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1. Introduction

The choice of input variables is a fundamental, and yet crucial consideration in identifying the
optimal functional form of statistical models. The task of selecting input variables is common
to the development of all statistical models, and is largely dependent on the discovery of
relationships within the available data to identify suitable predictors of the model output.
In the case of parametric, or semi-parametric empirical models, the difficulty of the input
variable selection task is somewhat alleviated by the a priori assumption of the functional
form of the model, which is based on some physical interpretation of the underlying system
or process being modelled. However, in the case of artificial neural networks (ANNs), and
other similarly data-driven statistical modelling approaches, there is no such assumption
made regarding the structure of the model. Instead, the input variables are selected from
the available data, and the model is developed subsequently. The difficulty of selecting input
variables arises due to (i) the number of available variables, which may be very large; (ii)
correlations between potential input variables, which creates redundancy; and (iii) variables
that have little or no predictive power.
Variable subset selection has been a longstanding issue in fields of applied statistics dealing
with inference and linear regression (Miller, 1984), and the advent of ANN models has only
served to create new challenges in this field. The non-linearity, inherent complexity and
non-parametric nature of ANN regression make it difficult to apply many existing analytical
variable selection methods. The difficulty of selecting input variables is further exacerbated
during ANN development, since the task of selecting inputs is often delegated to the ANN
during the learning phase of development. A popular notion is that an ANN is adequately
capable of identifying redundant and noise variables during training, and that the trained
network will use only the salient input variables. ANN architectures can be built with
arbitrary flexibility and can be successfully trained using any combination of input variables
(assuming they are good predictors). Consequently, allowances are often made for a large
number of input variables, with the belief that the ability to incorporate such flexibility and
redundancy creates a more robust model. Such pragmatism is perhaps symptomatic of the
popularisation of ANN models through machine learning, rather than statistical learning
theory. ANN models are too often developed without due consideration given to the
effect that the choice of input variables has on model complexity, learning difficulty, and
performance of the subsequently trained ANN.
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Recently, ANN modellers have become increasingly aware of the need to undertake input
variable selection (IVS), and a myriad of methods employed to undertake the IVS task
are described within reported ANN applications—some more suited to ANN development
than others. This review therefore serves to provide some guidance to ANN modellers, by
highlighting some of the key issues surrounding variable selection within the context of ANN
development, and survey some the alternative strategies that can be adopted within a general
framework, and provide some examples with discussion on the benefits and disadvantges in
each case.

2. The input variable selection problem

Recall that for an unknown, steady-state input-output process, the development of an ANN
provides the non-linear transfer function

Y = F(X) + ε, (1)

where the model output Y is some variable of interest, X is a k-dimensional input vector,
whose component variables are denoted by Xi(i = 1, . . . , k), and ε is some small random
noise. Let C denote the set of d variables that are available to construct the ANN model. The
Id−k problem of input variable selection (IVS) is to choose a set of k variables from C to form
X (Battiti, 1994; Kwak & Choi, 2002) that leads to the optimal form of the model, F.
Dynamic processes will require the development of an ANN to provide a time-series model
of the general form

Y(t + k) = F(Y(t), . . . , Y(t − p), X(t), . . . , X(t − p)) + ε(t). (2)

Here, the output variable is predicted at some future time t + k, as a function of past values
of both input X and output Y. Past observations of each variable are referred to as lags,
and the model order p defines the maximum lag of the model. The model order reflects
the persistence of dynamics within the system. In comparison to the steady-state model
formulation, the number of variables in the candidate set C is now multiplied by the model
order. Consequently, for systems with strong persistence, the number of candidate variables
is often quite large.
ANN models may be specified with insufficient, or uninformative input variables
(under-specified); or more inputs than is strictly necessary (over-specified), due to the
inclusion of superfluous variables that are uninformative, weakly informative, or redundant.
Defining what constitutes an optimal set of ANN input variables first requires some
consideration of the impact that the choice of input variables has on model performance. The
following arguments summarise the key considerations:

• Relevance. Arguably the most obvious concern is that too few variables are selected, or
that the selected set of input variables is not sufficiently informative. In this case, the
outcome is a poorly performing model, since some of the behaviour of the output remains
unexplained by the selected input variables. In most cases, it is reasonable to assume that
a modeller will have some expert knowledge of the system under consideration; will have
surveyed the available data, and will have arrived at a reasonable set of candidate input
variables. The a priori assumption of model development is that at least one or more of
the available candidate variables is capable of describing some, if not all, of the output
behaviour, and that it is the nature and relative strength of these relationships that is
unknown (which is, of course, the motivation behind the development of non-parametric
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models). Should it happen that none of the available candidates are good predictors, then
the problem of model development is intractable, and it may be necessary to reconsider
the available data and the choice of model output, and to undertake further measurements
or observations before revisiting the task of model development.

