 
oxytoca which can use a wide spectrum of sugars have been genetically modified towards 
ethanol production (Dien et al., 2003; Jarboe et al., 2007). Nevertheless, the industry is still 
relying on the yeast S. cerevisiae due to its robustness. 
Already in 2004, Shell and Iogen (www.iogen.ca/) announced the successful production of 
cellulosic ethanol in one complete process for commercial use and are currently operating a 
demonstration plant with an output of 5,000 – 6,000 litres (1400-1600 gallons) of cellulosic 
ethanol per day (Iogen, 2011; Schubert, 2006). The world leading bioethanol producer POET, 
LLC is looking into production of cellulosic ethanol too. 
Some microorganisms such as Clostridium cellulolyticum, C. phytofermentans, or C. 
thermocellum are also capable to ferment cellulose directly into ethanol, in so called 
consolidated bioprocessing process (CBP) (Lynd et al., 2005). Companies like Mascoma 
(www.mascoma.com/) and Qteros, Inc (www.qteros.com/) are working to improve the 
conversion rates to commercial requirements. Heterologous cellulase expression in Z. mobilis 
and S. cerevisiae was successfully shown as well, but yields are nonsatisfying so far and there 
are still some limitations (Lynd et al., 2002; Demain et al., 2005; Schubert, 2006). However, 
biomass can also be gasified and then converted into a biofuels. 

5.2 Biomass-to-Liquid (BtL) biofuels 

One approach to convert lignocellulosic biomass into a biofuel borrows a technology from 
the coal industry, the “Fischer-Tropsch process”. This method was invented in the 
petroleum-poor but coal-rich Germany of the 1920s and describes the generation of 
synthesis gas (or syngas, consisting mainly of carbon monoxide and hydrogen) and its 
reaction into liquid alkanes, alkenes, and alcohols (Schubert, 2006). The desired product 
formation can be adjusted by process conditions and the use of appropriate catalysts 
(usually metals such as iron or cobalt). 
While alcohols or diesel produced via such a “CtL” (coal-to-liquid) or “GtL” (natural gas-to-
liquid) process is certainly not considered as biofuel, the syngas could also be generated 
from muncipal solid waste or biomass in a so-called “BtL” (biomass-to-liquid) process. 
Renewable diesel produced this way is known under the brand names SunFuel®  
or SunDiesel® (cooperation of Choren Industries, Shell, Volkswagen, and Daimler; 
www.sunfuel.de/). So far however, only pilot plants started to operate, by a series  
of companies such as Choren Industries (www.choren.com/), Enerkem 
(www.enerkem.com/), Fulcrum BioEnerg, Inc. (www.fulcrum-bioenergy.com/),  or Rentech 
(www.rentechinc.com/). In 2008, Range Fuels (www.rangefuels.com/) started to built a first 
commercial plant with a US$ 76 million grant from the US Department of Energy. However, 
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instead a proposed goal of an annual 100 million gallon ethanol from wood chips, only 4 
million gallons of methanol are produced (Energy Collective, 2011). 
Besides huge problems with product specificity, sulfur gases and the accumulation of tar, 
which leads to consequential poisoning of the noble catalysts, are major issues for these 
processes. However, some acetogenic bacteria such as Clostridium ljungdahlii (Köpke et al., 
2010) are also capable to ferment synthesis gas directly into bioethanol via the acetyl-CoA 
“Wood-Ljungdahl” pathway (Köpke et al., 2011; Tirado-Acevedo, 2010; Henstra, 2007). 
These bacteria are by far more specific and less affected by sulfur gases and tar (Ragauskas, 
2006; Bredwell et al., 1999; Vega et al., 1990). Three companies, Coskata, Inc. 
(www.coskata.com/), IneosBio (www.ineosbio.com/), and LanzaTech NZ Ltd. 
(www.lanzatech.co.nz/), have already committed themselves to this technology and aiming 
to commercialize their process over the next few years. Coskata, Inc. is currently 
designing a 200 million liter (55 million gallon) per year facility in Greene County, 
Alabama with a US$ 250 million loan guarantee by the USDA (Coskata, 2011), IneosBio 
has started to construct a 30 million liter (8 million gallon) per year plant near Vero Beach, 
Florida (InesBio, 2011), and Lanzatech NZ Ltd. signed a commercial partnership deal 
towards the construction of a commercial plant at a steel mill in China (LanzaTech, 2010) 
with the aim to produce an annual 190 million liter (50 million gallons) bioethanol directly 
from steel mill off gases by 2013. 

