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1. Introduction 

Solar energy is one kind of important resource for clean and renewable energy, and is 
widely investigated in many fields. In order to increase the operating temperature and 
thermodynamic efficiency, concentrated solar radiation is widely used to heat the working 
fluid in solar thermal power system (Trieb & Nitsch, 1998) and other industrial engineerings 
(Klein et al., 2007; Ali et al., 2008). Concentrated solar radiation (Kalogirou, 2004) can be 
collected by the parabolic trough collector, parabolic dish reflector, heliostat field, etc. The 
concentrated energy flux has been studied in kinds of solar energy system. Moustafa et al. 
(1995) measured the solar flux density distribution on a plane receiver due to a flat heliostat. 
Estrada et al. (2007) proposed a calorimeter to measure the concentrated solar power 
produced by a point focus solar concentrator. 
Solar thermal power system based on trough, dish or heliostat field is a very promising and 
challenging technology for its high operating temperature and thermodynamic efficiency. In 
solar thermal power plant (Odeh et al., 2003), the heat transfer medium in solar heat receiver 
is heated by concentrated solar radiation to some high temperature, and then it can be used 
to operate kinds of heat engine and generate electricity. As a result, the heat receiver (Ortega 
et al., 2008) is the key problem for the photo-thermal transformation, and the heat transfer 
performance of solar heat receiver is the hotspot for solar energy research. The basic types of 
heat receiver in concentrated solar thermal system mainly include heat pipe receiver 
(Fujiwara et al., 1990), parabolic trough solar receiver (Gong et al., 2010), cavity receiver (Wu 
et al., 2010), and multistage solar receiver (Taragan, 1999), etc. 
The dynamical and thermal characteristics of solar heat receiver have been investigated in 
much literature (Cui et al., 2008; Grena, 2010). In general, the heat losses from solar receiver 
mainly include three contributions: radiation heat loss, convective heat loss, and conduction 
heat loss. The radiation heat loss (Melchior et al., 2008; Li et al., 2010) is mainly dependent 
upon the receiver structure, wall temperature, and emissivity/absorptivity of the receiver 
walls, while the convective heat loss (Clausing, 1981) is mainly determined by the receiver 
structure, wall temperature, and wind velocity. The heat conduction loss (Zavoico, 2001) 
exists in cavity receiver through the insulation wall, and it can be ignored in many solar heat 
receivers. 
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In order to reduce the radiation heat loss, solar selective coatings are widely used in solar 
heat receiver. Tabor (1958) first reported the solar selective coating to increase the 
absorption efficiency of solar heat receiver. The ideal solar selective coating was considered 
to have good optical performance with high absorptivity and low emissivity. Kennedy 
(2002) introduced kinds of solar selective coatings under mid- to high-temperature 
conditions. Cindrella (2007) studied the real utility ranges of the solar selective coatings. 
Nilsson & Roos (2009) further evaluated the optical and thermal properties of coatings for 
energy efficient windows. In general, solar selective coatings mainly have six types: intrinsic 
coatings, semiconductor-metal tandems, multilayer coatings, multi-dielectric composite 
coatings, textured surfaces, and selectively solar-transmitting coatings. Intrinsic coatings are 
not effective enough but very stable, like metallic W (Agnihotri & Gupta, 1981), CaF2 
(Pellegrini, 1980), SnO2 (Seraphin & Meinel, 1976) etc. Semiconductor-metal tandems as Si-
based design can be used in a wide temperature range (Seraphin, 1976). Multilayer coatings 
(Andersson et al., 1980) can be very efficient for proper structure design. Metal-dielectric 
composite coatings (Arancibia et al., 2000; Gao et al., 2000) have a high absorptivity in the 
solar region, while that is transparent in the other region. Till now, solar selective coatings 
have been critical important topic for solar energy research. 
The convective heat loss (Siebers & Kraabel, 1984) is normally very difficult to determine but 
very important for the total energy loss of solar heat receiver. Clausing (1983) predicted the 
convective loss from solar central receivers from analytical model and experimental result. 
LeQuere et al. (1981a, 1981b) experimentally reported Nusselt number correlations for 
isothermal open cubical cavity for different inclination. Koenig & Marvin (1981) investigated 
convective heat loss in open cavity solar receivers, and proposed a calculating model in a 
large operating temperature range. Chan & Tien (1985, 1986) studied the laminar natural 
convection in shallow open cavities. Leibfried & Ortjohann (1995) investigated convective 
heat loss from upward and downward facing cavity receivers, and analyzed the effects of 
wall temperature, tilt angle, aperture-radius, geometry, ribs, and ventilation. Khubeiznet et 
al. (2002) measured natural convection heat transfer from an isothermal hemispherical 
cavity. Taumoefolau et al. (2004) described the convective loss from electrically heated 
cavity receiver under different inclinations and temperatures. Paitoonsurikarn et al. (2006) 
simulated the convective loss from solar cylindrical receiver and dish concentrating receiver. 
Sendhil & Reddy (2007, 2008) carried out numerical analyses of convective losses in 
rectangular, hemispherical solar cavity receiver and modified cavity receivers, respectively. 
In addition, the convective loss from heat receiver under wind condition is also investigated. 
Ma (1993) reported the experimental investigations on the convective loss under wind. 
Available literature also investigated combined heat loss from solar heat receiver including 
convection and radiation. Lage et al. (1992) simulated natural convection and radiation in a 2-
D cavity with open end. McDonald (1995) reported the heat loss from an open cavity including 
convection and radiation. Dehghan & Behnia (1996) numerically studied combined natural 
convection conduction and radiation heat transfer in a discretely heated open cavity. Reddy & 
Kumar (2008) investigated the combined laminar natural convection and surface radiation heat 
transfer in a modified cavity receiver of solar parabolic dish. Prakash et al. (2009) investigated 
the heat losses from a solar cavity receiver, and found the natural convection and radiation 
played the premier role in the heat loss of the receiver. Muftuoglu & Bilgen (2008) simulated 
heat transfer in inclined rectangular receivers for concentrated solar radiation.  
The optimal structure design and operating conditions of solar heat receiver have also been 
investigated by various methods. Harris & Lenz (1985) found the thermal and optical losses 
from a cavity solar receiver were less than other types of receiver. Kaushika and Reddy (2000) 
designed the modified cavity receiver to perform minimum heat loss from the receiver with 
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fuzzy focal dish concentrators. Steinfeld & Schubnell (1993) investigated the solar cavity 
receiver, and educed the optimum aperture size and operating temperature by a semi 
empirical method. Segal & Epstein (2003) analyzed the optimized working temperatures of a 
solar central receiver. Kongtragool & Wongwises (2005) provided a theoretical analysis on the 
optimum absorber temperature of a once-reflecting full conical concentrator for maximizing 
the overall efficiency of a solar-powered low temperature differential Stirling engine. 
Some researchers began to analyze the exergy transfer of solar collector and receiver. Bejan 
et al. (1981) considered the solar collector systems using second law analysis and synthesis. 
Singh et al. (2000) carried out the basic energy and exergetic analysis for typical solar 
thermal power systems to evaluate the respective losses as well as exergetic efficiency under 
given operating conditions. Farahat et al. (2009) developed an exergetic optimization 
method of flat plate solar collectors to determine the optimal performance and design 
parameters of these solar thermal energy conversion systems. Till now, few researchers 
theoretically investigated the heat and exergy transfer performances of solar heat receiver 
combined with forced convection and solar selective coating effects in detail. 
The objective of this chapter is to report the heat and exergy transfer characteristics of solar 
heat receiver under unilateral concentrated solar radiation based on our group’s research 
works. The heat and exergy transfer model coupling of forced convection inside the receiver 
and heat loss outside the receiver is first established, and the heat absorption performances 
are calculated under different heat transfer media, solar selective coatings, incident energy 
fluxes, inlet temperatures and velocities, and receiver structure. In addition, the uneven heat 
transfer characteristics on the receiver surface are described due to the unilateral 
concentrated solar radiation, and the exergetic efficiency of solar heat receiver is optimized 
under kinds of operating condition.  

