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1. Introduction 

Micro total analysis system, likewise named “lab on a chip”, integrates sequentially 

analytical processes such as pre-treatment, separation, and detection of samples in a single 

microfluidic device. Microfluidics-based analysis systems have witnessed significant 

developments in applications of many research fields (e.g., chemistry, physics, and 

medicine) over the last two decades, becoming increasingly popular in recent years 

(Whitesides, 2006). Its popularity mainly stems from the advantages of microfluidics, 

including portability, low cost, easy operation, low consumption of samples and reagents, 

short reaction time, and function integration.  

The integrated microfluidic devices perform rapid and reproducible measurements on small 

sample volumes while eliminating the need for labor-intensive and potentially error-prone 

laboratory manipulations. Of note, the microfluidic technique has begun to play an 

increasingly important role in research and discovery of cell biology and tissue engineering 

(El-Ali et al., 2006; Wang et al., 2009). Microfluidic technology enables the study of cell 

behaviour and activity from single- to multi-cellular organism level with precisely localised 

application of experimental conditions; this is almost unattainable with the use of common 

macroscopic tools (e.g., microplate and Petri dish). For example, the effect of laminar flow 

on the micron-scale enables spatial control of liquid composition, fast change of media and 

temperature, and single cell handling and analysis (Takayama et al., 2001). Meanwhile, 

microfluidic devices can realise biological experiments in a high-throughput way, while 

being based on the miniaturising macroscopic systems and taking advantage of massive 

parallel processing. Thus far, microfluidic applications have been involved in many 

experimental parts of cell manipulation and analysis, such as cell trapping/sorting, cell 

culture/co-culture, cytotoxicity, PCR, DNA sequencing, and gene analyses (Velve-

Casquillas et al., 2010; Wlodkowic et al., 2009; Melin et al., 2007). Furthermore, a large 

number of novel microfluidic devices have been reported for cell research and tissue 

simulation in last 10 years (Ho et al., 2006; Huh et al., 2010; Sung et al., 2011).  

According to various functional applications of microfluidic devices, we provide a 
discussion on general processes and overview of microfluidics-based cultivation of cells, 
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manipulation and analyses of plant cell fusion, cell-drug interactions, and cell-to-cell 
interactions. Monitoring of cell behaviour and precise control of cell microenvironments are 
intentionally mentioned as well. 

