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1. Introduction 

The chapter covers general issues related to power quality in Electric Arc Furnaces.  

The use of electric arc furnaces (EAF) for steelmaking has grown dramatically in the last 

decade.  Of the steel made today 36% is produced by the electric arc furnace route and this 

share will increase to 50 by 2030. 

The electric arc furnaces are used for melting and refining metals, mainly iron in the steel 

production. AC and DC arc furnaces represent one of the most intensive disturbing loads in 

the sub-transmission or transmission electric power systems; they are characterized by rapid 

changes in absorbed powers that occur especially in the initial stage of melting, during 

which the critical condition of a broken arc may become a short circuit or an open circuit. In 

the particular case of the DC arc furnaces, the presence of the AC/DC static converters and 

the random motion of the electric arc, whose nonlinear and time-varying nature is well 

known, are responsible for dangerous perturbations such as waveform distortions and 

voltage fluctuations.  

Nowadays, arc furnaces are designed for very large power input ratings and due to the 

nature of both, the electrical arc and the melt down process, these devices can cause large 

power quality problems on the electrical net, mainly harmonics, inter-harmonics, flicker and 

voltage imbalances.  

The Voltage-Current characteristic of the arc is non-linear, what can cause harmonic 

currents. These currents, when circulating by the electric net can produce harmonic 

voltages, which can affect to other users.  

In evaluation and limitation, there are some definitions and standards to quantify the 

disturbance levels, such as (***IEC, 1999), (***IEEE 1995), and (***IEEE, 1996).   and. The total 

harmonic distortion (THD), short-term voltage flicker severity (Pst), and long-term voltage 

flicker severity (Plt) are used. However, sometimes it is desired to record voltage and 

current waveforms in the specified duration to track the disturbance levels.  

2. Electrical arc furnaces 

2.1 Construction and typical steelmaking cycle 

An electric arc furnace (EAF) transfers electrical energy to thermal energy in the form of an 

electric arc to melt the raw materials held by the furnace. The arc is established between an 

electrode and the melting bath and is characterized by a low voltage and a high current. Arc 
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furnaces differ from induction furnaces in that the charge material is directly exposed to an 

electric arc, and the current in the furnace terminals passes through the charged material. 

Sir Humphrey Davy conducted an experimental demonstration in 1810 and welding was 
investigated by Pepys in 1815. Pinchon attempted to create an electrothermic furnace in 1853 
and, in 1878 - 79, William Siemens took out patents for an electric arc furnaces. The first 
electric arc furnaces were developed by Paul Héroult, with a commercial plant established 
in the United States in 1907. While EAFs were widely used in World War II for production 
of alloy steels, it was only later that electric steelmaking began to expand. Of the steel made 
today 36% is produced by the electric arc furnace route and this share will increase to 50 by 
2030. 
A schematic cross-section through an EAF is presented in figure 1: three electrodes (black), 
molten bath (red), tapping spout at left, refractory brick movable roof, brick shell, and a 
refractory-lined bowl-shaped hearth. 
 

 

Fig. 1. Cross-section trough an EAF 

The furnace is primarily split into three sections: 

• the shell, which consists of the sidewalls and lower steel 'bowl'; 

• the hearth, which consists of the refractory that lines the lower bowl; 

• the roof, which may be refractory-lined or water-cooled, and supports the refractory 
delta in its centre, through which one or more graphite electrodes enter. 

Separate from the furnace structure is the electrode support and electrical system, and the 
tilting platform on which the furnace rests.  Possible configurations: the electrode supports 
and the roof tilt with the furnace, or are fixed to the raised platform. 
A typical alternating current furnace has three electrodes (Hernandez et al., 2007). The arc 
forms between the charged material and the electrode, the charge is heated both by current 
passing through the charge and by the radiant energy evolved by the arc. The electrodes are 
automatically raised and lowered by a positioning system and a regulating system 
maintains approximately constant current and power input during the melting of the 
charge, even though scrap may move under the electrodes as it melts. Since the electrodes 
move up and down automatically, heavy water-cooled cables connect the bus tubes/arms 
with the transformer located adjacent to the furnace.  
The energy diagram shown in Figure 2 indicates that 70% of the total energy is electrical, the 
remainder being chemical energy arising from the oxidation elements such as carbon, iron, 
and silicon and the burning of natural gas with oxy-fuel burners. About 53 % of the total 

www.intechopen.com



Power Quality and Electrical Arc Furnaces   

 

79 

energy leaves the furnace in the liquid steel, while the remainder is lost to slag, waste gas, or 
cooling. 
 

