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1. Introduction 

1.1 OLED Vs. OLET 
Plastic electronics, i.e. electronics based on organic polymer and molecular semiconductors, 
is a key low-cost technology for new vast application areas. The scope of applications in 
plastic electronics is virtually endless. It ranges from opto-electronic devices and flexible 
organic light-emitting diodes (OLEDs) displays, to ultra-cheap, radio-frequency 
identification tags that can replace the now ubiquitous bar-codes, and to wearable 
computing and electronic bio-interfaces.  
The first demonstration of the OLED dates back to the 1960s when electrically driven light 
emission from non-crystalline organic materials was first observed. After that, several 
studies were carried out by academic groups and companies (Kodak, Pioneer, Motorola, 
NEC, etc…) both for fundamental physics comprehension and application purposes. 
Nowadays electronic products containing displays are becoming more and more portable. 
Therefore, they need some peculiarities like lightweightness, flexibility, brightness, etc… 
These, with many others, are the strong points of the OLEDs. In fact they are thinner, lighter 
and more flexible with respect to their inorganic counterpart. Moreover, OLEDs can be as 
bright as LEDs and they consume much less power. Due to the organic processability, they 
are easier to produce and can be made on larger area. Finally OLEDs have large fields of 
view, about 170 degrees, a significantly advantage over, for example, liquid crystal displays. 
Of course, these devices present also some disadvantages: they have typically shorter 
lifetime (in particular lifetime of the blue emitter is critical, about 1.000 hours), they are not 
very stable and can easily be contaminated by water or oxygen. 
In general, with respect to OLEDs, organic light-emitting transistors (OLETs) present some 
fascinating characteristics which overcome many physical and technical drawbacks in the 
realization of nano-scale integrated electroluminescent devices.  
The main difference between the vertical (OLED) and planar (OLET) device geometry is a 
direct consequence of the different device structures. In OLED, charge transport occurs 
perpendicular to the organic layers (bulk charge transport) while in OLET the transport 
occurs horizontally (field-effect charge transport).  
Under the typical biasing conditions, the electron and hole mobility can be about four orders 
of magnitude higher in OLETs than in OLEDs, thus affecting directly the material lifetime 
and exciton emission. In a typical OLED structure, the minority carriers travel only few tens 
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of nanometers to encounter the opposite sign carriers and to recombine radiatively. In 
OLETs, instead, both carriers must travel longer distances (typically tens of micrometers), 
which impose more requirements on the organic semiconductors charge transport 
properties.  
 

 

Fig. 1. Schemes of an OLED (a) and an OLET (b) showing for each the typical dimensions 

A clear advantage of the OLETs is the virtually higher electroluminescence quantum 

efficiency inherent to the device structure. Indeed, in OLETs it is possible to drastically 

reduce the exciton quenching due to the interaction with charge carriers, with the externally 

applied electric field and with metal contacts.   

For what concerns the exciton-charge interaction, even though the current density in an 

OLET is expected to be higher (1–10 A/cm2, for a 1-nm-thick accumulation layer) compared 

to OLEDs (10–3–10–2 A/cm2), the spatial localization of exciton formation an OLET could 

favor an effective separation between the exciton population and the charge carriers thus 

avoiding any quenching for that kind of interaction. The presence of a third electrode helps 

to achieve a balanced charge carriers current, therefore further reducing exciton-charge 

quenching. In OLET, compared to OLED, all the operational requirements of the basic 

electronic and optoelectronic elements in active matrix displays, are satisfied in a single 

device structure. Indeed in conventional OLED electronics, such a high degree of integration 

cannot be achieved and, for each pixel, an electrical switch and a separate light source must 

be combined. Lastly, in OLETs is possible to control the position of the emission zone inside 

the channel length. 

2. Approaches to OLETs 

According to the previous section, it turns out how the OLET structure presents more 

intriguing potentiality compared to OLED. However, the actual degree of exploitation of 

this technology depends on the development of new organic materials combining multiple 

functionalities and high performances. Moreover, many structure-related issues are to be 

considered in order to get good electrical properties and intense light emission from the 

device. 