2. Physical model and exergetic analyses of solar heat receiver 

2.1 Physical model for solar heat receiver 
To simplify solar heat receiver in solar thermal power system, a straight pipe with solar 
selective coating is demonstrated as illustrated in Fig. 1. For theoretical investigation, the 
thickness and thermal resistance of the pipe wall are ignored. In practical solar thermal 
power system, the heat receiver is usually a cavity (Hogan et al., 1990) or evacuated tube (Li 
& Wang, 2006) and the heat losses of the natural convection and radiation can be reduced 
corresponding to that of the pipe receiver. As a result, the absorption efficiency of the pipe 
receiver is lower than that of cavity receiver or evacuated tube, but it does not affect its basic 
heat transfer performances under different heat transfer media, solar selective coatings, 
incident energy fluxes, inlet temperatures and velocities, and receiver pipe radii. 
 

 

Fig. 1. The physical model of heat transport in solar heat receiver  
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The incident energy is directly concentrated by solar collector system, and its energy flux 
density can be calculated by I0= Cк0Is, here C means concentration ratio, к0, the reflectivity of 
the collector system, Is, solar energy flux. The incident energy flux on the receiver wall can 
be expressed as: 

 0I I sin= θ        for sin 0θ ≥   (1a) 

 I 0=          for sin 0θ <   (1b) 

The energy flux directly absorbed by solar heat receiver is only αI for the reflective effect, 

here α means the absorptivity of solar selective coating. The natural convection outside the 

receiver plays an important role in the heat loss, and its heat transfer coefficient is assumed 

to be hn. At high temperature, the infrared radiation heat loss is very significant, and it can 

be calculated as εσ(Tw4 - Ts4), here Tw means the receiver temperature, ε is the emissivity of 

solar selective coating. Beside the optical reflection and heat losses, the incident energy is 

used to increase the inner energy of the working fluid. According to the previous analyses, 

the energy conservation equation can be expressed as (Lu et al., 2010a): 

 ( )4 4
n w s w s fI h (T T ) T T qα = − + ε ⋅ σ − +   (2) 

where Ts denotes the environment temperature, qf means the convective heat flux inside the 

receiver, and this equation has a good agreement with that derived by Kongtragool & 

Wongwises (2005). 