 

Fig. 2. Energy patterns in an EAF 

A mid-sized modern steelmaking furnace would have a transformer rated about 60 MVA, 
with a secondary voltage between 400 and 900 volts and a secondary current in excess of 
44,000 amperes. To produce a ton of steel in an EAF requires approximately 440 kWh per 
metric tone; the theoretical minimum amount of energy required to melt a tone of scrap steel 
is 300 kWh (melting point 1520°C).  
 

 

Fig. 3. Basic innovations and improvement in the 120-t EAF performances  
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Electric Arc Furnaces (EAF) are being greatly improved at a fast pace. Only 20–30 years ago 
today’s EAF performance would be impossible to imagine (Hurst, 1994). Owing to the 
impressive number of innovations the tap-to-tap time has been shortened to 30–40 min. for 
the best 100–130 ton furnaces operating with scrap. Accordingly, their hourly and annual 
productivity increased. Electrical energy consumption got reduced approximately in half, 
from 580–650 to 320–350 kWh/ton. Electrical energy share in overall energy consumption 
per heat dropped to 50%. Electrode consumption was reduced 4–5 times - Figure 3. 
Typical steelmaking cycles are: 
- arc ignition period (start of power supply) – figure 4a 
- boring period –figure 4b 
- molten metal formation period – figure 4c 
- main melting period – figure 4d 
- meltdown period –figure 4e 
- meltdown heating period – figure 4f 
 

           
                         (a)                                    (b)                                     (c) 

         
                   (d)                                       (e)                                         (f) 

Fig. 4. Typical steelmaking cycle 

Electrodes are initially lowered to a point above the material, the current is initiated, and the 
electrodes bore through the scrap to form a pool of liquid metal. The scrap itself protects the 
furnace lining from the high intensity arc. Subsequently, the arc is lengthened by increasing 
the voltage to maximum power. In the final stage, when there is a nearly complete metal 
pool, the arc is shortened to reduce radiation heat losses and to avoid refractory damage and 
hot spots. 
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After melt dawn, oxygen usually is injected to oxidize the carbon in the steel or the charged 
carbon. This process is an important source of energy; the carbon monoxide that evolves 
helps minimize the absorption of nitrogen and flushes hydrogen out of the metal. It also 
foams the slag, which helps minimize heat loss. 
The random movement of the melting material has as consequence that no two cycles of the 
arc voltage and current waveforms are identical. The impact of these large, highly varying 
loads has a direct impact on the power quality of the interconnected power system. 
The abrupt initiation and interruption of current flow provides a source of harmonic 
currents and causes considerable disturbance to high-impedance circuits. Voltage and 
current waves deviate considerably from symmetrical sinusoidal patterns. Disturbances are 
worst during early meltdown, and they occur at varying frequencies. 
Generation of harmonics may result in further flicker problems, and equipment on the 
power system may also be damaged. If static capacitors are to be used to improve the power 
factor, an analysis to ensure that resonance does not exist at any of the harmonic frequencies 
should be made. Harmonics contribute to wave distortion and to the increase in effective 
inductive reactance. This increase is often in the 10 to 15% range and has been reported as 
high as 25%. Current into the furnace is therefore less than what would be expected from 
calculations based on sinusoidal wave shapes, and losses in frequency-sensitive equipment 
such as transformers are higher than the sinusoidal wave shape would produce. 
Generally, the initial period of melting causes the most electrical disturbances. As the scrap 
temperature begins to rise, a liquid pool forms, and disturbances begin to diminish. This is 
generally about 10 minutes or so after power-on and can vary depending on power levels 
and practices. 
After about 20 minutes, most electric furnaces will have begun converting scrap to liquid 
metal. Hence, wide swings in disturbances will diminish considerably. When sufficient 
molten metal exists the arc is shortened by an adjustment to the electrode regulators. The 
current will rise since overall resistance is reduced, and the power factor and arc power will 
decline. 