5.3 Methane from biogas 

Methane or natural gas is already in use as a fuel for cars. 1 kg (2.2 pounds) of methane is 
equivalent to app. 1.4 liters (0.264 gallons) of gasoline. Thus, methane derived from biogas 
(mainly a mixture of CH4 and CO2, plus minor amounts of water, H2S, and other gases) 
could be directly used without further modifications of the respective engines. However, 
purification of methane from biogas is required, and this process results in high costs. 
Also, due to the low percentage of cars currently running on methane, the existing 
infrastructure of distribution of gaseous fuels does not meet a large demand. Thus, 
methane from biogas is not expected to enter the market in relevant quantities within the 
next few years. 

5.4 Hydrogen from biomass 

Hydrogen can serve as a fuel in Otto-type combustion engines and in fuel cells. Thus, single 
solutions as well as so-called "hybrid cars" (combination of different engine types) will be 
suited to run on H2. Prototypes of cars with fuel cells already exist from several 
manufacturers, but mass production is not expected before app. 2015. Several processes 
have been developed to generate H2 from biomass and respective pilot plants are in 
operation in e.g. Austria, Germany, and the US (Schindler, 2008). In principle, biomass is 
converted into synthesis gas (a mixture of mostly CO and H2), from which H2 is further 
purified and compressed. Other ways of biohydrogen formation include photosynthetic 
production, fermentative production, and nitrogenase-mediated production (Levin et al., 
2004; Nath & Das, 2004; Prince & Kheshgi, 2005). In general, the economics of the different 
systems are so far not sufficient to allow introduction of a large scale industrial process. A 
breakthrough at the laboratory level has been achieved recently: Highly efficient hydrogen 
production from any type of biodegradable organic matter became possible in 
electrohydrogenic reactors with mixed cultures of bacteria (Cheng & Logan, 2007). 
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5.5 Butanol (biobased-butanol, biobutanol) 

While alcoholic fuels have almost the same properties as gasoline (Table 2), butanol 
provides a number of advantages over ethanol. Primarily, the energy density of butanol is 
significantly higher, resulting in an increased mileage. In addition, the air-fuel ratio of 
butanol is higher, which means that it can be run at richer mixtures and therefore produce 
more power. The octane rating of butanol is lower to that of ethanol, but similar to that of 
gasoline. Butanol has a lower vapor pressure and is thus safer to handle. Furthermore, the 
enthalpy of vaporization of ethanol is more than twice of that of butanol, which can lead to 
insufficient vaporization and cause problems during starts in cold weather. Additionally, 
ethanol is corrosive and hygroscopic. Especially, aluminum parts are attacked. Hence, 
ethanol cannot be distributed in pipelines and must be transported by tanker trucks, rail car, 
or river barge (IEA, 2004). Blending gasoline with ethanol at the production facility or 
refinery long before distribution is not feasible and must occur shortly before use (IEA, 
2004), increasing the risk of a contamination of groundwater in case of spills. Butanol can be 
blended with gasoline well ahead of distribution and can be transported by the existing 
infrastructure. While ethanol can only be blended up to 85 % with gasoline, butanol can be 
blended in any concentration and used in existing car engines without any modification. 
While butanol can also be produced by the Fischer-Tropsch process, the more economical 
synthesis route is by fermentation. This biotechnological procedure has a long-lasting 
history, as already described. The production organism usually used is C. acetobutylicum. 
During the last decades, intensive investigations led to a significant increase in our 
knowledge on physiology, metabolic regulation, and genetic manipulation of this organism, 
which in combination with improved fermentation and downstream processing will allow 
the revival of a large scale industrial bioprocess. 
Next to the fermentative route, an alternative non-fermentative approach has been 
established by metabolic engineering of the amino acid biosynthesis pathways, which 
allows for production of 1-butanol and also iso-butanol. While most companies like Butalco 
GmbH (www.butalco.com/), ButylFuel, LLC (www.butanol.com/), Cobalt Technologies 
(www.cobalttech.com/), Green Biologics, Ltd. (www.greenbiologics.com), Metabolic 
Explorer (www.metabolic-explorer.com/), or Tetravitae Bioscience, Inc. 
(www.tetravitae.com/) are focusing on optimization of the classical ABE fermentation, 
Butamax™Advanced Biofuels LLC (www.butamax.com/) and Gevo (www.gevo.com/) are 
persuing  the non-fermentative path, too. 