Indeed, since FETs (and thus OLETs) are considered as truly interface devices, processes 

that take place in the device active region, like charge transport, energy/charge transfer, 

exciton formation, charge trapping, are strongly dependent on interface. In recent years it 

has been demonstrated that the chemical structure of the organic semiconductor is not the 
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only factor that determines whether an organic FET exhibits predominantly p-channel or n-

channel behaviour. Processing and characterization conditions, device architecture, and 

choice of electrodes are important as well.  

To get an insight into the main phenomena that happen at the interfaces, many aspects 

must be taken into account: the chemical and electronic interaction taking place at the 

different interfaces (dielectric/organic, organic/organic and organic/metal), the 

modulation of the molecular electronic structure in the active material due to the proximity 

with other functional layers (polarization, relaxation), the bonding and ordering of 

molecules at the interface (which strongly determine the growth morphology). For 

example, crucial processes of charge accumulation and transport in OLETs take place at the 

interface between the gate dielectric and the semiconductor. Thus, the properties of this 

interface and the dielectric have a huge influence on device opto-electronic performances.  

Device parameters such as mobility, threshold voltage, sub-threshold swing, etc. depend not 

only on the nature of the semiconductor but also on the chemical structure and dielectric 

properties of the insulator. The requirements for gate dielectrics in OFETs are rigorous. They 

should show high dielectric breakdown strength, contain only minimal concentrations of 

impurities, that could act as traps, and must be easily processable and be environmentally 

stable. 

From the point of view of light emission, the requirements depend on the approach used for 

fabricating the OLET, but regardless the implemented architecture, it is absolutely 

important the use of high emission efficiency organic materials. In the next sections we will 

discuss some issues related to the emission in different OLET approaches, each with its 

points of strength and weaknesses.  

2.1 Unipolar OLETs 
Historically the first demonstrated OLET was achieved in unipolar charge carriers 
transistors made by tetracene by Hepp et al. in 2003 (Hepp et al., 2003). The device was 
fabricated on Si/SiO2 substrates in bottom-gate bottom-contact configuration, with gold 
electrodes. The material was chosen because of its good charge carrier transport and EL 
properties. The electrical characteristic of the OLET were typically of a unipolar p-type 
transistor and can be seen in Fig. 2, along with a picture of the illuminated channel (located 
near the drain contact). Despite the electrical unipolar behaviour, the observation of light 
emission from tetracene proved an undoubted presence of opposite charges recombining 
inside the material. Given the inhomogeneous illuminated channel area, Hepp et al. 
introduced then an empirical model in which they supposed different injection mechanisms 
at the source or drain electrodes as a consequence of the thin-film physical imperfections. In 
particular they assumed that, due to under-etching problems of the electrodes that act as a 
shadow mask, a thinner tetracene layer is formed at the organic/electrode interface 
resulting in a poor electrical contact. 
During device operation, the channel is filled with holes. However due to imperfections of 
the electrode, holes cannot directly reach the drain through the channel, but they must 
travel a certain distance in the tetracene bulk film. On the other side, since the gate field is 
screened by holes at the dielectric/organic interface, there is a high electric field at the drain 
electrode. This strong field, magnified by the local spikes due to the imperfections on the 
contact, could be intense enough to allow injection of electrons into the organic (Murata et 
al., 2001). For more details, see fig. 3. 
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Fig. 2. Image of the illuminated channel with the typical green-light emission of tetracene  
(a), I-V characteristic (b) and electro-luminescence (c) measurement of the device, in the 
negative bias region 

 

 

Fig. 3. Scheme of the device with the edge effect at the contacts proposed to demonstrate the 
electrons injection from the drain contact (a), example of a SEM image showing the 
underetching effect (b) 

A successive study proposed a phenomenological model to explain the working mechanism 

of the OLET.  The proposed model assumed that the voltage drop at drain electrode, caused 

by a contact barrier, induces a distortion of the Highest Occupied (HOMO) and Lowest 

Unoccupied (LUMO) Molecular Orbital levels of tetracene near the contact, thus 

determining the conditions for the tunnelling of electrons from the drain to the LUMO of the 

organic (Santato et al., 2004).  