2.2 Perturbations 

The majority of electric and electronic circuits (arc welders and furnaces, variable speed 

controllers, PC’s,   medical   equipment,   etc) use switch mode techniques which  act  as  a  

non-linear  load or  disturbance generator  which   degrades  the quality of the electricity 

supply. 

In these electro energetic steady state circuits, the importance of the inconvenience caused 

by the non sinusoidal system of running is directly correlated to the amplitude of the 

harmonics. Also, it is of utmost importance to determine the variation of the apparent power 

at non defined node, in accordance with the presence of the current and voltage harmonics. 

Understanding the current harmonics and voltage harmonics is of utmost scientific 

importance both to the beneficiaries, who thus can prevent the undesirable effects of non 

sinusoidal steady state in a given network, and to the possible consumers as for as the 

corresponding measurement and pricing are concerned. Hence the elaboration of certain 

rules and prescription as regards the influence of the harmonics upon the fundamental 

component (first harmonic). 
Such   combinations  of  traditional  and   non-traditional  loads,   coupled with fluctuating 
loads, causes problems often classified as “random” or “sporadic” (problems with sensitive 
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devices), annoying (light flickering) or as “strange” or “without  apparent  reason”  
(problems  with   cabling,  capacitor  banks,  tripping, signaling etc.). 
The electric arc furnace produces strong disturbing effects featured by non-symmetries of 
currents and voltages, harmonics, flickers, voltage drops and over-voltages, characteristic 
parameters of power quality. 
Many ways exist to reduce the effects of the arc disturbances. These are determined by the 

utility system to which the furnace or furnaces are to be connected, and they are influenced 

mainly by the size and stability of the power grid. Some sizable shops require no particular 

flicker control equipment. It is quite possible that, if a furnace shop is fed from a 220 kV or 

higher system with a short-circuit capacity of 6500 MVA or more, the utility will experience 

very little load disturbance, and the steelmaker can have considerable flexibility in 

configuring his internal plant power system. 

Most utilities require power factor correction. Shops with large electric furnaces would more 

than likely use static capacitors; synchronous condensers of sufficient capacity would be 

prohibitively expensive for a multi-furnace shop. Before such systems are installed, transient 

analysis is required to determine: 

- Capacitor bank configuration 
- Need for harmonic tuning of sections 
- Switching procedure 
If additional regulation is needed, VAR control equipment would probably be required. 
However, if plans have already been made for power factor capacitors, including tuning 
reactors, then the thyristors and main reactor are the only further additions required. 
The perturbations caused by electric arc furnaces are of random nature and encompass a 
frequency range from DC to a few hundreds of Hz. Depending on whether AC of DC is 
used to supply the electric arc furnace there are unbalances, harmonics, inter-harmonics or 
voltage flicker. 

2.3 Arc furnace models 

For the design of EAF is necessary to utilize a suitable model. In this regard, numerous 
models have been presented to describe the electric arc (Lazaroiu &  Zaninelli,  2010); (Math 
et al., 2006); (Hooshmand & Esfahani, 2009); (Sankaran, 2008).  
In general the models can be classified into: 
a. Time domain analysis methods: 
- Nonlinear Resistance Model: The approximation on the V-I characteristic of the arc, 

performed by piecewise linearization, neglect of the voltage rising time or nonlinear 
approximation. This method uses the numerical analysis method to solve the 
differential equation which is used to describe the furnace system with the assumed V-I 
characteristic.  
However it is a primitive model and does not consider the time-varying characteristic 
of arc furnaces; 

- Current source models: An EAF is typically modelled as a current source represented by 
the Fourier series where the coefficients may change randomly during every period. 
This model is perfectly suited to size filter components and to evaluate voltage 
distortions resulting from the harmonic current injected into the system.  