• Computational Effort. The immediately obvious effect of including a greater number of
input variables is that the size of an ANN increases, which increases the computational
burden associated with querying the network—a significant influence in determining the
speed of training. In the case of the multilayer perceptron (MLP), the input layer will
have an increased number of incoming connection weights. In the case of kernel-based
generalised regression neural network (GRNN) and radial basis function (RBF) networks,
the computation of distance to prototype vectors is more expensive due to higher
dimensionality. Furthermore, additional variables place an increased burden on any data
pre-processing steps that may be undertaken during ANN development.

• Training difficulty. The task of training an ANN becomes more difficult due to the
inclusion of redundant and irrelevant input variables. The effect of redundant variables
is to increase the number of local optima in the error function that is projected over the
parameter space of the model, since there are more combinations of parameters that can
yield locally optimal error values. Algorithms such as the back-propagation algorithm,
which are based on gradient descent, are therefore more likely to converge to a local
optimum resulting in poor generalisation performance. Training of the network is also
slower because the relationship between redundant parameters and the error is more
difficult to map. Irrelevant variables add noise into the model, which also hinders the
learning process. The training algorithm may expend resources adjusting weights that
have no bearing on the output variable, or the noise may mask the important input-output
relationships. Consequently, many more iterations of the training algorithm may be
required to determine a near-global optimum error, which adds to the computational
burden of model development.

• Dimensionality. The so-called curse of dimensionality (Bellman, 1961) is that, as the
dimensionality of a model increases linearly, the total volume of the modelling problem
domain increases exponentially. Hence, in order to map a given function over the
model parameter space with sufficient confidence, an exponentially increasing number of
samples is required (Scott, 1992). Alternatively, where a finite number of data are available
(as is generally the case in real-world applications), it can be said that the confidence or
certainty that the true mapping has been found will diminish. ANN architectures like
the MLP are particularly susceptible to the curse due to the rapid growth in the number
of connection weights as input variables are added. Table 1 illustrates the growth in the
sample size required to maintain a constant error associated with estimates of the input
probability, as determined by the pattern layer of a GRNN. Some ANN architectures
can also circumvent the curse of dimensionality through their handling of redundancy
and their ability to simply ignore irrelevant variables (Sarle, 1997). Others, such as
RBF networks and GRNN architectures, are unable to achieve this without significant
modifications to the behaviour of their kernel functions, and are particularly sensitive to
increasing dimensionality (Specht, 1991).

• Comprehensibility. In many applications, such as in the case of ANN transfer functions
for process modelling, it will often suffice to regard an ANN as a “black-box"’ model.
However, ANN modellers are increasingly concerned with the development of ANN
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Dimension, d Sample size, N

1 4
2 19
3 67
4 223
5 768
6 2790
7 10 700
8 43 700
9 180 700
10 842 000

Table 1. Growth of sample size with increasing dimensionality required to maintain a
constant standard error of the probability of an input estimated in the GRNN pattern layer
(Silverman, 1986).

models for knowledge discovery from data (KDD) and data mining (Craven & Shavlik,
1998). The goal of KDD is to train an ANN based on observations of a process, and then
interrogate the ANN to gain further understanding of the process behaviour it has learned.
Rule-extraction from ANN models can be useful for a number of purposes, including:
(i) defining input domains that produce certain ANN outputs, which can be useful
knowledge in itself; (ii) validation of the ANN behaviour (e.g. verifying that input-output
response trends make sense), which increases confidence in the ANN predictions; and
(iii) the discovery of new relationships, which reveals previously unknown insights into
the underlying physical process (Craven & Shavlik, 1998; Darbari, 2000). Reducing the
complexity of the ANN architecture, by minimising redundancy and the size of the
network, can significantly improve the performance of data mining and rule extraction
algorithms.

Based on the arguments presented, a desirable input variable is a highly informative
explanatory variable (i.e a good predictor) that is dissimilar to other input variables (i.e.
independent). Consequently, the optimal input variable set will contain the fewest input
variables required to describe the behaviour of the output variable, with a minimum degree
of redundancy and with no uninformative (noise) variables. Identification of an optimal
set of input variables will lead to a more accurate, efficient, cost-effective and more easily
interpretible ANN model.
The fundamental importance of the IVS issue is evident from the depth of literature
surrounding the development and discussion of IVS algorithms in fields such as classification,
machine learning, statistical learning theory, and many other fields where ANN models are
applied. In a broad context, reviews of IVS approaches have been presented by Kohavi &
John (1997), Blum & Langley (1997) and more recently, by Guyon & Elisseeff (2003). However,
in many examples of the application of ANNs to modelling and data analysis applications,
the importance of IVS is often understated. In other cases, the task is given only marginal
consideration and this often results in the application of ad hoc or inappropriate methods.
Reviews by Maier & Dandy (2000) and Bowden (2003) examined the IVS methods that have
been applied to ANN applications in engineering and concluded that there was a need for a
more considered approach to the IVS task. Certainly, no consensus has been reached regarding
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suitable methods for undertaking the IVS task in the development of ANN regression or
time-series forecasting models (Bowden, 2003).