The convective heat flux inside the receiver can be calculated as: 

 ( )f f w fq h T T= ⋅ −   (3) 

where  

R

p0
f R

p0

c uT2 rdr
T

c u2 rdr

ρ π
=

ρ π

∫
∫

, f
k

h Nu
D

= ⋅ .  

For fully developed turbulent flow inside the receiver, the Nusselt number can be correlated 

as (Lienhard IV & Lienhard V, 2002): 

 0.8 0.4Nu 0.0243Re Pr=   (4) 

Substituting Eq. (3) into Eq. (2) yields 

 ( ) ( )4 4
n w s w s f w fI h (T T ) T T h T Tα = − + ε ⋅ σ − + −   (5) 

The local wall temperature can be directly derived from Eq. (5), and the energy transport 

along the flow direction is: 

 
2 2 R 2f

f p p av0 0 0

T
q Rd c uT rdrd c R u

x x

π π∂ ∂
⋅ θ = ρ ⋅ θ = ρ ⋅ π

∂ ∂∫ ∫ ∫   (6) 

where Tf and uav means the average fluid temperature and flow velocity. 
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2.2 Heat absorption and exergetic efficiency of heat receiver 

The local heat absorption efficiency can be described as: 

       
( )f w ff

ab

h T Tq

I I

−
η = =   (7) 

From Eq. (7), the absorption efficiency for a certain circumference can be calculated as: 

       

2

f0
ab

0

q Rd

I 2R

π
θ

η =
⋅

∫
  (8) 

From Eq. (8), the absorption efficiency of the whole receiver is: 

       

L 2 L

f ab0 0 0
ab

0

q (x) Rd dx dx

I 2RL L

π
⋅ θ η

η = =
⋅

∫ ∫ ∫
  (9) 

Integrating Eq. (6) yields 

 
x 2 x' 2 'f

f p av'0 0 0

T
q Rd dx c R u dx

x

π ∂
⋅ θ = ρ ⋅ π

∂
∫ ∫ ∫   (10) 

From Eq. (10), the inner energy increment due to heat absorption along the flow direction is 

 ( ) ( )
x 2 ' 2

f p av f f00 0
E x q Rd dx c R u T T

π
Δ = ⋅ θ = ρ ⋅ π ⋅ −∫ ∫   (11) 

where Tf0 is the inlet fluid temperature. 

Exergy is defined as the maximum amount of work which can be produced by a system or a 

flow of matter or energy as it comes to equilibrium with a reference environment (Kotas, 

1995). In solar thermal power system, the electricity generation in the turbine cycle is 

directly determined by the exergy increment in the heat receiver. Since concentrated solar 

heat flux density is high enough, the pressure loss can be normally ignored in exergetic 

analyses, and the exergy flow at a certain place of solar receiver will be: 

 2 f
p av f s s

s

T
E c R u T T T ln

T

• ⎡ ⎤⎛ ⎞
= ρ ⋅ π ⋅ − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  (12) 

The exergy flow increment along the flow direction is: 

 ( ) ( ) ( ) 2 f
p av f f0 s

f0

T
E x E x E 0 c R u T T T ln

T

• • • ⎡ ⎤⎛ ⎞
Δ = − = ρ ⋅ π ⋅ − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  (13) 

From Eqs. (11) and (13), the exergetic efficiency of the absorbed energy is: 

 f f s
ex,ab

f f f

E T T TE
1

E E T T T

••

∂Δ ∂ ⋅ δδΔ
η = = = −

δΔ ∂Δ ∂ ⋅ δ
  (14) 
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Obviously, the exergetic efficiency of the absorbed energy is just equal to the Carnot 
efficiency. From Eqs. (8) and (14), the exergetic efficiency of the incident energy flux is: 

  ex ab ex,abη = η η   (15) 

The exergetic efficiency of the whole heat receiver (Lu et al., 2010b) is: 

       
( ) L

ex ex0
0

E L 1
dx

I 2RL L

•

Δ
η = = ⋅ η

⋅ ∫   (16) 

2.3 Caculation parameters 
The heat transfer media in solar thermal power plant mainly include water/steam (Zarza et 
al., 2004), molten salts (Reilly & Kolb, 2001) and air (Bai, 2010), etc. In order to analyze the heat 
transfer performance of solar heat receiver in detail, the heat transfer media are assumed to be 
Hitec heat transfer salt and air in present article. If the air is used as the heat transfer medium 
at high temperatures, it can replace natural gas in a gas turbine with high thermodynamic 
efficiency. In addition, Hitec heat transfer salt can also be used in a wide temperature range. 
Though the properties of heat transfer media and solar selective coatings are normally 
temperature dependent, the temperature non-dependent parameters of heat transfer media 
and coatings are helpful for theoretical analyses. The properties of Hitec heat transfer salt 
(Brenntag Company) and air (Lienhard IV & Lienhard V, 2002) are assumed to be constant 
at the reference temperature of 573 K and atmospheric pressure, and their associated 
parameters are presented in Table 1. The radiation parameters of solar selective coatings 
(Cindrella, 2007) are illustrated in Tables 2. 
 