- Voltage Source Models: The voltage source model for an EAF is a Thévenin equivalent 
circuit where equivalent impedance of the furnace load impedance including the 
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electrodes. The voltage source can be modelled in different ways. One possibility is to 
form it by major harmonic components that are known empirically. This method loses 
the stochastic characteristics of arc furnaces like the nonlinear resistance model does. 

- Nonlinear Time Varying Voltage Source Model: The arc voltage is defined as a nonlinear 
function of the arc length. The time variation of the arc length is modeled with 
deterministic or stochastic laws.  

- Nonlinear Time Varying Resistance Models: Arc furnace operation can be described by 
three basic states: open circuit, short circuit and normal operation. During normal 
operation the arc resistance can be modelled following an approximate Gaussian 
distribution. The random fluctuation in arc resistance accounts for the short-term 
perceptibility flicker index Pst.  

b. Frequency domain analysis methods represent the arc voltage and current by their 
harmonic components (Key & Lai, 1997). The Harmonic Voltage Source Model first 
applies the Fourier transform to the arc voltage to obtain its harmonic components. 
Then the current harmonic components are calculated through the arc voltage harmonic 
components. Calculations provide an equivalent circuit for the fundamental frequency 
component consisting of an equivalent arc resistance and a reactance. The equivalent 
circuit for the calculation of the different order harmonics consists of a harmonic 
voltage source and the system impedance for that harmonic frequency. The model is 
simple, but suitable for steady-state iterative harmonic analysis. 

c. Power balance method. 
This model provides a harmonic domain solution method of nonlinear differential 
equation. The arc furnace load model is developed from the energy balance equation, 
which is actually a nonlinear differential equation of arc radius and arc current. This 
model uses some experimental parameters to reflect the arc furnace operation, but it 
neglects the influence of its supply system.  

 

3. Basic principles for the power quality analysis 

3.1 Power quality and harmonic distortion 

One of the most important problems in nowadays consumers power supply is to ensure the 

power quality. Together with the power suppliers, the consumers are interested to use, to 

produce and to transport the electrical power as clean as possible. Any perturbation 

produced in the power system by any of its elements (components) may seriously affect the 

power quality consumed by the other elements especially those closely situated to the 

perturbing component (Filipski, et al., 1994). 

The Power Quality has concerned the experts from power engineering area as far back as 

first years of using the energy, in a large amount of applications, the alternating current; 

during the last decade, we can observe several ascertainments to the involvement for this 

domain, owing to development based on power electronics.  

Institute of Electrical and Electronic Engineers (IEEE) Standard IEEE 1100 define power 

quality as “a concept of powering and grounding sensitive electronic equipment in a 

manner suitable for the equipment”. But this is not the only interpretation. Another simple 

and more concise definition might state: “Power quality is a set of electrical boundaries that 

allows equipment to function in its intended manner without significant loss of performance 

or life expectancy”, definition that embraces two things that we demand from electrical 
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equipment: performance and life expectancy. Another definition of power quality, based on 

the principle of EMC, is as follows: power quality refers to a wide variety of electromagnetic 

phenomena that characterize voltage and current at a given time and at a given location on 

the power system. IEC 61000-4-30 defines power quality as ”the characteristics of the 

electricity at a given point on an electrical system, evaluated against a set of reference 

technical parameters” (Toulouevski & Zinurov, 2010); (***IEEE, 1995). 

Power quality can be interpreted by the existence of two components: 

- Voltage quality. It expresses the voltage deviation from the ideal one and can be 

interpreted as the product quality delivered by the utilities. 

-  Current quality. It expresses the current deviation from the ideal one and can be 

interpreted as the product quality received by the customers. 

The main Power quality disturbances are: 

• harmonics; 

• under-voltages or over-voltages; 

• flicker; 

• transients; 

• transients and voltage sags; 

• voltage sags; 

• interruptions. 
Among the greatest electrical perturbations in a power system is the electrical arc furnace. 