3. Taxonomy of algorithms

Figure 1 presents a taxonomy, which provides some examples of the various approaches that
have been proposed within ANN literature. IVS algorithms can be broadly classified into three
main classes: wrapper, embedded or filter algorithms (Blum & Langley, 1997; Guyon & Elisseeff,
2003; Kohavi & John, 1997), as shown in Figure 1. These different conceptual approaches to
IVS algorithm design are illustrated in Figure 2. Wrapper algorithms, as shown in Figure 2(a),
approach the IVS task as part of the optimisation of model architecture. The optimisation
searches through the set, or a subset, of all possible combinations of input variables, and
selects the set that yields the optimal generalisation performance of the trained ANN. As
the name indicates, embedded algorithms (Figure 2(b)) for IVS are directly incorporated into
the ANN training algorithm, such that the adjustment of input weights considers the impact
of each input on the performance of the model, with irrelevant and/or redundant weights
progressively removed as training proceeds. In contrast, IVS filters (Figure 2(c)) distinctly
separate the IVS task from ANN training and instead adopt an auxiliary statistical analysis
technique to measure the relevance of individual, or combinations of, input variables.
Given the general basis for the formulation of both IVS wrapper and filter designs, the
diversity of implementations that can possibly be conceived is immediately apparent.
However, designs for wrappers and filters share the same overall components, in that, in
addition to a measure of the informativeness of input variables, each class of selection
algorithms requires:

1. a criterion or test to determine the influence of the selected input variable(s), and

2. a strategy for searching among the combinations of candidate input variables.

3.1 Optimality Criteria

The optimality criterion defines the interpretation of the arguments presented in Section 2
into an expression for the optimal size k and composition of the input vector, X. Optimality
criteria for wrapper selection algorithms are derived from, or are exactly the same as, criteria
that are ultimately used to assess the predictive performance of the trained ANN. Essentially,
the wrapper approach treats the IVS task as a model selection exercise, where each model
corresponds to a unique combination of input variables. Recall that the most commonly
adopted measure of predictive performance for ANNs is the mean squared error (MSE), which
is given by

MSE =
1

n

n

∑
j=1

(

yj − ŷj

)2
(3)

where yj and ŷj are the actual and predicted outputs, which correspond to a set of test
data. Following the development of m models, a simple strategy is to select the model
that corresponds to the minimum MSE. However, the drawback of this criterion is that the
“best” performing model, in terms of the MSE, is not necessarily the “optimal” model, since
models with a large number of input variables tend to be biased as a result of over-fitting.
Consequently, it is more common to adopt an optimality criterion such as Mallows’ Cp

(Mallows, 1973), or the Akaike information criterion (AIC) (Akaike, 1974), which penalise
overfitting. Both Mallows’ Cp and the AIC determine the optimal number of input variables
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Dimension Reduction

Rotation

Linear

Principal component analysis (PCA)

Partial Least-Squares (PLS) (Wold, 1966)

Non-Linear

Independent component analysis (ICA)

Non-linear PCA (NLPCA)

Clustering

Learning vector quantisation (LVQ)

Self-organizing map (SOM) (Bowden et al., 2002)

Variable selection

Model-based

Wrapper

Nested

Forward selection (constructive ANNs)

Backward elimination

Nested subset (e.g. increasing delay order)

Global search

Exhaustive search

Heuristic search (e.g. GA-ANN)

Ranking

Single-variable Ranking (SVR)

GRNN Input Determination Algorithm (GRIDA)

Embedded

Optimisation

Direct Optimisation (e.g. Lasso)

Evolutionary ANNs

Weight-based

Stepwise regression

Pruning (e.g. OBD (Le Cun et al., 1990))

Recursive feature elimination

Filter (model-free)

Correlation (linear)

Rank (maximum) Pearson correlation

Ranked (maximum) Spearman correlation

Forward partial correlation selection

Time-series analysis (Box & Jenkins, 1976)

Information theoretic (non-linear)

Entropy

Entropy (minimum) ranking

Minimum entropy

Mutual Information (MI)

Rank (maximum) MI

MI feature selection (MIFS) (Battiti, 1994)

MI w/ICA (ICAIVS) (Back & Trappenberg, 2001)

Partial mutual information (PMI) (Sharma, 2000)

Joint MI (JMI) (Bonnlander & Weigend, 1994)

Fig. 1. Taxonomy of IVS Strategies and Algorithms
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Fig. 2. Conceptual IVS approach using a (a) wrapper, (c) embedded, or (b) filter algorithm.

by defining the optimal trade-off between model size and accuracy by penalising models with
an increasing number of parameters. In fact, the Cp criterion is considered to be a special case
of the AIC.
Mallows’ Cp is is defined as