2. Cell culture 

Cell culture is the complex process by which cells are grown under controlled conditions. 
The cell culture methods used in this study is founded on over a century of scientific work. 
Although characterisation of microfluidic-based cell culture continues to develop, the 
multiple aspects of microfluidic environments have been understood and controlled. 
Microfluidic devices are suitable for biological applications, particularly on the cellular 
level, because of scale similarity between microchannels and cells. Scale of devices allows 
important factors (e.g., growth factors) to accumulate locally, forming a stable 
microenvironment for cell culture. Furthermore, the physical design of microfluidic devices 
affects the cell microenvironment of cultured cells. Design considerations and effective 
culture volume are useful for cellular control over the microenvironment in the microdevice. 
Engineering and applications of microfluidics, two- and three- dimensional culture of cells 
have been both described recently (Meyvantsson et al., 2008; Wu et al., 2010). In this section, 
we mainly present the diversified cultivation works to date on both mammalian cells, 
bacteria, and plant cells using microfluidic devices.  
In the past 10 years, microfluidic-based applications of cell cultivation have ranged from 
many cell types from different tissues (e.g., epithelium and muscle) (Tourovskaia et al., 2005; 
Leclerc et al., 2006; Cimetta et al., 2009), organs (e.g., liver, lung, and kidney) (Zhang et al., 
2008; Jang et al., 2010; Hoganson et al., 2011), even species (e.g., rat, cattle, human, and 
Nicotiana tabacum) (Ring et al., 2010; Taylor et al., 2005; Lee et al., 2006; Ko et al., 2006). 
Commonly, microfluidic culture modes of cells include the perfusion culture (continuous 
flow), half-perfusion culture (molecular diffusion with persistent supply of nutrients), and 
static culture (molecular diffusion). The perfusion culture is a popular application for the 
growth and proliferation of adherent cells. Low shear stress from microfluid in the channel 
leads to nearly no injury to the normal activities of these cell types.  
Compared with static culture, the perfusion culture of cells cannot only keep the culture 
system sterile during the entire culture period. More importantly, however, it continuously 
provides a system for nutrient supply and waste removal, thus keeping the culture 
environment more stable. This contributes to steadier and more quantifiable extracellular 
conditions, which are particularly meaningful to the following cell-based research on 
microfluidic devices. Luke et al. presented a microfluidic cell culture array for long-term 
culture and monitoring of human carcinoma cells (Hela cells) at 37 oC (Hung et al., 2005). 
Major functions of the device include reagent introduction, cell growth, cell passage, and 
real-time optical analysis based on the perfusion model. The cell culture array can offer a 
platform for a wide range of assays, with applications in bioinformatics and quantitative cell 
biology. Yu et al. (Zhang et al., 2009) developed a multichannel three-dimensional 
microfluidic cell culture system (multi-channel 3D-µFCCS) with compartmentalised 
microenvironments. To this end, the multi-channel 3D-mFCCS was designed for culturing 
different 3D cellular aggregates simultaneously to mimic multiple organs in the body. Four 
human cell types (C3A, A549, HK-2, and HPA cells) were chosen to represent the liver, lung, 
kidney, and adipose tissue, respectively. Cellular functions were optimised by 
supplementing the common medium with growth factors. Such a multi-channel 3D-mFCCS 
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may be potentially used to supplement or even replace animal models in drug screening. 
However, certain highly environment-sensitive cell types such as neuron are always 
maintained and cultured in the static or half-perfusion microenvironment of the devices 
(Hosmane et al., 2010).  
Meanwhile, diffusion is likewise used for the suspension culture of cells such as bacteria 
(Escherichia coli) and plant cells (tobacco mesophyll protoplasts) (Ko et al., 2006; Sun et al., 
2011), which requires greater control in the devices due to non-physical dependence.  
 

 

Fig. 1. Configuration and function of the microfluidic device. A. Schematic representation of 
the device with five culture chambers arranged in a pentagonal array and applied for the 
parallel culture of protoplasts. A center sample input was designed for the introduction of 
various liquids, including protoplast suspension, rinsing solution, culture medium, and dye. 
The square in the red dotted line corresponds to B. Double micro-column lines in each 
chamber were designed to promote trapping of protoplasts while the seeding process (B). 
The gap between micro-columns was 20 µm. C. Plan (up) and elevation (down) of the 
microfluidic device. Hydrostatic pressure was used to realize material transportation using 
a small volume difference. D-I. Chemical fusion of the tobacco mesophyll protoplasts was 
performed in the microfluidic device using polyethylene glycol (PEG). The time when the 
two protoplasts contacted is considered as the start of fusion (i.e., 0 s) (D), followed by 10 s 
(E), 30 s (F), 50 s (G), 80 s (H), and 190 s (I). 
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Application of microfluidics in the field of plant cell biology is close to nil. Recent 
microfluidic advances in plant cell research contain the preliminary cultivation of 
protoplasts, the relationship between high air permeability of polydimethylsiloxane (PDMS) 
and protoplasts, and fusion manipulation of protoplasts as well (Ju et al., 2006; Wu et al., 
2010). The protoplasts became vulnerable in the in vitro environments as they were 
separated from the protection of cell walls. The highly spatiotemporal control of 
microenvironment is necessary to maintain the viability and activities of protoplasts during 
primary culture. Based on the optimal supplication of nutrients and design of microfluidic 
devices, growth up to formation of visible cell mass was achieved recently in the 
microfluidic cultivation of protoplasts (Wu et al., 2010). On-chip protoplast culture showed 
that percentage of the first division may be improved to as high as 85.6% in five days. 