Its perturbations are visible upon the reactive power flow, the load unbalance and the 

harmonics injected in the supply network. Also the random variation of the EAF electrical 

load, leads to the “flicker” phenomena characterized by variation in the field of 0.3-0.5% of 

the rated voltage and frequencies variations of 6 up to 10 Hz. Physically, the flicker 

phenomena is visible for the electrical bulbs that are rapidly changing the light intensity. 

Also, the side effects of the flicker are visible for the modern computation technique that 

could be damaged by the voltage variations.  

At this moment we cannot talk about a united standardization of electrical energy quality on 

an international level and sometimes on national one. Currently, several engineering 

organizations and standard bearers in several parts of the world (IEEE, IEC, ANSI,…) are 

spending a large amount of resources to generate power quality standards. Some of them 

classify the events as steady-state and  non-steady-state phenomena, in some regulations the 

most important factor is the duration of the event, other guidelines use the wave shape 

(duration and magnitude) of each event to classify problems and other standards (e.g., IEC) 

use the frequency range of the event for the classification. These documents come in three 

levels of applicability and validity: guidelines, recommendations and standards. In almost 

all the countries, the directives system of electrical energy quality is composed by several 

quantitative characteristics of slow or rapid variations of effective voltage value, the shape 

or symmetry as well as characteristics of slow or rapid frequency variations (***IEEE-WG, 

1996); (***PE, 2004) (***SREN, 1998); (***CMP,  1987).    

As it can be seen in Figure 5 there are presented the main causes of an improper electrical 

energy quality.  

For the measurements of disturbances, IEC 61000-4-7 describes testing and measurement 

techniques for harmonics and inter-harmonics measurements and instrumentation, for 

power supply systems and equipment connected thereto. 
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Fig. 5. Causes of an improper electrical energy quality 

3.2 The prominent power quality aspects  

The prominent power quality aspects considered are the following: 
a. Voltages and currents are non sinusoidal quantities, and can be expressed by relations: 

1
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where kU , kI are the RMS of each k-harmonic of voltage, respectively current, ω is the 

angular frequency, kγ is the phase angle or each k-harmonic of voltage, k-harmonic of 

voltage, kϕ is difference of each  phase angle of k-harmonic of voltage and current, t is the 

time. 

– the active power: 
1
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k k k
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Q

P
ρ =  

- the deforming factor: 
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D
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+
                                  

where 2 2 2D S P Q= − −  is the Budeanu distortion (deforming) power. 
b. The presence of voltage and current harmonics is evaluated through a relative quantity, 
the total harmonic distortion (THD). Voltage harmonics are asserted with THDU, the ratio of 
the RMS value of the harmonic voltage to the RMS value of the fundamental, calculated by 
relation: 
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Everything presented for voltage harmonics is also valid for current harmonics and THDI, 
the ratio of the RMS value of the harmonic current to the RMS value of the fundamental, 
calculated by relation: 
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Total harmonic distortion is the ratio between deforming residue and effective value of 
fundamental waveform: 

40
2

2

1 1

100(%) 100(%)

h
hd

u

U
U

U U
δ == =

∑
 

www.intechopen.com



Power Quality and Electrical Arc Furnaces   

 

87 

Harmonic level is the ratio between effective value of the considered harmonic and the 
effective value of the fundamental:  

1

100(%)n
u

U

U
γ =  

c. Voltage imbalance. Applying the theory of symmetrical components, an unbalanced 
three-phase  sinusoidal voltage system [Va, Vb, Vc] can be decomposed into a positive-
sequence three-phase balanced system V+, a negative-sequence system V-, and a zero 
sequence system V0 
d. Disturbance transiting among voltage levels: Rapid voltage changes, Transient over- 
voltages and voltage fluctuation and flicker. 