Cp =
∑

n
j=1

(

yj − ŷj(k)
)2

σ
2
d

− n + 2p, (4)

where yj(k) are the outputs generated by a model using p parameters, and σ
2
d are residuals

for a full model trained using all d possible input variables. Cp measures the relative bias and
variance of a model with p variables. The theoretical value of Cp for an unbiased (optimal)
model will be p, and in model selection, the model with the Cp value that is closest to p is
selected.
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Fig. 3. The Akaike Information Criterion determines the optimum trade-off between model
error and size

The AIC is defined as

AIC = −n log
∑

n
j=1

(

yj − ŷj(k)
)2

n
+ 2(p + 1). (5)

Here, the accuracy is determined by the log-likelihood, which is a function of the MSE. The
complexity of the model is determined by the term p + 1, where p is the number of model
parameters. Typically, the regression error decreases with increasing p, but since the model
is more likely to be over-fit for a fixed sample size, the increasing complexity is penalised.
At some point an optimal AIC is determined, which represents the optimal trade-off between
model accuracy and model complexity. The optimum model is determined by minimising the
AIC with respect to the number of model parameters, p. This is illustrated in Figure 3.
Other model selection criteria have also been similarly derived, such as the Bayesian
information criterion (BIC) (Schwarz, 1978), which is similar to the AIC, although it applies
a more severe penalty of (k ln n) to the number of model parameters. The expression for the
AIC in (5) assumes a linear regression model, but can be extended to non-linear regression.
However, it should be noted that in this case, p + 1 no longer sufficiently describes the
complexity of the model and other measures are required. Such measures include the effective
number of parameters, or Vapnik-Chernovenkis dimension. The values of these measures are a
function of the class of regression model that is estimated and the training data. The effective
number of parameters, d can be determined by trace(S), where S is a matrix defined by the
expression

ŷ = Sy. (6)

For kernel regression, the hat matrix, S, is equal to KTK, where the elements of K correspond
to each Kj(x, h), and the complexity is therefore given by trace(KTK). Factors affecting
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complexity include the number of data, the dimension of the data, and the number of basis
functions. The VC-dimension is similarly defined as the number of data points that can be
shattered by the model (i.e. how many points in space can be uniquely separated by the
regression function). However, calculating the VC-dimension of complex regression functions
can be difficult (Hastie et al., 2001). For MLP architectures, the VC-dimension is related to
the number of connection weights, and for RBF networks the VC-dimension depends on the
number of basis functions and their respective bandwidths, if different value are used for each
basis function. Both the effective number of parameters and the VC-dimension revert to the
value of p + 1 for linear models.
In filter algorithm designs, the optimality criterion is embedded in the statistical analysis of
candidate variables, which defines the interpretation of “good” input variables. In general,
selection filters search amongst the candidate variables and identify suitable input variables
according to the following criteria:

1. maximum relevance (MR),

2. minimum redundancy (mR), and

3. minimum redundancy–maximum Relevance (mRMR).

The criterion of maximum relevance ensures that the selected input variables are highly
informative by searching for variables that have a high degree of correlation with the output
variable. Input ranking schemes are a prime example of MR techniques, in which the
relevance is determined for each input variable with the output variable. Greedy selection
can be applied to select the k most relevant variables, or a threshold value can be applied to
select inputs that are relevant, and reject those which are not.
The issue with MR criteria is that the selection of the k most relevant candidate variables does
not strictly yield an optimal ANN. Here, Kohavi & John (1997) make the distinction between
relevance and usefulness by observing that redundancy between variables can render highly
relevant variables useless as predictors. Consequently, a criterion of minimum redundancy
aims to find inputs that are maximally dissimilar from one another, in order to select the most
useful set of relevant variables. The application of an additional mR criterion with the existing
MR criterion leads to mRMR selection criteria, where input variables are evaluated with
the dual consideration of relevance, with respect to the output variable; and independence
(dissimilarity), with respect to the other candidate variables (Ding & Peng, 2005).
Embedded IVS considers regularisation (reducing the size or number) of the weights of
a regression to minimise the complexity, while maintaining predictive performance. This
involves the formulation of a training algorithm that simultaneously finds the minimum
model error and model complexity, somewhat analogous to finding the optimum the AIC.
If the model architecture is linear-in-the-parameters, the resulting expression can be solved
directly. Depending on the model complexity term, this approach gives rise to various
embedded selection algorithms, such as the Lasso (Tibrishani, 1996). However, the non-linear
and non-parametric nature of ANN regression does not lend itself to this approach (Guyon &
Elisseeff, 2003; Tikka, 2008). Instead, embedded selection is typically applied in ANN model
development in the form of a pruning strategy, where the connection weights of a network
are assessed, and insignificant weights are removed from the network. Pruning algorithms
were originally developed to address the computational burden associated with training fully
connected networks, given that many of the weights may be only marginally important due
to redundancy within the ANN architecture. However, the strategy also offers the means of
selectively removing inputs, since an input variable is eliminated by eliminating all connection

27Review of Input Variable Selection Methods for Artificial Neural Networks

www.intechopen.com



weights between an input and the first hidden layer (Tikka, 2008). A criterion is required to
identify which connection weights should be pruned, and several different approaches can be
used to determine how weights are removed (Guyon & Elisseeff, 2003):

1. Analysis of sensitivity of training error to elimination of weights, or

2. Elimination of variables based on weight magnitude.

Where the first approach has been used, different expressions for the sensitivity of the error to
the weights have led to various different algorithms. The use of derivatives of error functions
or transfer functions at hidden nodes with respect to the weights are common strategies, and
lead to examples of pruning algorithms such as the optimal brain damage (OBD) algorithm
(Le Cun et al., 1990).