5.5.1 Fermentative production of butanol (ABE fermentation) 

5.5.1.1 Metabolism and enzymes of Clostridium acetobutylicum 

C. acetobutylicum is a Gram-positive anaerobe organism. Its metabolism is characterized by a 
biphasic fermentation (Figure 4), starting with the formation of the acids acetate and 
butyrate. As a consequence of the accumulation of free acids and the resulting pH drop, the 
essential proton gradient between inside and outside of the cell gets destroyed and C. 
acetobutylicum dies. The strategy of C. acetobutylicum to survive is to decrease acid 
production at the end of exponential growth and to switch the metabolism to solvent 
production. Acetate and butyrate are taken up from medium into the cell and metabolized 
into acetone and butanol. By conversion of acids into solvents, the pH increases again. 
Butanol, however, is also toxic to C. acetobutylicum and poses a serious threat to the cells, 
having  damaging effects on membranes and some membrane proteins. Therefore, the 
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bacteria start with the formation of endospores at the same time. Byproducts of the 
fermentation are acetoin, ethanol, and lactate. CO2 and H2 are produced, too. 
The main carbon sources for C. acetobutylicum are starch and sugers. Respective degradative 
enzymes have been found, purified, and characterized (e. g. an -amylase from strain ATCC 
824) (Paquet et al., 1991; Annous & Blaschek, 1994). C. acetobutylicum is unable to feed on 
cellulose (Lee et al., 1985). 
This is curious because the genome of C. acetobutylicum contains a number of genes, which 
code for cellulosome components (Nölling et al., 2001). By their overexpression in E. coli or 
C. acetobutylicum it could be shown that part of the respective proteins are functional (Lopez-
Contreras et al., 2003; Sabathé & Soucaille, 2003). Phosphotransferase systems perform the 
uptake of many sugars. Glucose is degraded by glycolysis (Embden-Meyerhof-Parnas 
pathway) to pyruvate, which again is metabolized into acetyl-CoA by a 
pyruvate:ferredoxin-oxidoreductase (Nölling et al., 2001). This enzyme consists of an 
unknown number of 123 kDa subunits and is extremely oxygen-sensitive (Meinecke et al., 
1989). Acetate is formed from acetyl-CoA. The latter one is also partly converted to butyrate. 
 

 
Fig. 4. Catabolic pathways of acid and solvent formation in C. acetobutylicum. The single 
reactions shown do not represent stoichiometric fermentation balances. 

Phosphotransacetylase (Pta) and acetate kinase (Ack) (Gavard et al., 1957) are involved in 
acetate formation. Both are only strongly expressed during the acidogenic growth phase 
(Andersch et al., 1983). Pta was purified from C. beijerinckii and Ack from C. acetobutylicum. The 
former possesses a molecular mass of 56 to 57 kDa (Chen, 1993), the latter is a dimeric enzyme, 
consisting of identical subunits with a molecular mass of 43 kDa. The enzyme prefers the 
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substrates ATP and acetate (Winzer et al., 1997). Ack from C. saccharobutylicum P262 was also 
purified. The two subunits have each a molecular mass of 42 kDa (Diez-Gonzalez et al., 1997). 
Butyrate formation starts with the condensation of two molecules acetyl-CoA to one 
molecule acetoacetyl-CoA by a thiolase (ThlA). Acetoacetyl-CoA is reduced to 3-
hydroxybutyryl-CoA with NADH by a 3-hydroxybutyryl-CoA-dehydrogenase (Hbd). By 
dehydration via a crotonase (Crt or Cch), crotonyl-CoA is formed. Crotonyl-CoA is reduced 
by a butyryl-CoA-dehydrogenase (Bcd) to butyryl-CoA. The formation of butyrate from 
butyryl-CoA is mediated by two enzymes, a phosphotransbutyrylase (Ptb) and a butyrate 
kinase (Buk). The thiolase of C. acetobutylicum is a tetramer formed of identical subunits, 
each with a molecular mass of 44 kDa (Wiesenborn et al., 1988). C. acetobutylicum and C. 
beijerinckii possess a different gene for a second thiolase (Winzer et al., 2000). The genes for 
two different thiolases have also been found in Clostridium pasteuricum (Berndt & Schlegel, 
1975). 3-Hydroxybutyryl-CoA dehydrogenase (Hbd) from C. beijerinckii NRRL B593 is a 
protein consisting of several identical subunits, each with a molecular mass of 31 kDa. 
Together they compose an enzyme with a total mass of 231 kDa (Colby & Chen, 1992). A 
crotonase (crotonyl-CoA hydratase) was isolated from a C. acetobutylicum strain. This strain 
was not further specified (Waterson et al., 1972). The purified protein was composed of four 
identical parts. Each of these subunits possesses a molecular mass of 40 kDa. A remarkable 
feature of this enzyme is its limited substrate specificity and sensitivity towards high 
concentrations of crotonyl-CoA. It was found that the enzyme only acts on C4- and C6-
enoyl-CoA (Waterson et al., 1972). A butyryl-CoA dehydrogenase has not been purified yet. 
Phosphotransbutyrylase (Ptb) from both C. acetobutylicum strain ATCC 824 and from C. 
beijerickii has also been characterized. The molecular masses determined for the purified 
proteins were 264 kDa and 205 kDa, respectively. Ptb of C. acetobutylicum is composed of 
subunits with a molecular mass of 33 kDa. The enzyme of C. beijerickii is formed from 
subunits of 31 kDa (Waterson, 1972; Thompson & Chen, 1990). Characterization of a 
butyrate kinase purified from C. acetobutylicum ATCC 824 showed a very low activity with 
acetate (only 6 % of that with butyrate). That enzyme possesses two subunits of high 
similarity, each with a molecular mass of 39 kDa (Hartmanis, 1987).  
With the beginning of solventogenesis, C. acetobutylicum takes up butyrate and acetate. 
Butyrate, and to a lesser extent acetate, are converted into butyryl-CoA and acetyl-CoA by 
an acetoacetyl-CoA:acetate/butyrate-coenzyme A transferase (CoA transferase, CtfA/B), 
while acetoacetyl-CoA is simultaneously converted to acetoacetate. Acetone is formed by 
the decarboxylation of acetoacetate mediated by an acetoacetate decarboxylase (Laursen & 
Westheimer, 1966). In some C. beijerinckii strains, a further reduction of acetone to 2-
propanol is catalyzed by a primary/secondary alcohol dehydrogenase. Sequencing analyses 
of the C. acetobutylicum strain ATCC 824 determined a molecular mass of 22.7 and 23.7 kDa 
for the two different subunits of the CoA transferase. A molecular mass of 23.6 kDa for both 
subunits of the protein in DSM 792 (Cary et al., 1990; Gerischer & Dürre, 1990; Petersen et 
al., 1993; Fischer et al., 1993) was found. Acetoacetate decarboxylase of C. acetobutylicum 
consists of 12 identical subunits, each of them with a molecular mass of 28 kDa, forming an 
holoenzyme of 330 kDa, while the enzyme from C. beijerinckii is only 200-230 kDa (Gerischer 
& Dürre, 1990; Petersen & Bennett, 1990; Chen, 1993).  
In C. acetobutylicum, butanol formation is initiated by a bifunctional butyraldehyde/butanol 
dehydrogenase E (AdhE). Just prior to butanol synthesis the transcription of the respective 
gene is induced (Sauer & Dürre, 1995; Grimmler et al., 2011). After inactivation of adhE 
significantly less butanol was produced by C. acetobutylicum. A solvent-negative mutant 