3.3 Power quality measurements 

A simple way for a technician to determine power quality in their system without 
sophisticated equipment is to compare voltage readings between two accurate voltmeters 
measuring the same system voltage: one meter being an “averaging” type of unit (such as an 
electromechanical movement meter) and the other being a “true-RMS (rms)” type of unit 
(such as a high-quality digital meter). Remember that “averaging” type meters are 
calibrated so that their scales indicate volts RMS, based on the assumption that the AC 
voltage being measured is sinusoidal. If the voltage is anything but sine wave-shaped, the 
averaging meter will not register the proper value, whereas the true-RMS meter always will, 
regardless of wave-shape.  
The rule of thumb here is this: the greater the disparity between the two meters, the worse 
the power quality is, and the greater its harmonic content. A power system with good 
quality power should generate equal voltage readings between the two meters, to within the 
rated error tolerance of the two instruments. 
Measurement and testing of supply voltage quality, according to EN 50160, requires 
specialized apparatus and measuring methods. 
This arrangement enables continuous monitoring, short time and long time, over 7 days, of 
the following parameters: 
- voltages and currents in three phases; 
- frequency; 
- total harmonic distortion factor THDU and THDI; 
- voltage unbalance factor, which is a multiple of positive and negative sequence voltage 

components; 
- fast and slow voltage variations, which are defined as short term (Pst) and long term 

(Plt) flicker; 
- severity factors. 
This type of equipment, named digital power analyzer also enables measurement of voltage 
dips and outages, its frequency and duration. 
The RMS values of voltages and currents can be determined correctly by digital methods in 
any harmonic content of waveforms. Also, with the results of RMS voltage and current can 
calculate the apparent power. The active power may be calculated and accurately measured 
in any circumstances of harmonic pollution. Unfortunately this is not the case for reactive 
power. For reactive power can be used different definitions and methods (Arrillage et. al.,   
2001); (Czarnecki, 1987); (Emmanuel, 1995); (Emmanuel, 1999); (Katic, 1994): 
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- reactive power measurement (Budeanu definition); 
- Hilbert transform method; 
- power triangle method; 
- quarter period time delay method; 
- low-pass filter method. 
Table 1 presents the test conditions, voltage and current, used to test the measurement 
performances of the reactive power measurement solutions. Table 2 presents the errors 
obtained for different tests using notations: H- for Hilbert transform, LPF- for low pass filter, 
PT-power triangle, CTD- compensated time delay. 
The traditional measurement methods, like Power triangle and the Time delay, comply with 
international standards but show limitations in the presence of harmonics or line frequency 
variation. 
One can observe that Hilbert method give the best results, followed by the low pass filter 
method and then power triangle method. So, different analyzers implemented with different 
formulas can give discrepancies measuring the same loads. 
 

   

Table 1.  

www.intechopen.com



Power Quality and Electrical Arc Furnaces   

 

89 

 

Table 2. 

4. Numerical simulations for energy calculation in power measurements 

The model presented in (Vervenne et. al., 2007) is based on exponential-hyperbolic form 
which causes many problems in the power system quality. Also the model can describe 
different operations of the EAF and it does not need specific initial conditions.  
 

 

Fig. 6. EAF connected to supply system 

The electric diagram of a electrical circuit supplying an EAF is illustrated in Figure 6. In this 
figure, bus 1 is the point of common coupling (PCC) which is the supplying bus of the EAF 
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transformer. The arc furnace is also connected to the PCC through the transformer TS, 
(HV/MV). In this figure, XC and RC are the reactance and resistance of the connecting cable 
line to the furnace electrodes, respectively. Also, XLsc is the short circuit reactance at bus 
PCC. 
The electric arc is modeled by the following equations: 

( )0

, 0 ,     i 0

( )

1  , 0 ,     i 0

at

i I
at

C di
V

D i dtV i
di

V e
dt

−

⎧ ⎫+ ≥ >⎪ ⎪⎪ ⎪+= ⎨ ⎬
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where V and i are arc voltage and current of the EAF, respectively. Also Vat is the voltage 

threshold magnitude to which voltage approaches as current increases. Furthermore, I0 is 

the current time constant in kA. It should be noted that the voltage Vat depends on the arc 

length. 