In the proposed model, the external quantum efficiency (EQE) is proportional to the 

tunneling probability and thus proportional to the drain-source voltage (Vds), but it is 

independent from gate voltage (Vg). Indeed, increasing Vg leads to an overall increase of the 

electroluminescence (EL) but leaves unaffected the EQE.  

Several other approaches have been performed on unipolar OLETs (Oyamada et al., 2005a). 

In particular, Oyamada et al. succeeded in demonstrating how the channel length could 

affect EQE of thiophene-derivative devices and they obtained, for a channel length of 0.8 

µm, an EQE of 6.4x10−3%. Although the noticeable EL improvement, it is worth of notice 

that in a configuration with a very small channel the contact resistance effects at the 

metal/organic interface are predominant with respect to the FET working mode. In the 

same year, Omayada et al. showed also a new single layer unipolar OLET with an EQE of 

almost 0.8%, made with a blend of 1wt%-rubrene doped tetraphenylpyrene (TPPy) 

(Omayada et al., 2005b).  

Other studies have been done using spin-coated or drop-casted polymers like poly-

phenylenevinylene, poly-fluorene or poly-arylenevinylene derivatives (Sakanoue et al., 
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2004; Ahles et al., 2004; Swensen et al., 2005a) as active layer. These experiments, besides 

showing a possible extension of the concept of unipolar OLET, demonstrated the feasibility 

of wet-technique fabrication process that could open up many possibilities of large-area and 

low cost devices. Within the same studies, it was demonstrated also that the use of different 

metals for drain-source contacts could lead to a considerable increase of EL. 

Generally speaking, despite the enhancement in EL in unipolar devices, the EQE achieved is 
still too low for any practical application. Indeed, some problems arisen from the type of 
architecture, limit drastically its potentiality. First of all the EL emission takes place in 
proximity to the metal electrode with a consequent quenching due to the interaction 
between exciton and metal surface plasmons. Moreover, the exciton formation and 
recombination occur in the same spatial region where charges flow, so leading to a 
significant exciton-charge quenching. In practice, unipolar OLETs suffer from the same 
negative effects of OLEDs. 

2.2 Ambipolar OLETs 
So far we showed a possible approach to fabricate OLETs, using a unipolar organic material 
(polymeric or small molecule) as the active single layer. In this case the emission is localized 
in a small region underneath the metal contacts.  
Indeed, most of the scientifically and technologically remarkable properties that make light-
emitting transistors desirable are, however, only present in ambipolar OLETs since they can 
provide an effective pn-junction within the device channel that allows exciton formation and 
radiative recombination. 
The most simple structures are composed by a single organic material capable of 
transporting electrons as well as holes (single component approach) or by a combination of 
two unipolar transport materials (multi-component approach). 

2.2.1 Ideal single layer ambipolar OLETs 
In an ideal ambipolar transistor with just one polymeric or small-molecule semiconductor 
layer, the ambipolar regime is characterized by a hole and an electron accumulation layers, 
next to the respective electrode, that meet at some point within the transistor channel. There, 
oppositely charged carriers recombine. In electroluminescent materials, this leads to light 
generation within the channel. The length of each channel and thus position of the 
recombination zone depends on the applied gate and source-drain voltage and mobility 
ratio. The behaviour of an ambipolar field-effect transistor in the ambipolar regime can 
roughly be imagined as that of a saturated hole and electron channels in series within the 
field-effect transistors. 
 

 

Fig. 4. Schematic of an ideal ambipolar OLET, when the two opposite charge carriers meet, 
there is exciton formation and consequently light emission 
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In general, ambipolarity in FETs is an attractive characteristic since it enables the fabrication 
of complementary logic circuits like CMOS transistors and permits a higher light emission 
efficiency due to the maximization of the exciton recombination through a better electron–
hole charge balance. In addition, with an opportune tuning of the gate voltage, it is possible 
to move the emission through the channel length. On the other hand, one of the limiting 
negative aspect of this class of devices remain the poor mobility of charge carriers, usually 
of the order of 10-4 cm2/Vs. 