www.intechopen.com



 
Biofuel Production – Recent Developments and Prospects 

 

468 

regained the ability to produce butanol after its transformation with adhE (Nair & 
Papoutsakis, 1994; Green & Bennett, 1996). Additionally, a butanol dehydrogenase (BdhB or 
BdhII) is involved in butanol production (Fischer et al., 1993; Petersen et al., 1991; Nair et al., 
1994) This enzyme forms a dimer, consisting of two identical subunits. A molecular mass of 
42 kDa was determined for each of them. Investigations of the enzyme activity showed that 
it is 46-fold higher with butyraldehyde than with acetaldehyde (Welch et al., 1989). The 
second butanol dehydrogenase is BdhA. Its enzyme activity is only twice as high with 
butyraldehyde than with acetaldehyde (Walter et al., 1992). Like BdhB it forms a dimer with 
a subunit size of 42 kDa. Both enzymes were purified from C. acetobutylicum ATCC 824. 
C. acetobutylicum also possesses a second adhE gene (adhE2), which has a 66 % identity to 
adhE (Fontaine et al., 2002). It is transcribed in continuous culture only under acidogenic 
conditions (Grimmler et al., 2011) or in alcohologenic cultures (only butanol and ethanol 
formation) when grown at neutral pH on glycerol (Fontaine et al., 2002).  