The constants C and D are corresponding to the arc power and arc current, respectively. 

These constants can take different values which depend on the sign of the derivative of the 

arc current.  

As it can be seen in electric arc modeled equation, for the positive current and regarding the 

hysterias property of the arc, there are two cases. In the increasing current case, the 

hyperbolic equation and in the decreasing current case exponential equation is used. Hence, 

this model is called exponential-hyperbolic model. The proposed method has the capability 

of describing the EAF behavior in time domain using differential equation. In addition, it is 

able to analyze the behaviors in the frequency domain without solving the sophisticated 

differential equations. 

Moreover, the proposed model can describe different operating conditions of the EAF such 

as initial melting (scrap stage), mild melting (platting stage) and refinement of the EAF. 

With the parameters of the system: 

LscX   9.4245 ,  Xc  2.356 m ,  Rc  0.4 m ,  fsys 50 Hz= Ω = Ω = Ω =  

and: 

Vat  200 V,  Ca  190 kW,  Cb  39 kW,  Da  Db  5 kA,  Io  10 kA= = = = = =  

the voltage-current characteristic of the arc is obtained and shown in Figure 7. The voltage 

and the current of the arc are illustrated in Figure 8. 

The characterization of flicker produced by an arc furnace is an extremely difficult operation 

(Alonso & Donsion, 2004); (Beites et. al., 2001); (Webster, 2004).  The flicker is variable from 

one cycle to another and during melting stage very high peaks are produced. It depends on 

following parameters: quality and quantity of used scrap, reference operating points, 

quantity of injected oxygen, unpredictable consequences due to crumbling of the scrap 

during melting.  

Consequently it is recommended to evaluate the level of flicker produced during at least one 

week of operation, representing several tens of operation cycles. LabVIEW and MATLAB 

software are used for simulation on EAF (Andrei et. al., 2006); (Andrei et. al., 2006); (Andrei 

et. al., 2006); (Beites et. al., 2001); (Bracale et. al., 2005); (Buzac & Cepisca, 2008). 
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Fig. 7. Voltage-current characteristic for the exponential-hyperbolic model 

 

 

Fig. 8. Waveforms in the exponential-hyperbolic mode 

5. Results of measurements in a real electric installation of arc furnace  

5.1 Measurement method and equipment 
The three-phase power analyzer is used for the analysis of power quality with compatible 
software analysis. The following quantities are necessary to be measured: voltage, current, 
flicker (IEC 68, IEC 61000-4-15-PST and PLT), THD, waveform snapshots and harmonics up to 
the minimum order of 64, frequency, transient events (Chi-Jui Wu & Tsu-Hsun Fu, 2003); 
(Pretorius et al., 1998).  
The strategy of measurements was to carry out recordings on EAF with all electrical 
quantities: RMS voltage, RMS current, flicker, frequency, THD voltage, THD current, 
current and voltage waveforms, powers kW, kVAR, kVA, power factor, voltage and current 
vectors for the short and long time (Cepisca et al., 2004); (Cepisca et al., 2006).  
One example of measurement equipment is a multifunctional Power Quality Analyzer 
METREL, shown in Figure 9, one advanced instrument for measuring quality of electrical 
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power in compliance with the EN60150. It incorporates a number of different measurement 
instruments for calculating various electrical parameters which is based on current and 
voltage measurements. 
 

 

Fig. 9. Measurement equipment METREL 

5.2 Results of the measurements in a real electric installation of EAF 

The electrical power networks of arc furnaces are presented in Figure 10 (Cepisca et al., 
2008). 
 

 

Fig. 10. Electrical power supply networks for arc furnaces 

5.2.1 The real measurements of voltage and current harmonics, and of the powers 

Figure 11 presents the current (a), the voltage (b) and Figure 12 presents the powers for a 
technological cycle of arc furnace. This cycle presents two phases: melting phase (6-8 
minutes) and phase of stable arc burning (12-15 minutes). The electrical quantities are strong 
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variation in the melting phase, with an important voltage fall. In the phase of stable arc 
burning the variation of electrical quantities are more reduced (Cepisca et. al., (2007); 
(Grigorescu et al., 2006); (Grigorescu et al., 2009); (***PE, 2004). 
 