Properties Hitec heat transfer salt Air 

ρ 1862 kgm-3 1.77 kgm-3 

cp 1510 Jkg-1K-1 1006 Jkg-1K-1 

k 0.571 Wm-1K-1 0.0181 Wm-1K-1 

μ 0.0030 kgm-1s-1 0.0000134 kgm-1s-1 

Table 1. Properties of Hitec heat transfer salt and air (Tref=573 K, Pref=1 atm) 

 

Material α ε α/ε 
Co-Cd-BT 0.96 0.12 8 

Pyromark 0.93 0.83 1.12 

Table 2. Radiation parameters of solar selective coatings 

The heat transfer coefficient of natural convection hn is 5.0 Wm-2K- 1, and the environment 
temperature Ts=293 K. Besides, the basic geometrical parameters of solar heat receiver are 
assumed to be R=0.010 m. 

3. Local heat transfer performances of heat receiver 

3.1 Heat transfer performances with different heat transfer media 

According to previous analyses, the local wall temperature and absorption efficiency can be 
directly derived from Eqs. (5) and (7). Fig. 2 illustrates the wall temperature and absorption 
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efficiency of heat receiver with Pyromark coating with different heat transfer media, where 
Tf=523 K, uav=5.0 ms-1. As the incident energy flux rises, the wall temperature almost linearly 
increases, while the absorption efficiency will first increase and then decrease. The wall 
temperature of molten salts receiver will reach 736.09 K at the incident energy flux of 2.5 
MWm-2, while the wall temperature of air receiver reaches as high as 768.2 K only at the 
incident energy flux of 30 kWm-2. In addition, the local absorption efficiency of molten salts 
receiver reaches its maximum 92.46% at optimal incident energy flux of 2.0 MWm-2, while 
that of air receiver will reach its maximum 32.08% at optimal incident energy flux of 18 
kWm-2. 
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(a) Molten salts                                                      (b) Air 

Fig. 2. Heat transfer characteristics with different heat transfer media (Tf=523 K, uav=5.0 m/s) 

In general, the heat transfer characteristics of heat receiver with molten salts and air are very 
similar under different incident energy fluxes, but the absorption efficiency and optimal 
incident energy flux of molten salts receiver are significantly higher than those of air 
receiver. As a result, the solar selective coating will play more important role in air receiver, 
because its absorption efficiency can change in a large range. 

3.2 Basic heat transfer performances under different solar selective coatings 

Since solar selective coating is critical important in air receiver, the heat transfer 
performances of air receiver will be further studied with different solar selective coatings in 
this section. 
Fig. 3 presents the wall temperature and absorption efficiency of air receiver with different 

solar selective coatings, where Tf=523 K, uav=5.0 ms-1. Apparently, the wall temperature with 

high emissivity as Pyromark will be lower than that with low emissivity as Co-Cd-BT. At 

low incident energy flux, the wall temperature almost linearly increases with the incident 

energy flux, and then its increasing rate will drop a little at high incident energy flux. In 

general, the absorption efficiency will reach maximum at optimal incident energy flux. Since 

the incident energy flux I is dependent upon the solar energy flux, incident angle and 

concentrator ratio, the concentrator ratio will have an optimal value due to Fig. 3b. In 

addition, solar selective coatings with low emissivity can obviously increase the energy 

absorption efficiency. For the receiver with Pyromark, the heat absorption efficiency is only 

about 30.5%, so it is not a good coating material for air receiver. For the receiver with low 

emissivity as Co-Cd-BT, the local absorption efficiency can reach its maximum 64.2% with 

incident energy flux of 15 kWm-2. 
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Fig. 3. Heat transfer characteristics with different solar selective coatings (Tf=523 K,  
uav=5.0 ms-1) 

Fig. 4 further describes the energy percentage distribution during the absorption process of 
air receiver with different solar selective coatings, where Tf=523 K, uav=5.0 ms-1. As the 
incident energy flux rises, the energy percentage of the reflection keeps constant, while the 
energy percentage of natural convection significantly decreases. The energy percentage of 
radiation loss will first decrease at low incident energy flux, and then it increases at higher 
incident energy. Because of the natural convection and radiation, the heat absorption 
efficiency will first increase and then decrease with the incident energy flux, and it has a 
maximum at optimal incident energy flux. For air receiver with high emissivity, the 
radiation loss is much higher than that with low emissivity, so the heat absorption efficiency 
is very low. 
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(a) Co-Cd-BT                                (b) Pyromark 