2.2.1.1 Ambipolar polymer OLET 

The first research showing the feasibility of an ambipolar single layer OLET, was done by 
Swensen et al. (Swensen et al., 2005b). The material used was a poly-phenylenevinylene 
(PPV) derivative polymer, called SuperYellow (SY) and the device was done on a Si/SiO2 
substrate.  
Previous studies on the same class of material/substrate FETs showed only p-type mobility. 
It was just after the discovery of the hydroxyl groups trapping effect for electrons and the 
consequent SiO2 surface passivation process implementation (Chua et al., 2005), that it was 
possible the realization of electroluminescent ambipolar polymer transistors. In particular, 
the presence of a so called “two-color” geometry of the device was the key feature for 
enabling ambipolar transport from SY. In this reported geometry, they implemented the use 
of a low work-function metal (Ca) for the n-type injection electrode and a high work-
function metal (Ag) for the p-type injection electrode. A spatially resolved recombination 
zone was then observed under ambipolar conditions controlled by the gate bias. The 
emission zone moved across the channel as the gate bias swept (see. Fig.5) and in case of 
balanced electron and hole currents the recombination was located at the channel centre. 
 

 

Fig. 5. Transfer characteristic of the SY OLET along with EL intensity (a),  image of EL inside 
the channel at different spatial positions depending on gate bias (b) 

Almost contemporary, another group achieved the same results using a spin-coated layer of 
a different conjugated polymer, poly(2-methoxy-5-(3,7-dimethyloctoxy)-p-phenylene-
vinylene) (OC1C10-PPV)(Zaumseil et al., 2006). Also in this case, to obtain a good ambipolar 
behaviour, with balanced electron-hole charge densities, two different work function metals 
were used. For this material, the reported EQE was 0,35%, thus similar to the EQE of a bulk 
LED based on the same polymer.  
Recently in 2008, again Zaumseil et al. fabricated ambipolar OLETs with poly(9,9-di-n-
octylfluorene-alt-benzothiadiazole) (F8BT) and poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-
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bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2’,2’’-diyl) (F8TBT) (see Fig.6) (Zaumseil et al., 
2008). 
 

 

Fig. 6. Image of light emission from an interdigitated source-drain OLET made with F8BT 
(a) and F8TBT (b). Transfer curves and position of the light with respect to source contact for 
F8BT (c) and F8TBT (d) 

In their study by using theoretical models they showed that the ambipolar regime can be 
thought of as a saturated electron channel and a saturated hole channel in series within the 
OLET channel. Within the model, EQE was expected to be constant, depending only on 
singlet-triplet ratio and not from, for example, voltage conditions. The increase of EQE with 
current density up to saturation, measured during the experiments, was considered as a 
consequence of trap-assisted non-radiative decay mechanisms at the semiconductor-
dielectric interface. Furthermore, they demonstrated that, when complete recombination of 
all charges happened the maximum saturated EQE of F8BT, in top gate OLET configuration, 
is 0,8%. This conclusion signed a very important step in OLET fabrication showing clearly, 
for single layer devices, that an EQE of 0,8% is the highest limit. 

2.2.1.2 Ambipolar small molecule OLET 

Another approach in the realization of ambipolar single layer OLETs, using an intrinsic 
ambipolar light-emitting small molecule, was explored by Capelli et al., describing the 

realization of α,ω-dihexyl-carbonyl-quaterthiophene (DHCO4T) based device. The 
advantage in using a physical vapour deposited (PVD) small molecule instead of a polymer 
deposited by solution-processes is that, in the first case, the resulting film presents a more 
ordered and crystalline structure and thus, in principle, higher hole-electron mobilities due 
to larger charges delocalization. 
Unfortunately electro-luminescence was present mainly in unipolar region (see Fig. 7). In 
order to have a better understanding of the phenomena, they tested the material in different 
conditions, changing dielectrics and metal contacts. Through this study, they showed the  
strong dependence of DHCO4T-based OLETs performances from the dielectric-organic 
interface. This aspect profoundly affects the electrical properties of both charge carriers in 
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terms of mobility and threshold voltage and thus electro-luminescence. They identified this 
main issue as the first cause of limited optoelectronic performances of their device (Capelli 
et al., 2008). 
 