5.5.1.2 Genomic arrangement of elements required for sugar degradation, acid formation, 
and solventogenesis 

The genome of C. acetobutylicum consists of a 3.94 Mbp chromosome and the megaplasmid 
pSOL1 (192 kbp) (Nölling et al., 2001). Phosphofructokinase (pfk) and pyruvate kinase (pyk) 
genes, whose products are involved in degradation of glucose, are arranged in one operon 
(Belouski et al., 1998) Genes for glyceraldehyde-3-phospate dehydrogenase (gap), 
phosphoglycerate kinase (pgk), and triosephosphate isomerase (tpi) are grouped together in 
this order in a common operon. Although gaf, pgk and tpi are transcribed together, a 
separate transcript of tpi was also found (Schreiber & Dürre, 1999). The transcription start 
points are located in front of gap and tpi. Phosphotransacetylase (pta) and acetate kinase (ack) 
genes are clustered in one operon, with ack downstream of pta (Boynton, 1996). Thiolase 
(thlA) forms a monocistronic operon. Transcription of thlA is initiated at a typical σA-
dependent promoter (Winzer et al., 2000; Stim-Herndon, 1995). An operon consisting of, at 
least, thlR-thlB-thlC includes the gene of a second thiolase (thlB), which shows a different 
transcription pattern in continuous culture than thlA (Grimmler et al., 2011). A vegetative 
sigma-factor dependent promoter seems to be responsible for transcription of thlB (Winzer 
et al., 2000). Crotonase (crt), butyryl-CoA dehydrogenase (bcd), and 3-hydroxybutyryl-CoA 
dehydrogenase (hbd) form a cluster together with etfB and etfA (gene products with 
homology to electron transfer flavoproteins). Except for a putative promoter upstream of crt, 
no further transcription start points were found upstream of the start codons of all these 
genes. This indicates that crt-bcd-etfB-etfA-hbd form one transcription unit, called the bcs 
operon (butyryl-CoA-synthesis) (Boynton et al., 1996). Phosphotransbutyrylase (ptb) and 
butyrate kinase (buk) are located in a common operon on the chromosome of C. 
acetobutylicum (Cary et al., 1988; Walter et al., 1993). The respective ptb promoter, located 57 
bp upstream of ptb, initiates transcription of this operon during the acidogenic phase 
(Tummala et al., 1999; Feustel et al., 2004). Another butyrate kinase gene is also present in C. 
acetobutylicum (Huang et al., 2000). 
The gene of the solventogenic enzyme acetoacetate decarboxylase (adc) is arranged in a 
monocistronic operon and is controlled by a σA-dependent promoter. Compared to the other 
promoters, which regulate transcription of solventogenic enzymes, the adc promoter allows 
highest expression (Feustel et al., 2004; Gerischer & Dürre 1992). The terminator of this 
operon is formed by a 28-bp stem-loop, 6 bp downstream of an UAA stop codon (Petersen et 
al., 1993; Gerischer & Dürre, 1992). This UAA is followed by another UAA stop codon. The 
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terminator of adc is located next to the sol operon which is transcribed by the RNA 
polymerase in the reverse direction of adc. It also terminates transcription of the sol operon 
and thus functions bidirectionally (Figure 5). 
 

 
Fig. 5. Organization of megaplasmid and chromosomal gene regions encoding 
solventogenic enzymes in C. acetobutylicum. Promoter positions are indicated by Padc, P1, 
PbdhA, and PbdhB. P2 represents a mRNA-processing site. Possible stem-loop structures are 
indicated by hairpin symbols (Thormann et al., 2002). 

A small peptide of unknown function (orfL), a butyraldehyde/butanol dehydrogenase (adhE 
or aad) and the two subunits of the CoA transferase (ctfA and ctfB) are encoded by this 
operon in the order orfL-adhE-ctfA-ctfB (Petersen et al., 1993; Fischer et al., 1993; Nair et al., 
1994). The sol operon of other solventogenic clostridia (C. beijerinckii, C. saccharobutylicum, 
and C. saccharoperbutylacetonicum) includes the adc gene and contains an aldehyde 
dehydrogenase gene (ald) instead of adhE (Chen & Blaschek, 1999; Kosaka et al., 2007). The 
product of adhE is multifunctional. It has alcohol dehydrogenase activity (C-terminus) as 
well as aldehyde dehydrogenase activity (N-terminus), like the ethanol-forming E. coli 
enzyme. The latter one acts moreover as pyruvate:formate-lyase deactivase (Goodlove et al., 
1989; Kessler et al., 1991). 
adhE2 forms a monocistronic operon. Two promoters S1 and S2 are deduced (Fontaine et al., 
2002), but only the distal one (S2) shows a convincing homology to σA-dependent control 
regions (Dürre, 2004). 
Some of the genes responsible for solventogenesis are carried on the megaplasmid pSOL1 
(192 kbp) (adc, sol, and adhE2) (Nölling et al., 2001; Cornillot et al., 1997). The genes bdhA and 
bdhB for two butanol dehydrogenases have been identified on the chromosome. They form 
two consecutively located monocistronic operons. Their transcription is induced by σA-
dependent promoters and stopped by rho-independent terminators (Petersen et al., 1991; 
Walter et al., 1992). As already mentioned, the genes for CoA transferase and acetoacetate 
decarboxylase are arranged in two different operons. The physiological conditions at the 
onset of solventogenesis might explain the separation of the genes for enzymes, which both 
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catalyze acetate formation. At that time, large amounts of acids are accumulated. To prevent 
a collapse of the proton gradient across the cytoplasmatic membrane and cell death of the 
organism, the acids have to be disposed. After their uptake by C. acetobutylicum, a CoA 
transferase catalyzes formation of mainly butyryl-CoA and some acetyl-CoA (Dürre et al., 
1995). The butyraldehyde/butanol dehydrogenase E subsequently mediates the conversion 
of butyryl-CoA into butanol. For this reason, the genetic information for ctfA/B and adhE is 
organized in a common transcription unit, the sol operon (Figure 5). Before butanol is 
formed, butyrate must be activated by its transformation into butyryl-CoA. Decarboxylation 
of acetoacetate is only needed to drive this initial reaction for thermodynamic reasons. 
Therefore, the adc gene is organized as a monocistronic operon. 