Fig. 4. The energy percentage distribution during the heat absorption process (Tf=523 K, 
uav=5.0 ms-1) 

Fig. 5 presents the heat losses of natural convection and radiation from the receiver wall. As 
the wall temperature increases from 400 K to 1000 K, the heat loss of natural convection 
linearly increases from 1.07 kWm-2 to 7.07 kWm-2, the radiation heat loss for Co-Cd-BT 
jumps from 0.17 kWm-2 to 6.08 kWm-2, while the radiation heat loss for Pyromark jumps 
from 1.20 kWm-2 to 47.06 kWm-2. As a conclusion, solar selective coating plays the principal 
role in the heat loss at high temperature. 
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Fig. 5. The heat losses of natural convection and radiation from the receiver wall 

Apparently, the absorption efficiency of the cavity receiver and glass envelope with vacuum 
will be higher than that of solar pipe receiver here, because the heat loss is reduced by the 
receiver structure, but the basic heat absorption performances with different incident energy 
flux, coating material, and other conditions are very similar. In order to simply the 
description, only air receiver with Co-Cd-BT and molten salts receiver with Pyromark will 
be considered in the following investigation. 

3.3 Heat transfer performances with different parameters 
Fig. 6 presents the heat transfer characteristics of molten salts receiver with different pipe 
radii, where Tf=473 K, uav=1.0 ms-1, R=0.010 m, 0.008 m, and 0.006 m. In any other 
descriptions, the radius of receiver pipe is only assumed to be 0.010 m. As the pipe radius 
decreases, the heat transfer coefficient of forced convection inside the pipe rises, so the heat 
absorption efficiency will also rise with the wall temperature dropping. When the pipe 
radius is reduced from 0.010 m to 0.006 m, the maximum heat absorption efficiency will be 
increased from 90.95% to 91.14%, and the optimal incident energy flux changes from 0.6 
MWm-2 to 0.8 MWm-2. As a conclusion, the heat absorption efficiency normally varies 
slowly with the pipe radius, because the thermal resistance of forced convection inside the 
pipe is normally very little. 
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(a) The wall temperature                (b) The local absorption efficiency 

Fig. 6. Heat transfer performances of molten salts receiver with different pipe radii (Tf=473 
K, uav=1.0 ms-1) 
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The heat transfer characteristics of molten salts receiver with different flow velocities are 
described in Fig. 7, where Tf=473 K, uav=0.5 ms-1, 1.0 ms-1, and 2.0 ms-1. When the flow 
velocity increases, the heat absorption efficiency significantly rises with the wall 
temperature dropping, because the heat convection inside the receiver is obviously 
enhanced. When the inlet velocity rises from 0.5 ms-1 to 2.0 ms-1, the wall temperature under 
incident energy flux 1.0 MWm-2 will drop from 984.3 K to 649.2 K, while the maximum heat 
absorption efficiency increases from 89.49% to 91.82%, and the optimal incident energy flux 
also changes from 0.4 MWm-2 to 1.2 kWm-2. As a result, the heat transfer performance of the 
receiver can be remarkably promoted with the flow velocity rising. 
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(a) The wall temperature                (b) The local absorption efficiency 

Fig. 7. Heat transfer performances of molten salts receiver with different flow velocities 
(Tf=473 K) 

The wall temperature and absorption efficiency under different fluid temperature are 
presented in Fig. 8, where I=0.40 MWm-2, uav=1.0 ms-1. As the bulk fluid temperature rises, 
the wall temperature almost linearly increases, while the absorption efficiency accelerating 
decreases. As the bulk fluid temperature changes from 350 K to 800 K, the heat absorption 
efficiency will be reduced from 91.96% to 83.83%. 
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Fig. 8. Heat transfer performances of molten salts receiver with different fluid temperatures 
(I=0.40 MWm-2, Tf=473 K) 

In general, the local absorption efficiency of solar receiver increases with the flow velocity, 
but decreases with the receiver radius and fluid temperature, and that of air receiver is 
similar. 
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4. Uneven heat transfer characteristics along the pipe circumference 

Since the incident energy flux is quite different along the receiver pipe circumference, the 
circumferential heat transfer performance is expected to be uneven. Fig. 9a presents the 
incident and absorbed energy fluxes along the circumference of molten salts receiver, where 
I0=0.40 MWm-2, Tf=473 K, uav=1.0 ms-1, 0≤θ≤90º. As the angle θ increases from the parallelly 
incident region (θ=0º) to the perpendicularly incident region (θ=90º), the absorbed energy 
flux increases with the incident energy flux, and their difference or the heat loss including 
natural convection and radiation also significantly increases. On the surface without 
incident energy or sin θ<0, the energy flux is -0.0041 MWm-2, and that is just equal to the 
heat loss outside the pipe wall. 
Fig. 9b further illustrates the wall temperature and absorption efficiency along the 
circumference of molten salts receiver, where I0=0.40 MWm-2, Tf=473 K, uav=1.0 ms-1, 
0≤θ≤90º. Apparently, the wall temperature first linearly increases with the angle θ, then 
increases slowly near the perpendicularly incident region, and the maximum temperature 
difference along the circumference is 122.69 K. When the incident energy flux increases with 
the angle θ, the absorption efficiency will first rises sharply, and then it approaches to the 
maximum 90.78% in the perpendicularly incident region. In the region without incident 
energy or sin θ<0, the wall temperature is 471.63 K, while the absorption efficiency is 
negative infinitely great for zero incident energy flux. 
 