3.2 Search strategies

Search strategies applied to IVS algorithms seek to provide an efficient method for searching
through the many possible combinations of input variables and determining an optimal, or
near optimal set, while working within computational constraints. Searches may be global,
and consider many combinations; or local methods, which begin at a start location and move
through the search space incrementally. The latter are also commonly referred to as nested
subset techniques, since the region they explore comprises overlapping (i.e. nested) sets by
incrementally adding variables.

3.2.1 Exhaustive search

Exhaustive search simply evaluates all of the possible combinations of input variables and
selects the best set according to a predetermined optimality criteria. The method is the
only selection technique that is guaranteed to determine the optimal set of input variables
for a given ANN model (Bonnlander & Weigend, 1994). Given the combinatorial nature
of the IVS problem, the number of possible subsets that form the search space is equal
to 2d, with subsets ranging in size from single input variables, to the set of all available
input variables. Exhaustive evaluation of all of these possible combinations may be feasible
when the dimensionality of the candidate set is low, but quickly becomes infeasible as
dimensionality increases.

3.2.2 Forward selection

Forward selection is a linear incremental search strategy that selects individual candidate
variables one at a time. In the case of wrappers, the method starts by training d single-variable
ANN models and selecting the input variable that maximises the model performance-based
optimality criterion. Selection then continues by iteratively training d − 1 bivariate ANN
models, in each case adding a remaining candidate to the previously selected input variable.
Selection is terminated when the addition of another input variable fails to improve the
performance of the ANN model. In filter designs, the single most relevant candidate variable
is selected first, and then forward selection proceeds by iteratively identifying the next
most relevant candidate and evaluating whether the variable should be selected, until the
optimality criterion is satisfied.
The approach is computationally efficient overall, and tends to result in the selection of
relatively small input variable sets, since it considers the smallest possible models, and trials
increasingly larger input variable sets until the optimal set is reached. However, because
forward selection does not consider all of the possible combinations, and only searches a
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small subset, it is possible that the algorithm may encounter a locally optimum set of input
variables and terminate prematurely. Also, due to the incremental nature of the forward
search, the algorithm may ignore highly informative combinations of input variables that are
only marginally relevant individually (Guyon & Elisseeff, 2003).

3.2.3 Step-wise selection

Forward selection is said to have fidelity, in that once an input variable is selected, the selection
can not be undone. Step-wise selection is an extension of the forward selection approach,
where input variables may also be removed at any subsequent iteration. The formulation of
the step-wise approach is aimed at handling redundancy between candidate variables. For
example, a variable Xa may be selected initially due to high relevance, but is later found
to be inferior to the combination of two other variables, Xb and Xc, which only arises at a
subsequent iteration. The initially selected input variable Xa is now redundant, and can be
removed in favour of the pair Xb and Xc.
A common example of this approach is step-wise regression, which is widely used for the
development of linear regression models. In this wrapper approach, linear models are
iteratively constructed by adding an input variable to the model, and re-estimating the model
coefficients. Input variables are retained based on analysis of the coefficients of the newly
developed model. The selection process continues until the model satisfies some optimality
criterion, such as the AIC (see Section 3.1), that is, when k + 1 input variables are no better
than the preceding k variables.

3.2.4 Backward elimination

Backward elimination is essentially the reverse of the forward selection approach. In this
case, all d input variables are initially selected, and then the most unimportant variables are
eliminated one-by-one. In wrapper selection strategies, the relative importance of an input
variable may be determined by removing an input variable Xi and evaluating the effect on
the model that is retrained without it; or, by examining the influence of each of the input
variables on the output y through some sensitivity analysis. In filter strategies, the least
relevant candidates are iteratively removed until the optimality criterion is satisfied.
In general, backward elimination is inefficient in comparison with forward selection, as it
can require the development and evaluation of many large ANN models before reaching the
optimal model. Since all input variables are initially included, it may be more difficult to
determine the relative importance of an individual input variable than in forward selection,
which starts with a single input variable. Also, wrapper algorithms based on backward
elimination may potentially be biased by overfitting of large models.