5.5.1.3 Control mechanisms 

At the beginning of solventogenesis in C. acetobutylicum, the enzymes required for solvent 
formation are induced or derepressed and the activity of some acidogenic enzymes is 
decreased (Andersch et al., 1983; Dürre et al., 1987; Hartmanis & Gatenbeck, 1984; Yan et al., 
1988). Transcription of the respective genes for solventogenic enzymes starts several hours 
before solvents are being produced (Grimmler et al., 2011). adc is transcribed already with 
beginning of the exponential growth. Transcription is increased to its maximum in the 
stationary phase and slowed down afterwards (Sauer & Dürre, 1995; Gerischer & Dürre, 1992). 
The phosphorylated form of Spo0A initiates transcription of genes responsible for 
endospore formation and also solvent formation (Dürre & Hollergschwandner, 2004). There 
are Spo0A~P binding sites upstream of the adc and sol promoters of C. acetobutylicum. DNA-
binding studies clearly revealed the participation of the phosphorylated transcription factor 
in regulation of solvent formation (Ravagnani et al., 2000). Spo0A inactivation reduced 
expression of genes responsible for solventogenesis (Harris et al., 2002). However, a 
complete removal of all binding motifs (0A boxes) for Spo0A upstream of the adc promoter 
caused reduction of the transcription of solventogenic enzymes, but did not abolish their 
expression completely. Consequently, an additional transcription factor must be involved in 
adc regulation (Böhringer, 2002).  A surplus of carbon source, a pH below 4.3, limiting 
phosphate or sulphate concentrations, high concentrations of acetate and butyrate, and a 
higher temperature stimulate solvent production (Dürre & Bahl 1996; Dürre, 1998; Dürre et 
al., 2002; Bahl, 1983). Although signals triggering onset of solventogenesis are still unknown, 
all of the above mentioned factors change the topology of DNA (degree of DNA 
supercoiling), which influences the binding of regulatory proteins. DNA isolated from C. 
acetobutylicum during solventogenesis is more relaxed than the one extracted during 
acidogenesis (Wong & Bennett, 1996). Experiments with added novobiocin showed a 
dramatic increase of adc and sol transcription, thus supporting the essential influence of 
DNA topology (Ullmann, 1996; Ullmann & Dürre, 1998).  
The induction of the sol operon takes place far before the bulk production of solvents (Sauer 
& Dürre, 1995; Feustel et al., 2004) . The promoter P1 is responsible for the transcription of sol 
(Thormann et al., 2002). bdhB is transcribed late during exponential growth when sol operon 
expression is already diminished. The gene product of bdhB thus is responsible for most of 
the butanol production (Sauer & Dürre, 1995). In accordance, upstream of the bdhB promoter 
a 0A box (5´-TGTAGAA) was found (Ravagnani et al., 2000). BdhA, an alcohol 
dehydrogenase, seems to be responsible for the removal of reducing equivalents (electron 
sink). This explains the constitutive expression of the respective gene under certain 
conditions (Sauer & Dürre, 1995). 
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The onset of solventogenesis is accompanied with the induction of other operons. The 
enzymes encoded by the serCAXS operon are needed for serine biosynthesis. Together with 
solvent formation, the induction of heat shock proteins such as DnaK, GroEL, and Hsp18 
(Sauer & Dürre, 1995; Schaffer et al., 2002; Terracciano et al., 1988; Pich et al., 1990;  Sauer & 
Dürre, 1993; Bahl et al., 1995)  and a putative stress protein, PdxY, takes place  (Schaffer et 
al., 2002). By microarray analysis, a lot of pioneering studies with C. acetobutylicum have 
been performed, leading to a better understanding of the regulation of solvent production 
and sporulation (Tomas et al., 2003a, 2003b; Alsaker et al., 2004; Tummala et al., 2003; Tomas 
et al., 2004; Borden & Papoutsakis, 2007; Alsaker & Papoutsakis, 2005; Jones et al., 2008; 
Grimmler et al., 2011). 