 
(a) 

 
(b) 

Fig. 11. The real measurements for a technological cycle of EAF: a) current   b) voltage 
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Fig. 12. The real measurements of powers (P, Q, S) for a technological cycle of arc furnace 

5.2.2 The real measurements of wave forms of voltage and current,  and of the THDU 
and THDI  for melting phase of the technological cycle of arc furnace 

As regard to the wave forms of the voltages, shown in  Figure 13, a,  and, respectively the 
wave forms of the currents shown in Figure 13, b, on the 30 kV voltage supply line in the 
melting phase is found a strong distortion of currents.  
 

     
       a. The wave forms of voltages       b. The wave forms of currents 

Fig. 13. The wave forms of voltages and currents in the melting phase 

The Figure 14 presents: (a) the total harmonic distortion calculated for voltages (THDU, 
2,8…3%), and (b) the total harmonic distortion calculated for the currents (THDI, 10….11%). 
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a.  THDI                                                                                                        b.  THDU 

Fig. 14. The total harmonic distortion calculated for voltages (THDU) and currents (THDI) in 
the melting phase  

5.2.3 The real measurements of wave forms of voltage and current,  and of the THDU 
and THDI in the phase of arc burning of the technological cycle of arc furnace 

In the phase of the electric arc stable burning (Figure 15, a,  and b), that appears towards the 

final of the heat’s making, is found that the distortion that appear in the currents and  

voltages  wave  forms  are  more  reduced.  In this phase, the amplitude of the three phase 

currents and voltages are closer as value, fact which shows that the load impedance is more 

balanced. 

 

     
                                   (a)                                                      (b) 

Fig. 15. The wave forms in the arc stable phase:  a)  voltages ; b)  currents . 
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The TDH for voltages and for currents in the arc stable phase are presented in Figure 16, a, 

and b. We observe that in the arc stable phase the THDU is reduced (1…2%) and THDU are 

an acceptable value (4…5%). One can reach to the conclusion that the deformation of the 

current and voltage waves is smaller in the stable burning phase also by the fact that the 

distorting power  is   smaller  in  this  phase,  in  conditions  where  the  apparent,  active 

and reactive power is higher. 

As regard the voltage on the 30 kV line, in the melting phase one can observe the presence 

of the important harmonics while in the oxidation phase is found practically only the 

presence   of the fundamental.  In the current’s case, the important values of harmonics 

demonstrate that in this phase the current is strongly deformed. 

 

     

Fig. 16. The total harmonic distortion calculated for voltages (THDU) and currents (THDI) in 
the arc stable phase  

The variation form of powers measured values presented on the heat time presents in the 

first period, corresponding to the melting phase, a smaller apparent power. The electrodes 

are more lifted-up, in order to ensure protection against breaking and this determining a 

smaller value current. In the stable phase the apparent power is approximately constant and 

higher than in the melting phase.  The  variation  of  the  voltage,  as  well  as  of  the  arc 

current, is reflected partially in the variation of active and reactive powers during the heat.   

5.2.4 The variation of the THDU and THDI, and the variation  of  the power factor 

The THDU and THDI  (Figure 17) are higher in the melting phase than in the stable burning 

phase, bat the reactive power is higher in the stable phase than in the melting phase.  
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Fig. 17. The variation of THDI   and THDU 

The power factor value (Figure 18) is higher in the stable arc phase and lower during the 
melting phase. For this reason results that on the 30 kV line the currents wave is more 
distorted than the voltages wave.  
In different moments of technological process, following the measurements, were obtained 
values for THDI within 1-21% for current and 1-6% for voltage. Comparing these values 
with the standard results that the furnace is not matched in the national and international 
standards. 
 

     

Fig. 18. The variation of power factor 
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