3.2.5 Heuristic search

Heuristic search techniques are widely used in optimisation problems where the search space
is large. Heuristic search algorithms are particularly adept at efficiently finding global,
or near-global optimum solutions within large search spaces by exploiting the common
attributes of good solutions. In general, the various algorithms each implement a search
that combines random evaluation of solutions throughout the entire search space, with a
mechanism to increase the focus of the search in regions that lead to good solutions. Examples
of heuristic search algorithms applied to IVS include evolutionary algorithms (EAs), such
as genetic algorithms (GAs) (Bowden, 2003) and ant colony optimization (ACO) (Izrailev &
Agrafiotis, 2002; Marcoulides & Drezner, 2003; Shen et al., 2005).
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The application of heuristic optimisation techniques to IVS overcomes the significant
computational requirement of exhaustive search, while maintaining the desirable
characteristic of providing a global (or, near-global) optimum. Moreover, EA-based IVS
wrappers are an attractive option because they can also be included as part of evolutionary
ANN training algorithms, which also seek to determine optimal ANN parameter values by
minimising the ANN cross-validation error. However, the application of heuristic search
techniques requires calibration of search algorithm parameters, which is itself not a trivial
task. In general, setting the search parameters involves a trade-off between the amount the
search space that is explored, and the rate at which the algorithm converges to a final solution.
Finally, heuristic algorithms retain a certain degree of randomness, and although they search
more solutions in comparison to sequential selection algorithms, there is still no guarantee
that the sub-space explored will include the globally optimal solution.

4. Dimensionality reduction

The taxonomical classification in Figure 1 includes dimensionality reduction algorithms as
a class of algorithms reducing the number of variables within a dataset. Dimensionality
reduction is often performed in order to reduce the computational effort associated with
data processing, or to identify a suitable subset of variables to include in the analysis.
Although the goal of dimension reduction differs from that of variable selection, it is a closely
related area and is a regularly employed data pre-processing step in many multivariate data
analysis applications, and it is worth including some discussion since many dimensionality
reduction techniques are employed for IVS. The following considers some common examples
of dimension reduction algorithms. Comprehensive surveys of dimensionality reduction
techniques can be found in Carreira-Perpinan (1997) and Fodor (2002).

4.1 Principal component analysis

Principal component analysis (PCA) is a commonly adopted technique for reducing the
dimensionality of a dataset X. PCA achieves dimensionality reduction by expressing the
p variables

(

x1, . . . , xp
)

as d feature vectors (or, principal components (PCs)), where d < p.
The PCs are a set of orthogonal, linear combinations of the original variables within the
dataset. Essentially, PCA can be considered a data pre-processing algorithm that determines
an optimal rotational transformation of the dataset, X, that maximises the amount of variance
of the output Y that is explained by the PCs (Fodor, 2002).
Considering a given dataset X, PCA is performed as follows:

i. Subtract the mean value of each variable, to ensure that x̄i = 0 for each xi ∈ X.

ii. Find the covariance matrix Σ = Cov(X) = XT X.

iii. Determine the unit eigenvectors e1, . . . , ep of Σ.

iv. Determine the corresponding eigenvalues λ1, . . . , λp.

v. Rank the eigenvectors according to their eigenvalues.

vi. Select the d PCs according to their eigenvalues.

Selection of PCs is based on examining the eigenvalues of each PC, which correspond to the
amount of variance explained by each PC, and thereby including only the significant PCs
as input features. A common selection method is to rank the PCs and select all PCs whose
eigenvalues exceed some threshold λ0, or generate a plot of the cumulative eigenvalue as
a function of the number of PCs, k, to ensure the selected components explain the desired
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amount of variance of Y. Another technique is to use and generate a scree plot of the
percentage contribution of each kth PC and to visually identify an optimal value of k (Fodor,
2002).
PCA has been used as the basis for IVS for the development of ANN models (see, for example,
Olsson et al. (2004), Gibbs et al. (2006), and Bowden (2003)). However, the mixing of input
variables is assumed to be linear, as is the relationship between principal components and the
output. Consequently, the application of PCA in this case is flawed, since it will fail to identify
any non-linear relationships within the data. Although non-linear versions of the PCA
algorithm exist, the transformations of the data can be highly complex, and interpretation
of the PCs is much more difficult. An additional disadvantage of PCA is that the algorithm
identifies important component vectors, rather than variables. Consequently, although PCA
may be useful in removing noise from the data, it is not possible to distinguish the unique
contributions of individual variables to the variance in the output.

4.2 Independent component analysis

Independent component analysis (ICA) seeks to determine a set of d independent component
vectors within a dataset X. The approach is conceptually similar to PCA, although it relaxes
the orthogonality constraint on component vectors. Furthermore, where PCA determines the
optimal transformation of the data by considering covariance and identifying uncorrelated
PCs based on covariance, ICA considers statistically independent combinations of variables
where the order of the statistic that is used can be arbitrary (Fodor, 2002). ICA is therefore not
restricted to linear correlations, and is more widely applicable to non-linear datasets (Back
& Trappenberg, 2001). However, like PCA, ICA cannot discriminate unique variables as
predictors, and is restricted to determining independent feature vectors.