5.5.1.4 Improvement of the biological production of butanol 

The historical fermentative production of butanol was economically inferior to the 
petrochemically synthesis. However, there is meanwhile a lot of potential to increase the 
competitiveness of the biotechnological process. Different strategies of metabolic 
engineering and process optimization offer a way to improve solvent productivity, solvent 
specifity, butanol tolerance, and substrate utilization:  
 Butanol is fermented in a desired production organism such as E. coli or yeast. This 

requires the introduction of the genes for butanol synthesis into the respective 
organism. E. coli or yeast is a suitable host for the production of valuable metabolites as 
it is easy to manipulate and handle (Farmer & Liao, 2000; Martin et al., 2003; Causey et 
al., 2004; Kim et al., 2007). Engineering of a synthetic pathway for 1-butanol production 
was already successfully demonstrated by numerous groups in both organimsms with 
genes from C. acetobutylicum or C. beijerinckii (Atsumi et al., 2008a; Inui et al., 2007; 
Donaldson et al., 2007b; Liao et al., 2008; Gunawardena et al., 2008, Buelter et al., 2008; 
Steen et al., 2008; Nielsen et al., 2009). While these first attempts resulted only in low 
butanol titers up to 16.2 mM, a recent study demonstrates butanol production of 30 g/l 
with a recombinant E. coli strain JCL166 (∆adhE, ldhA, frd) (Shen et al., 2011), which is 
comparable to and even exceeds the native producer C. acetobutylicum. A very 
promising result was also the successful production of butanol directly from synthesis 
gas by a metabolically engineered Clostridium ljungdahlii strain (Köpke et al., 2010). 
Although the butanol yield was very low, it shows the potential of sustainable 
producing a superior biofuel such as butanol from an abundent non-food source. 

 Another possibility is to modify C. acetobutylicum in a way to achieve higher butanol 
rates or eliminate undesired byproducts, creating a homobutanol producer (forming 
only butanol and some CO2 and H2). With a growing number of genetic tools for 
Clostridium becoming available, some remarkable progress has been made with 
recombinant strains. The production of 238 mM butanol found with a orf5-negative 
strain overexpressing adhE represent the highest value ever reported (Harris et al., 
2001). Inactivation of acetate and butyrate production of C. acetobutylicum can be 
achieved by mutations in the phosphotransacetylase and phosphotransbutyrylase genes 
or the corresponding kinase genes, respectively. Harris et al. inactivated the butyrate 
kinase gene (buk) (Harris et al., 2000). This led to solvent superpoduction of 76 mM 
acetone and 225 mM butanol, when fermentation was carried out at pH 5 or below. It 
was the first time that the assumed barrier of biological solvent production of 200 mM 
was exceeded. In addition to buk inactivation, the adhE gene was overexpressed. This 

www.intechopen.com



 
Biofuel Production – Recent Developments and Prospects 

 

472 

mutant produced 66 mM acetone and 226 mM butanol. It could be shown that much 
more solvents are produced by C. acetobutylicum after a plasmid containing the adc, ctfA 
and ctfB genes were transformed into the bacterium. However, the control plasmid also 
caused a slight stimulation of the solvent production (Mermelstein et al., 1993). Another 
possibility of metabolic engineering is the improvement of the solvent tolerance of C. 

acetobutylicum (Tomas et al., 2003b; Tomas et al., 2004; Borden & Papoutsakis, 2007)  
Butanol tolerance and thus solvent production could be increased by overexpression of 
the chaperone-encoding groESL genes (Tomas et al., 2003b) By overexpression of the 
cyclopropane fatty acid synthase gene (cfa) the lipid composition of the membrane is 
altered, resulting in an increased butanol resistance. The disadvantage of this method is 
a significant lower butanol production (Zhao et al., 2003). Further improvements are 
possible by inactivation of genes leading to acetate, acetoin, acetone, ethanol, and 
lactate formation. 

 Downstream processing is another way to improve economics of butanol fermentation. 
Distillation of butanol from the fermentation broth is very energy consuming. 
Alternative recovery methods might be better suited (Dürre, 1998; Santangelo & Dürre, 
1996; Ezeji et al., 2004; Ezeji et al., 2007). With regard to the energy consumption, 
adsorption with molecular sieves (silicate) is much more efficient than gas stripping 
and pervaporation (Qureshi et al., 2005). During gas stripping, the products are 
eliminated from the fermentation media and then concentrated by condensation. The 
advantages of this method are that the microorganisms are not disturbed by the gases 
as well as the continuous working flow (Ezeji et al., 2004). During pervaporation, the 
product diffuses selectively across a membrane. Disadvantages of this method are the 
low selectivity and the incomplete removal of solvents from the fermentation broth. 
Moreover, the membranes are expensive. Another problem is fouling and clogging of 
the membranes. During liquid-liquid extraction the desired product is separated from 
the growth medium by mixing (and following dissolving) in a solvent. This method is 
only applicable with a solvent nontoxic to the bacteria. During perstraction, a 
membrane separates culture and extracting solvents, but it suffers from the same 
problems as pervaporation. Thus, a lot of recovery methods are available that make a 
more economic butanol purification possible. 