0 15 30 45 60 75 90
0.0

0.1

0.2

0.3

0.4

M
W

m
-2

θ   (   )

 I

 q
f

0 15 30 45 60 75 90
450

500

550

600

650

η

T
w

θ    (   )

K

0.5

0.6

0.7

0.8

0.9

1.0

 

 
 (a) Incident and absorbed energy fluxes     (b) Wall temperature and absorption efficiency 

Fig. 9. Incident and absorbed energy fluxes along the circumference of molten salts receiver 
(I0=0.40 MWm-2, Tf=473 K, uav=1.0 ms-1) 

In addition, the average incident energy flux, wall temperature and absorption efficiency of 
the circumference 0≤θ≤360º can be described as: 
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π
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π π π
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Parameters nomenclature value uncertainty 

Heat flux I  0.127 MWm-2 0 

wT  510.61 K 
Temperature 

( )wT I  510.77 K 
0.16 K 

abη  88.63% 
Absorption 
efficiency ( )ab Iη  88.78% 

0.15% 

Table 3. The average and calculated heat transfer parameters of molten salts receiver (I0=0.40 
MWm-2, Tf=473 K, uav=1.0 ms-1) 

The average parameters of the whole circumference of molten salts receiver are illustrated in 

Table 3, where I0=0.40 MWm-2, Tf=473 K, uav=1.0 ms-1. From Eqs. (5) and (7), the wall 

temperature and absorption efficiency corresponding to the average incident energy flux 

can be directly derived, and the results are also presented in Table 3. As a result, the heat 

transfer parameters calculated from the average incident energy flux has a good agreement 

with the average parameters of the whole circumference, and the uncertainties of the wall 

temperature and absorption efficiency are 0.16 K and 0.15%, respectively. 

Furthermore, the wall temperature, incident and absorbed energy fluxes along the 

circumference of air receiver are presented in Fig. 10, where I0=20 kWm-2, Tf=473 K, uav=10 

ms-1, 0≤θ≤90º. As the angle θ increases, the wall temperature and absorbed energy flux both 

significantly increases with the incident energy flux. In the perpendicularly incident region, 

the wall temperature and absorbed energy flux approach maximums of 772.15 K and 14.38 

kWm-2. In the region without incident energy or sin θ<0, only heat loss appears. 
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Fig. 10. Heat transfer performances along the pipe circumference of air receiver (Tf=473 K, 
uav=10 ms-1, I0=20 kWm-2) 

Table 4 illustrates the average heat transfer parameters of the whole circumference of air 

receiver, where Tf=473 K, uav=10 ms-1, I0=20 kWm-2. Obviously, the heat transfer parameters 

of air receiver calculated from the average incident energy flux also has a good agreement 

with the average parameters of the whole circumference, and the uncertainties of the wall 

temperature and absorption efficiency are respectively 4.04 K and 1.9%, which are larger 

than those of molten salts receiver. 
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Parameters nomenclature value uncertainty 

Heat flux I  6.37 kWm-2 0 

wT  554.64 K 
Temperature 

( )wT I  558.68 K 
4.04 K 

abη  62.8% 
Absorption 
efficiency ( )ab Iη  64.7% 

1.9% 

Table 4. The average and calculated heat transfer parameters of air receiver (Tf=473 K, uav=10 
ms-1, I0=20 kWm-2) 

In general, the average absorption efficiency along the whole circumference of molten salt 
receiver or air receiver is almost equal to the absorption efficiency corresponding to the 
average incident energy flux, and then 

 ( ) ( )2

f f0
q Rd 2 RI 2 RI I 2 R q I

π
⋅ θ = π ⋅ η ≈ π ⋅ η = π ⋅∫   (18) 

5. Heat transfer and absorption performances of the whole receiver 

In order to investigate the heat transfer performance of the whole receiver, the energy 
transport equation along x direction from Eqs. (6) and (18) is derived as: 

 ( )
2 R 2f

f p p av0 0

T
q Rd c Tu r 2 rdr c R u

x x

π ∂ ∂
⋅ θ = ρ ⋅ π = ρ π

∂ ∂∫ ∫   (19) 

Substituting Eq. (18) into Eq. (19) yields 

 ( ) 2f
f p av

T
2 R q I c R u

x

∂
π ⋅ = ρ π

∂
  (20) 

Eq. (20) can be simplified as: 

 
( )ff

p av

2q IT

x c Ru

∂
=

∂ ρ
  (21) 