4.3 Vector quantization

Vector quantization (VQ) refers to techniques that describe a larger set of n vectors by c
codebook, or prototype vectors. VQ is closely associated with data clustering and is more
commonly associated with algorithms for data compression, in terms of length n. Bowden
(2003) demonstrates the potential for the self-organising map (SOM) to perform vector
quantisation as an alternative to PCA for data dimensionality reduction. In this case, the
d vectors of the candidate set are represented by the prototype vectors of the SOM. Similar
candidate variables will be identified by the formation of groups, which have the closest
proximity (defined by some distance measure) to the same prototype vector. However, the
distance metric needs to be carefully selected, since the Euclidean distance used in SOM
applications is not strictly a measure of correlation. Using linear correlation or covariance will
cluster based on the strength of linear dependence between variables. Other measures, such
as entropy or mutual information (MI), would be more suitable for clustering ANN variables,
since they will measure non-linear dependence.

5. Wrappers

Wrapper algorithms are the first of the three main classes of variable selection algorithm
shown according to Figure 1. Wrapper algorithms are the simplest IVS algorithm to formulate.
Essentially, the algorithm that results is defined by the choice of the induction algorithm
(i.e. model architecture). The efficiency of a wrapper algorithm will depend on the ability
of the model to represent relationships within the data; and how efficiently trial models can
be constructed and evaluated.
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5.1 Single variable regression (SVR)

The notion of ranking individual candidate variables according to correlation can be extended
by implementing a wrapper approach in order to relax the assumption of linearity in
correlation analysis (Guyon & Elisseeff, 2003). In this approach, a single variable regression1

(SVR) is constructed using each candidate variable, which is then ranked according to
the model performance-based optimality criterion, such as the cross-validation error. In
comparison to ranking filters, SVR can potentially suffer from overfitting due to the additional
flexibility in the regression model.
The GRNN input determination algorithm (GRIDA) (Bowden et al., 2006) is a recent example
of an SVR wrapper for input variable ranking, which proceeds as follows:

i. Let X → C. (Initialisation)

ii. For each x ∈ X,

iii. Train a GRNN and determine MSEx.

iv. For b = 1 to 100, (Bootstrap)

v. Randomly shuffle x → ε.

vi. Estimate MSE
ε,b.

vii. Estimate MSE
(95)
ε .

viii. If MSEx > MSE
(95)
ε or MSEx > Θ (Selection),

ix. Remove x from X.

x. Return X.

where MSE
(95)
ε is the 95th percentile, and Θ is some threshold value.

Considering each variable in turn, a GRNN is trained, and then the MSE of the model
is determined for a set of test data. However, rather than greedy selection of the k best
variables, each variable is compared to a bootstrap estimate of a confidence bound for the

randomised model error, MSE
(95)
ε . A variable is rejected immediately if the model error

exceeds the randomised error, since it is no better predictor than a random noise variable.
Further strictness on selections is imposed through the heuristic error threshold, Θ. However,
a suitable value for Θ needs to be determined first. The number of variables selected for a
given value of Θ will be dependent on several factors, including the degree of noise in the
data, the error function used, and the distribution of the error over the candidate variables.
Consequently, optimal values for Θ can only be determined for each dataset by trial and error.
The estimation of the confidence bound on the error for each SVR is a significant

computational requirement. Given the assumed constraint 0 < Θ < MSE
(95)
ε , the estimation

of the bootstrap may not even be necessary to perform IVS. However, the method does
provide useful information in discriminating noise variables from weakly informative ones.
SVR does not consider interractions between variables, and may select redundant variables.
In order to overcome this, dimensionality reduction is required as a pre-processing step, in
order to obtain an independent set of candidate variables, prior to variable selection. Such
an approach was used in the example of the GRNN-based SVR IVS algorithm (Bowden et al.,
2006), where a SOM was used to achieve dimension reduction.

1 The term has been adapted from the term single variable classifier (SVC), which is more often referred
to within literature due to its application in classification
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5.2 GA-ANN

Heuristic search techniques are ideally suited to IVS wrapper designs, since they provide
an efficient search of the combinations of candidate input variables, with the simplicity of
the black-box wrapper approach. Bowden et al. (2005) utilised an evolutionary wrapper
strategy for IVS that combined a genetic algorithm (GA) optimisation with a generalised
regression neural network (GRNN). The method exploits the fast GRNN training times,
and the fixed architecture of the GRNN, which avoids the need to optimise the internal
architecture and training algorithm parameters. These are required for the development of
other architectures, such as the MLP. A simple binary GA (a GA with decisions encoded as 1
or 0 within a binary string) was utilised, with the objective of minimising the MSE obtained
by hold-out validation on a set of test data. In order to overcome the inability of the wrapper
methodology to detect interractions between candidate variables, as with GRIDA, Bowden
et al. (2005) adopted SOM-based dimensionality reduction as a pre-processing stage to reduce
the candidate variables to a subset of independent variables.