 

Fig. 7. Example of transfer characteristics of a DHCO4T OLET on SiO2/poly-methyl-
metacrylate (PMMA) substrate. The left plot is in p-type bias mode, while the right one is in 
n-type bias mode 

2.2.2 Multi-layer ambipolar OLETs 
In multi-component approach, OLETs can be obtained either by simultaneous co-

evaporation of two unipolar materials realizing a bulk hetero-junction or by superposing 

two layers of unipolar materials in a bi-layer structure.  

2.2.2.1 Bulk hetero-junction OLETs 

In bulk organic hetero-junction approach, exciton formation and charge transport are 

competitive processes due to the dispersed interface between the p-type and n-type 

transport materials. Clearly, the wider the interface surface is, the higher the probability that 

electrons and holes recombine forming excitons. Nevertheless, connected percolative paths 

are needed for the charges to migrate by hopping so that interface can represent a physical 

obstacle for efficient charge transport. Furthermore, even if the interface morphology is 

precisely controlled during vacuum sublimation, well-balanced ambipolar behaviour has 

not yet been achieved. 

The first documented fabrication of an ambipolar device belonged to this class of OLETs. In 
2004, for the first time, Rost et al. proposed a new structure made by a co-evaporation with 
1:1 ratio of N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) for n-type transport 

and α-quinquethiophene (T5) for p-type transport (see fig. 8) (Rost et al., 2004).These two 
materials are known for their good hole-transporting (T5, with mobility of 10-2 cm2/Vs) and 
electron-transporting (P13, with mobility of 10-1 cm2/Vs) properties.  Of course, one of the 
most important prerequisite for having exciton formation and thus light formation, is the 
relative positions of the materials energy levels of highest occupied (HOMO) and lowest 
unoccupied molecular orbital (LUMO). Indeed, there must be the conditions to allow 
recombination in the material with the smaller energy gap.  

www.intechopen.com



Multilayer Approach in Light-Emitting Transistors 

 

97 

 

Fig. 8. Device and molecules chemical structures (a), I-V characteristic with EL emission at 
different gate biases 

Through a fine control of the two materials co-evaporation, it is possible to obtain a good 
tuning of both charge carriers mobilities and quite good EL. However, in general, in this 
kind of device structure, the absolute mobility values are definitely lower, if compared to 
other fabrication strategies. In particular, Rost et al., after a deep investigation, found the 
best deposition parameter tuning in order to obtain very high mobility in both materials, 
though with low EL emission. Mobility values achieved were, respectively, 10-4 cm2/Vs for 
hole transport and 10-3 cm2/Vs for electron transport. 

2.2.2.2 Bi-layer vertical hetero-junction OLETs 

In this structure the organic layers are deposited in a vertical stack. Each layer is devoted to 
a single functionality and can be optimized by controlling the growth conditions of the 
different organic/organic, organic/metal and organic/dielectric interfaces. This approach, 
compared to others, presents the advantage of enhanced charge transport and mobility 
values. It is known that in OFETs the charge transport is confined to the first few layers next 
to the dielectric. Thus, electron and hole paths are confined at the interface between the first 
layer and the substrate and at the interface between the two organic films. If the two films 
are continuous, the charge transport should be uniform in both films over all the device 
channel area and therefore good transport properties are expected.  

Dinelli et al. reported on a bi-layer of α,ω-dihexyl-quaterthiophene (DH4T) and P13 OLET 
that showed good ambipolar behaviour and light emission (Dinelli et al., 2006). They 
demonstrated, studying two different possible organic configurations (DH4T-P13 or P13-
DH4T), that the device, in which DH4T was evaporated directly on the dielectric surface, 
had the best balanced mobility in ambipolar region (10-2 cm2/Vs for both charge carriers). 
Through analysis of the interfaces in the two cases, they underlined the importance of 
having the best growth compatibility between the hole and electron transport materials in 
order to form continuous films and thus enhancing the optoelectronic performance. They 
observed also that EL occurs only when the device is biased with FET transport in the  
bottom layer and that the light emission originates, from P13, as expected from energetic 
considerations. 
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In the bi-layer approach, the spatial separation between charge carriers mainly prevents  
excitons formation inside the device channel, and so, EL is present only in unipolar bias 
region. This means that the pn-junction forms only underneath the electrodes as in the case 
of single layer unipolar OLETs. However, this structure has, up to date, the highest balanced 
ambipolar mobility ever obtained in OLETs. 
Instead of implementing n-transport and p-transport materials in the bi-layer device 
realization, Heeger et al. utilized a structure comprising a hole transporting polymer, 
poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) and a light 
emitting polymer, Super Yellow (SY), a polyphenylenevinylene derivative showing good 
output characteristics and brightness. Both materials were deposited by wet techniques (see. 
Fig.9) (Namdas et al., 2008).  
 