Fig. 11 presents the heat transfer and absorption characteristics of molten salts receiver 
along the flow direction, where I0=0.40 MWm-2, Tf0=473 K. Apparently, the bulk fluid 
temperature and average wall temperature almost linearly increase along the flow direction. 
For higher flow velocity, the temperature difference of the fluid and wall is lower for higher 
heat transfer coefficient, and the temperature gradient along the flow direction is also 
smaller. As the flow velocity increases from 0.5 ms-1 to 2.0 ms-1, the average wall 
temperature in the outlet drops from 821.5 K to 574.0 K, and that can remarkably benefit the 
receiver material. The heat absorption efficiency of the receiver will be larger for high flow 
velocity, and the heat absorption efficiency in the outlet rises from 72.01% to 86.77% as the 
flow velocity increasing from 0.5 ms-1 to 2.0 ms-1. 
The heat transfer and absorption characteristics of air receiver along the flow direction is 
further described in Fig. 12, where I0=31.4 kWm-2, Tf0=523 K, uav=5.0 ms-1. Along the flow 
direction, the temperatures of fluid and wall increases, while the heat absorption 
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efficiency decreases very quickly. As a result, the temperature and absorption 
characteristics of air receiver along the flow direction is very similar to those of molten 
salts receiver, and only heat transfer performances of molten salts receiver will be 
described in detail in this section. 
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Fig. 11. The heat transfer and absorption characteristics of molten salts receiver along the 
flow direction (I0=0.40 MWm-2, Tf0=473 K)  
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Fig. 12. The heat transfer and absorption characteristics of air receiver along the flow 
direction (I0=31.4 kWm-2, Tf0=523 K) 
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Fig. 13. The temperature and absorption efficiency distributions of the whole receiver 
(I0=0.40 MWm-2, Tf0=473 K, uav=1.0 ms-1) 
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Fig. 13 illustrates the wall temperature and absorption efficiency distributions of molten salt 
receiver in detail, where I0=0.40 MWm-2, Tf0=473 K, uav=1.0 ms-1. Apparently, the wall 
temperature increases with the angle θ and along the flow direction, and the maximum 
temperature difference of the receiver wall approaches to 274 K. The isotherms periodically 
distributes along the flow direction, and they will be normal to the receiver axis near the 
perpendicularly incident region. Additionally, the absorption efficiency increases with the 
angle θ, but it decreases along the flow direction with the fluid temperature rising. In general, 
the absorption efficiency in the main region is about 85-90%, and only the absorption efficiency 
near the parallelly incident region is below 80%. These results have a good agreement with 
molten salts receiver efficiency for Solar Two (Pacheco & Vant-hull, 2003). 
Fig. 14a further presents the average absorption efficiency of the whole molten salts receiver 
with different flow velocities and lengths, where I0=0.40 MWm-2, Tf0=473 K. As the receiver 
length increases, the average absorption efficiency of the receiver drops with the fluid 
temperature rising. When the receiver length increases from 5.0 m to 20 m, the average heat 
absorption efficiency of the receiver with the flow velocity of 1.0 ms-1 drops from 88.19% to 
86.09%. As the flow velocity increases, the average absorption efficiency of the whole 
receiver significantly rises for enhanced heat convection. When the flow velocity increases 
from 0.5 ms-1 to 2.0 ms-1, the average heat absorption efficiency of the receiver of 20 m will 
rise from 81.07% to 88.05%. 
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Fig. 14. The average absorption efficiency of molten salts receiver (Tf0=473 K) 

Fig. 14b describes the average absorption efficiency of the whole molten salts receiver with 
different concentrated solar fluxes, where Tf0=473 K, uav=1.0 ms-1. For higher concentrated 
solar flux, the average heat absorption efficiency of the receiver with small length is higher, 
but its decreasing rate corresponding to the length is also higher. As the receiver length is 20 
m, the efficiency of the receiver with 1.0 MWm-2 is lower than that with 0.4 MWm-2, because 
the absorption efficiency drops with the wall temperature rising. When the concentrated 
solar flux is increased from 0.2 MWm-2 to 1.0 MWm-2, the average heat absorption efficiency 
for the receiver of 20 m will rise from 83.45% to 85.87%. 

6. Exergetic optimization for solar heat receiver 

According to the previous analyses, the heat absorption efficiency of air receiver changes 
much more remarkably than that of molten salts receiver, so the air receiver will be 
considered as an example to investigate the energy and exergy variation in this section. 
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Fig. 15 illustrates the inner energy and exergy flow increments and incident energy derived 
from Eqs. (11) and (13), where I0=31.4 kWm-2, Tf0=523 K, uav=5.0 ms-1. Along the flow 
direction, the incident energy linearly increases, while the increasing rate of the inner energy 
flow drops with the absorption efficiency decreasing. On the other hand, the exergy flow are 
dependent upon the absorption efficiency and fluid temperature. For the whole receiver, the 
inner energy and exergy flow increments and incident energy will be 344.1 W, 171.2 W, and 
628.3 W, respectively. 
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Fig. 15. The inner energy and exergy flow increments and incident energy power (I0=31.4 
kWm-2, Tf0=523 K, uav=5.0 ms-1) 
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Fig. 16. The heat absorption and exergetic efficiencies of air receiver (I0=31.4 kWm-2, Tf0=523 
K, uav=5.0 ms-1) 