3. Plant cell fusion 

As typical genetic manipulation in plant cell engineering, cell fusion (i.e., protoplast fusion) 
has been used for various purposes, including generation of hybrids and reprogramming of 
somatic cells. Cell fusion, generally called somatic cell hybridisation, is an excellent tool for 
breeding and genetic analysis of engineered plants (Ogle et al., 2005). To expand 
microfluidic application in plant cell manipulation, Wang et al. presented a conceptual 
attempt at protoplast fusion in the microfluidic device (Figure 1) (Wu et al., 2010). Tobacco 
mesophyll protoplast fusion was performed through polyethyleneglycol (PEG)-induced 
fusion.  
The results revealed that adjacent protoplasts came into close contact with one another, and 

membrane of the contacted protoplasts fused. Therefore, a connection was formed between 

the two cytoplasms. Components of both contacted protoplasts, especially the chloroplasts, 

mixed and combined with one another. Finally, the two protoplasts formed a fusion product 

with an irregular shape, which was different from the common spherical shape. The 

possible reason for deformation can be the spatially mechanical response of the fusion body 

in the microfluidic device because of increased volume. Total duration of this fusion in the 

microfluidic device merely took approximately 3–5 min, achieving a fusion rate of 28.8%. 

This result is similar to the conventional fusion in a macroscale culture environment.  

4. Cell-to-chemical stimuli interactions 

In vitro cell-based assays have been regarded as a promising substitute to in vivo animal 
testing in research on cell and chemical materials (e.g., drugs). Ideally, a cell culture model 
faithful to in vivo behaviour offers significant advantages in saving time and cost in cell-
based research. Microfluidics, which has been demonstrated to provide a biologically 
relevant and well-defined cellular microenvironment, is needed to maintain the phenotypic 
properties of tested cells; this is necessary to investigate faithfully and precisely the cellular 
response to specific drug compounds or conditions. The inherent cellular 
microenvironments mimicked in a microfluidic system suggested that research on cell-to-
chemical stimuli interactions can be performed in a microscale, high throughput, and 
physiologically meaningful manner. Most microfluidic cell culture systems used in this 
research exploit a perfusion cell culture format in which medium flows are not only used to 
feed cultured cells continuously but likewise to provide additional functionalities such as 
generating gradients of drug concentrations (Wu et al., 2010; van Midwoud et al., 2010; 
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Sugiura et al., 2008), creating a specific physical microenvironment (e.g., shear stress or 
interstitial fluid flow) and constructing a circulatory system to mimic in vivo conditions 
better.  
 

 

Fig. 2. Cellular responses of rat C6 glioma cells to colchicine treatment (0.5 µg/ml): (A) Rat 
C6 glioma cells cultured for 2 days; (B) Rat C6 glioma cells treated with colchicine for 60 h; 
(C) Fluorescence image of PI-stained rat C6 glioma cells for cell viability assessment after 
colchicine treatment for 60 h; a–l cellular responses of rat C6 glioma cells after 0.5 µg/ml 
colchicine introduction (0, 15, 30, 60, 90, 140, 180, 210, 420 min, 24 h, 48 h, and 60 h). 

Wang et al. developed a glioma-related microfluidic method for studying brain tumour 
therapy (Liu et al., 2010). Glioma cells were cultured successfully for up to seven days in a 
microfluidic device, and cellular responses to the anticancer drug (colchicine) were 
monitored in real time (Figure 2), followed by the analyses of cell viability by using 
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propidium iodide (PI) staining. Temporal changes in cell morphology at various 
concentrations of colchicine were recorded using an inverted microscope and charged 
coupled device (CCD) imaging. According to results, the number of injured/dead cancer 
cells and morphological changes increased relative to the drug’s concentration and 
treatment frequency. The achievement is helpful in developing microfluidic device 
applications for future research on brain tumour, conducting cytotoxicity research in a 
biomimetic microenvironment, developing glioma-related anticancer drugs, and developing 
glial cell-based biosensors for glioma detection.  