 

Fig. 9. Image of the EL emission spectrum of the device compared to PL emission of SY, 
along with a picture of the luminescent channel (a), I-V characteristic, transfer characteristic 
and EL curve of the bi-layer device(b) 

It is well known that, in OLET devices, light emission is quite low due to the fact that the 
organic materials present either low carrier mobility with high photoluminescence (PL), i.e. 
amorphous materials or high mobility with weak PL, i.e. crystalline materials. In order to 
obtain good performances, materials should be capable of good ambipolar behaviour and 
have an high PL efficiency in thin film. In this case, although they did not achieve good 
ambipolar behaviour since electron transport was significantly lower than hole one, using 
two different metals as drain-source electrodes (Ag for hole injection and Ca for electron 
injection), they obtained a device showing intense EL, independent from the gate bias, with 
an efficiency of 0,35% and located under the electrode. 

2.2.3 The tri-layer OLET approach 
Lastly, a novel strategy in OLET realization, the tri-layer vertical hetero-junction, is 
presented. So far, we have seen OLETs based on unipolar single layer which reached high 
brightness but EQE as low as 0,2% due to exciton-charge and exciton-metal quenching 
effects. Then we reported on ambipolar single layer OLETs that enable, under proper bias 
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conditions, the spatial localization of the EL far from the electrodes, but since charge carrier 
and exciton coexists in the same region, large exciton-charge quenching happens. Finally we 
reported ambipolar bi-layer approaches for OLETs, but in each of the two cases proposed 
(superposition of either two unipolar semiconductors of different charge transport or a 
highly efficient luminescent layer over a unipolar conductive layer) the device architecture 
does not offer any control on the exciton quenching due to charge and metal electrodes 
interactions. 
In this new tri-layer hetero-structure approach, proposed by Capelli et al. in 2010, it is 

reported an OLET enabling simultaneous control of the electrode induced photon losses, the 

exciton-metal and the exciton-charge interactions. In this condition they showed that devices 

could reach the considerable EQE value of 5%, out-performing the OLED state of the art 

based on the same emitting layer with an EQE of 2.2% (Capelli et al., 2010). 

In the trilayer configuration the first organic thin-film in contact with the device dielectric 

layer is devoted to the unipolar field-effect transport. The second layer deposited onto is the 

recombination layer which presents high emission quantum efficiency and OLED-like 

vertical bulk mobility value. In the specific case a host-guest system with a dye doped 

matrix was used. The third layer is devoted to unipolar charge transport complementary to 

that of the first layer (see Fig. 10a).  

The key idea of the vertical tri-layer heterojunction approach in realizing OLET is that each 

layer has to be optimized according to its specific function (charge transport, energy 

transfer, radiative exciton recombination). Clearly, matching the overall device 

characteristics with the functional properties of the single materials composing the active 

region of the OFET, is a great challenge that requires a deep investigation of the 

morphological, optical and electrical features of the system.  

 

 

Fig. 10. Tri-layer device structure along with chemical structures of the organic materials 
used for the device fabrication (a), HOMO and  LUMO energetic levels of the materials (b) 

In this structure, the main aim is to enable charges to percolate into the middle emitting 

layer. In order to do so, first of all, material energetic levels must be considered. The LUMO 

level of the n-type transport layer should be equal or higher than the LUMO level of the 

guest matrix of the host-guest system consisting the middle layer, while the HOMO level of 

the p-type transport layer should be less or equal than the guest matrix HOMO level (see 

fig. 10b). In addition to these considerations, attention must be paid to the control over the 

interfaces morphologies, in order to allow the formation of a continuous stack. 