 Over the last decades, several alternative carbon sources were evaluated as well. 
Processes with feedstocks such as apple pomace (fructose, glucose, sucrose) (Voget et 
al., 1985), whey (lactose) (Maddox et al., 1994), and lignocellulose (xylan and cellulose)  
(Maddox & Murray, 1983; Yu & Saddler, 1983; Yu et al., 1985; Fond et al., 1983) were 
developed. The butanol/acetone ratio after fermentation of whey (e.g. 100:1) is superior 
to that found with starch or molasses (2:1) (Bahl et al., 1986). An increased butanol 
content simplifies the product recovery process. The disadvantage of whey is its poor 
nutrient content. Consequently, a much lower productivity is found in comparison to 
molasses as substrate (Maddox, 1980; Welsh & Veliky, 1984; Ennis & Maddox, 1985; 
Linden et al., 1986). A fluidized bed reactor of bonechar-immobilized cells was used to 
improve fermentation with whey. The solvents were removed and concentrated by 
pervaporation (Maddox et al., 1994). Friedl et al. suggested using immobilized cells of 
C. acetobutylicum to optimize acetone-butanol fermentation (Friedl et al., 1991). The 
product was removed by pervaporation. With a lactose concentration of 380 mM in the 
feed solution, a stable high solvent productivity of 47 mM h-1 was obtained. 
Lignocellulose as such cannot be used for fermentation, but pretreatment will release 
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hexoses and pentoses. Suitable pretreatments of lignocellulose are the Iogen process 
and methods that have been developed by Green Biologics (Abingdon, Qxfordshire, 
UK) (Green Biologics, 2007), and Green Sugar GmbH (Dresden, Germany) (Green Sugar 
GmbH, 2007). 

5.5.2 Non-fermentative butanol production 

Alternative routes to butanol have also been inspected. By expression of a 2-ketoacid 
decarboxylase Kivd and an alcohol dehydrogenase Adh from Saccharomyces cerevisiae in E. 
coli, 1-butanol and also iso-butanol (along with some other alcohols) could be produced non-
fermentatively from intermediates of the amino acid biosynthesis (Atsumi et al., 2008b; 
Hawkins et al., 2009; Donaldson et al. 2006 & 2007a). Both, Butamax™Advanced Biofuels 
LLC and Gevo, Inc. developed a respective technology, now having a lawsuit for patent 
infringement after Butamax’s patent was granted (Butamax, 2011b).     

5.6 Other biofuels 

With the fast progress of synthetic biology (Peralta-Yahya & Keasling, 2010), companies 
such as Amyris, Inc. (www.amyrisbiotech.com/), Codexis, Inc. (www.codexis.com/),LS9, 
Inc. (www.ls9.com/), or OPX Biotechnologies, Inc. (www.opxbiotechnologies.com/) are 
trying  to develop a range of new biofuels with even superior properties, identical to those 
of gasoline or suitable as jet fuel. 

6. Conclusion 

Since fossil sources are limited and burning of these fuels leads to massive increase of the 
greenhouse gas CO2 in the atmosphere, microbial production of biofuels became important 
again. First generation biofuels, however, have major drawbacks, as they compete with food 
industry or have unfavourable properties. Several second generation biofuels have been 
developed over the last few years and are on the way of commercialization, but need to be 
proven at scale. Biobutanol is one of the most promising second generation biofuels, 
providing a lot of advantages over bioethanol and has already been successfully used at 
large scale over decades. The acetone-butanol-ethanol fermentation looks back to a nearly 
100 year old history and has already been used industrially at the beginning of the 19th 
century. Although a lot of fermentation plants were closed after the World War II, 
research regarding physiology, biochemistry, and genetics of C. acetobutylicum was 
continued. On the basis of these findings, the biological efficiency of solvent production is 
constantly been improved by metabolic engineering, downstream processing, and 
alternative substrates as surrogate for sugar. Several plants in China and Brazil are 
already operating again, and global players such as BP and DuPont dedicated themselves 
to production of biobutanol. Recently, metabolic engineering efforts demonstrated 
butanol production in high yields with E. coli, or from an alternative carbon sources such 
as syngas with C. ljungdahlii.   
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