Fig. 16 further presents the heat absorption and exergetic efficiencies along the flow direction, 

where I0=31.4 kWm-2, Tf0=523 K, uav=5.0 ms-1. Apparently, the heat absorption efficiency almost 

linearly drops along the flow direction, while the exergetic efficiency of the absorbed energy 

significantly increases with the fluid temperature rising. Since the exergetic efficiency of 

incident energy is the product of heat absorption efficiency and exergetic efficiency of the 

absorbed energy, it will first increase and then decrease along the flow direction. At 0.30 m, the 

exergetic efficiency reaches its maximum 27.6%, and the corresponding heat absorption 

efficiency and exergetic efficiency of the absorbed energy are respectively 57.5% and 48.0%. 

Generally, the exergetic efficiency of incident energy changes just a little along the flow 

direction, and the average exergetic efficiency of the receiver is 27.3%. 
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Fig. 17 describes the heat absorption and exergetic efficiencies of air receiver under different 
concentrated energy fluxes, where I0=31.4 kWm-2 and 47.1 kWm-2, uav=5.0 ms-1. In general, 
the heat absorption efficiency of heat receiver quickly drops with the inlet temperature, and 
its decreasing rate under high concentrated energy flux is remarkably larger. Because the 
exergetic efficiency form absorbed energy decreases with the heat absorption efficiency, the 
exergetic efficiency of the receiver will first increase and then decrease with the inlet 
temperature. As the concentrated energy flux increases from 31.4 kWm-2 to 47.1 kWm-2, the 
exergetic efficiency of incident energy increases for about 1.5%-3.0%. At the inlet 
temperature of 523 K, the exergetic efficiency of the receiver approaches to maximum, and 
the maximum exergetic efficiencies under incident energy flux of 31.4 kWm-2 and 47.1 kWm-2 

are respectively 27.25% and 28.77%. 
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Fig. 17. The absorption and exergetic efficiencies of air receiver with different incident 
energy fluxes (uav=5.0 ms-1) 

Fig. 18 futher describes the heat absorption and exergetic efficiencies of air receiver under 
different flow velocities, where I0=31.4 kWm-2, uav=3.0 ms-1, 5.0 ms-1, 10.0 ms-1. Apparently, 
the heat absorption efficiency of air receiver decreases with the inlet temperature rising and 
flow velocity decreasing. As the inlet temperature rises, the exergetic efficiency of the 
receiver will reach maximum at optimal inlet temperature. In additional, the maximum 
exergetic efficiency of incident energy and optimal inlet temperature both increase with flow 
velocity, and the maximum exergetic efficiencies with flow velocities of 3.0 ms-1, 5.0 ms-1 and 
10.0 ms-1 are respectively 24.45%, 27.25% and 30.95%. 
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Fig. 18. The absorption and exergetic efficiencies of air receiver with different flow velocities 
(I0=31.4 kWm-2) 
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7. Conclusion 

The chapter mainly reported the energy and exergetic transfer performances of solar heat 
receiver under unilateral concentrated solar radiation. The energy and exergetic transfer 
model coupling of forced convection inside the receiver and heat loss outside the receiver 
are established, and associated heat transfer characteristics are analyzed under different heat 
transfer media, solar coating, incident energy flux, inlet flow velocity and temperature, and 
receiver structure. The absorption efficiency and optimal incident energy flux of heat 
receiver with molten salts are significantly higher than that with air, and they can be 
increased by the solar selective coating with low emissivity. As the incident energy flux 
increases, the energy percentage of natural convection evidently decreases, while the energy 
percentage of radiation loss will increase at high incident energy flux, so the energy 
absorption efficiency can reach its maximum at the optimal incident energy flux. As the 
receiver radius decreasing or flow velocity rising, the heat transfer coefficient of the heat 
convection inside the receiver increases, and then the heat absorption efficiency can be 
enhanced. Because of the unilateral concentrated solar radiation and incident angle, the heat 
transfer is uneven along the circumference, and the absorption efficiency will first sharply 
rise and then slowly approach to the maximum from the parallelly incident region to the 
perpendicularly incident region. In the whole receiver, the absorption efficiency of the 
perpendicularly incident region at the inlet approaches to the maximum, and only the 
absorption efficiency near the parallelly incident region is low. Along the flow direction, the 
heat absorption efficiency of the receiver almost linearly decreases, while the exergetic 
efficiency of the absorbed energy significantly increases, so the exergetic efficiency of 
incident energy will first increase and then decrease. The exergetic efficiency of the receiver 
will reach maximum under optimal inlet temperature, and it can be increased with flow 
velocity rising. 
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