Indeed, in this approach more than in others, functional interfaces play the predominant 

role in determining the performance of vertical tri-layer heterojunction. As in the case of the 

bilayer-based OLETs, it is clear that the interfaces between the dielectric and the bottom 

transport layer and between the recombination and the top transport layers are crucial for 
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guaranteeing good ambipolar field-effect electrical characteristics. Moreover interfaces 

between the bottom transport and the recombination layer and between the recombination 

and the top transport layer should provide the favourable conditions for the charge 

percolation to happen in the recombination layer and to form excitons.  

Through the research, Capelli et al. found that the materials that best fitted these conditions 

were α,ω-dihexyl-quaterthiophene (DH4T) for p-type transport, α,ω-diperfluorohexyl-

quaterthiophene (DFH4T) for n-type transport and tris-(8-hydroxyquinoline)aluminum 

(Alq3):DCM doped host-guest system. 

For what concerns light emission, in ambipolar region EL is located inside the device 

channel far from electrodes, thus preventing photon losses due to exciton-metal quenching. 

Moreover, since the emission layer is separated from charge flows, the exciton-charge 

quenching is also prevented. The light generation process is based on the percolation of the 

opposite charges from the transport layers into the recombination layer. This percolation is 

made easier due to the transverse electric field generated by electrons and holes in the 

respective transport layers. In the tri-layer structure charges recombine in the middle layer 

because they cannot travel through several microns of opposite charge accumulation layer 

without recombining, similar to what happens in ambipolar single-layer OLETs in which 

charges recombine in the middle of the channel. Indeed, a self-regulated equilibrium exists 

between the amount of charges located in the transport layers and those entering the 

recombination one that prevent any possible exciton-charge interaction. 

 

 

Fig. 11. Schemes of two tri-layer structure configurations and their EQE as a function of the 
applied voltage in a transfer characteristic (a), images of the EL channel moving toward the 
drain contact with increasing gate voltage (b), image of a tri-layer fabricated with an 
interdigitated structure (c) 

This new OLET structure showed clearly the full potential of field-effect devices compared 

to OLED devices. The actual limits of this structure mainly depend on the materials 

performances. Future investigations on this structure will lead, surely, to the study of the 

implementation of a triplet emitter for the recombination layer, thus, potentially improving 

further the emission brightness.  
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An issue that actually must be addressed is the device operating voltage. Usually in OLED 
devices one of the most significant parameter is considered the power efficiency, that  
represents the power emitted at a certain voltage. Unfortunately in the tri-layer OLET 
device, the maximum light power emission is found at a gate voltage of 70 V.  This issue 
could be overcome by developing an high capacitance gate insulator. 

3. Future developments 

After the demonstration of the first OLET in 2004 made by Rost et al., many great 
advancements have been achieved.  These advancements opened up the possibility of  many 
future developments of OLETs, tightly connected to their potential market application, 
especially for solid-state lighting. 
Indeed, many interests are focused around OLETs, since their higher brightness and light 
emission efficiency with respect to OLEDs. The small spatial localization of the illuminated 
channel, prerogative of OLET devices (hardly achievable in OLEDs), could lead to the 
development of new high definition displays. The planar technology used for OLETs, will 
be surely exploited in future, to develop a new generation of devices, in which organic 
photonic field-effect transistors are used for both light generation and detection. One of the 
possible applications of this integration between light sensing and light generation effects in 
one device could be used for the fabrication of the so called “lab-on-a-chip”, a miniaturized 
cheap and disposable device for bio-sensing that permits quantitative diagnostic tests, that 
up to date, are limited to laboratory or hospital facilities.  
Moreover OLETs planar architecture is considered the ideal platform for the realization of 
resonant micro-cavity where the active region is separated by few microns from the injecting 
metal electrodes. This device configuration which prevents exciton quenching, will make 
OLETs suitable for the development of electrically-pumped organic lasers. 
In addition to these promising technological scenarios of OLETs developments, the latest 
results, together with the continuous development of understanding of the chemical and 
physical properties of the device interfaces and the synthesis of new molecules by chemical 
tailoring, will surely open, new perspectives for the full exploitation of OLETs potentialities.   
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