5. Cell-microenvironmental interactions 

Extracellular environment provides important and necessary conditions for cell 
proliferation, differentiation, metabolism, and functional activities; it determines cell 
behaviour (e.g., cell polarisation and migration) and fate (i.e., survival or death). Actually, 
cell-microenvironmental interactions (cell-to-matrix, cell-to-cell, and cell-to-soluble factors) 
are known to occur in many physiological and patho-physiological processes such as 
embryological development, wound healing, tumour invasion, and metastasis (Gurtner et 
al., 2008; Bhowmick et al., 2004; Bullock et al., 2001). Due to their specific occurrence and 
progress, a spatio-temporal controlled investigation in vitro and the understanding of these 
valuable and interesting biological cues are of great importance to cell biology and 
histology. 
Microfluidics is becoming a promising platform for the study of cell-microenvironmental 
interactions, mainly because of its excellent performance in precise control, monitoring, and 
manipulating cells and their microenvironments in vitro in a spatial and temporal manner. 
Recently, several microfluidic systems have shown good real-time manipulation of cell 
culture and cellular responses to simultaneous stimulation of soluble cues (Gómez-Sjöberg 
et al., 2007; Park et al., 2010), and an excellent microfluidic system for studying mammalian 
cells in 3D microenvironments has presented one of its possible utilities in the study of cell-
cell communication (Lii et al., 2008). Ingenious design and real-time manipulation of 
microfluidic system play an important role for versatile studies of cell-microenvironmental 
interactions, especially the serial and dynamic procedures of these studies. Furthermore, it is 
notable that perfusion cell cultures may hamper cell-to-cell communication through intrinsic 
and extrinsic growth factors because of the continuous washing away of these biomolecules.  
Wang et al. presented an integrated microfluidic system for dynamic study of cell-
microenvironmental interactions (Figure 3) (Liu et al., 2010). They demonstrated its precise 
spatio-temporal control in the flow direction and multisite staying of fluids by groups of 
monolithic microfabricated valves through digital operation, in addition to the regulated 
communication between two loci based on real-time microenvironment transition. Using this 
system, a series of functional manipulations, including specific delivery, addressable surface 
treatment, positional cell loading, and co-culture were performed quickly and efficiently for 
biological applications. Sequentially, they performed the potential utility of this system in 
research on dynamic microenvironmental influence to cells using a patho-physiological 
interaction during cancer initiation and progression. The results exhibit the passive role but 
collaborative response of NIH 3T3 fibroblasts to the soluble signals from hepatocellular 
carcinoma cells, as well as the variable behaviours of carcinoma cells under different 
environmental stimulations. This system can facilitate the in vitro investigation of cell-
microenvironmental interactions occurring in numerous biological and pathogenic processes. 
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Fig. 3. Configuration of the integrated microfluidic system. (A) Schematic representation of 
the functional circuit used for cell-microenvironmental interactions. The responsibilities of 
different valves are illustrated by their colors: red for regular valves (for isolation) and 
yellow valves (for communication of the adjacent chambers). (B) Optical image of the actual 
device. The various channels were loaded with food dyes to help visualize the different 
components of the microfluidic chip; the colors correspond to those in (A), with green 
indicating the fluidic channels. (C) Composition of the microfluidic device (four layers 
sequentially from top to bottom, including the fluidic layer, control layer, thin PDMS layer, 
and glass slide). 

6. Conclusions 

After a decade of development, microfluidics has demonstrated its capability to serve as a 

powerful tool for cell manipulation and analysis. Successful applications of microfluidics for 

cell-based assay – including cell lysis chip, cell culture chip, electroporation chip, 

biochemical sensing chip, and whole cell sensing chip – have revolutionised the way we 

approach the subject. Single cell-based microfluidic devices for various excellent 

experiments will be the future direction of this research area. Meanwhile, diversified 

development can be the major strategy for the application of microfluidics to life science in 

the next two decades.  
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Bio-mimicry is fundamental idea â€˜How to mimic the Natureâ€™ by various methodologies as well as new

ideas or suggestions on the creation of novel materials and functions. This book comprises seven sections on

various perspectives of bio-mimicry in our life; Section 1 gives an overview of modeling of biomimetic

materials; Section 2 presents a processing and design of biomaterials; Section 3 presents various aspects of

design and application of biomimetic polymers and composites are discussed; Section 4 presents a general

characterization of biomaterials; Section 5 proposes new examples for biomimetic systems; Section 6

summarizes chapters, concerning cells behavior through mimicry; Section 7 presents various applications of

biomimetic materials are presented. Aimed at physicists, chemists and biologists interested in

biomineralization, biochemistry, kinetics, solution chemistry. This book is also relevant to engineers and

doctors interested in research and construction of biomimetic systems.
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