6. Embedded algorithms

Embedded algorithms are a distinct class of IVS algorithm where the selection of variables
is embedded within the ANN training algorithm. The distinction between wrapper and
embedded algorithms is not always obvious, since embedded selection also involves iterative
update and evaluation of the model parameters based on model performance. The key
difference is that the evaluation of input variables occurs within the training algorithm,
and only a single model is trained. Embedded algorithms also consider the impact of each
individual variable on the performance of the model, while wrapper algorithms simply
consider model performance for a given set of input variables as a whole.

6.1 Recursive feature elimination

Recursive feature elimination (RFE) is an implementation of backward-elimination as an
embedded IVS algorithm (Guyon & Elisseeff, 2003). The RFE approach involves an iterative
process of training an ANN model, initially using all candidate input variables, and then
removing one or more input variables at each iteration based on the rank magnitude of
the weights corresponding to each input variable. The technique has been developed and
successfully applied using support vector machines (SVMs), but is extensible to other ANN
architectures by providing a suitable expression for the overall connection weight for a given
input variable.

6.2 Evolutionary ANNs

Evolutionary ANNs (EANNs) utilise an evolutionary algorithm to determine the optimal set
of weights, where the optimisation is formulated with ANN weights as the decision variables,
and an objective function incorporating model error, with penalties for model complexity.
Due to the complexity of the ANN error surface that is projected over the weight-space,
evolutionary algorithms have been found to be a good alternative to gradient descent
algorithms. EAs are robust and able to more reliably find a near-globally optimum solution,
even for highly non-linear functions, with many multiple local optima; whereas gradient
descent algorithms have greater potential to converge prematurely at a local minimum. By
applying penalty terms to avoid large weights, or by using a model sparsity term within the
objective function, the optimisation can effectively determine the optimum trade-off between
model error and model complexity during training (Tikka, 2008).
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IVS is embedded within the EANN approach, since the optimisation will implicitly exclude
input variables by setting the input connection weight values close to, or equal to zero.
Alternatively, the approach may also be made more explicit by extending the optimisation
formulation to include the inclusion/exclusion of input variables within the ANN architecture
as a separate binary decision variable. This approach is therefore similar to the GA-ANN
wrapper approach, but extends the optimisation to the weight parameters.

7. Filters

In the taxonomy shown in Figure 1, filter algorithms represent the second sub-class of variable
selection algorithms and represent an alternative to the wrapper approach. The design of
filter algorithms is typically defined by the measure of relevance that is used to distinguish
the important input variables, as well as the optimality criteria, as they have been previously
defined for filters in Section 3.1. Incremental search strategies tend to dominate filter designs,
since the relevance measure is usually a bivariate statistic, which necessitates evaluating each
candidate-output relationship. Currently, two broad classes of filters have been considered:
those based on linear correlation; and those based on information theoretic measures, such as
mutual information.

7.1 Rank correlation

Arguably the most commonly used relevance measure in multivariate statistics is the Pearson
correlation. The Pearson correlation (also called linear correlation, or cross-correlation), R, is
defined by

RXY =
∑

n
i=1 (xi − x̄)(yi − ȳ)

√

∑
n
i=1 (xi − x̄)2 ∑

n
i=1 (yi − ȳ)2

(7)

where RXY is the short-hand notation for R(X, Y). In (7), the numerator is simply the sample
covariance, Var(X, Y); and the two terms in the denominator are the square-root of the sample
variances, Var(X) and Var(Y). The application of correlation analysis to variable selection
originates from linear regression analysis. The squared correlation, R2

XY , is the coefficient

of determination, and if X and Y have been standardised to have a zero mean, R2 is the
equivalent to the coefficient of a linear fit between X and Y.
Input variable ranking based on the Pearson correlation is one of the most widely used
IVS methods. The selection of candidate variables that are sorted by order of decreasing
correlation is based either on greedy selection of the first k variables, or upon all variables
for which the correlation is significantly different from zero. The significance of the Pearson
correlation can be determined directly, since the error associated with estimation of correlation
from a sample is defined by the t-distribution. A rule of thumb (for large n) is that variables
with an absolute correlation greater than 2/

√

n are significant.
Identification of significant correlations is a common technique in data mining applications,
such as gene expression analysis, where the goal is simply to mark potentially important genes
for further investigation. However, in terms of IVS algorithms, the method is classed as an
MR filter, and does not consider interactions between variables. Redundancy is particularly
problematic for multivariate time-series forecasting, which considers lagged values that are
often highly correlated (auto-correlated).
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7.2 Partial correlation

In the case where candidate variables are themselves correlated, redundancy becomes an
important issue. In such cases, a correlation ranking approach is likely to select too many
variables, since many candidates will each provide the same information regarding the output
variable. Given three variables X, Y and Z, the partial correlation, R′(X, Y|Z) measures the
correlation between X and Y after the relationship betwen Y and Z has been discounted. The
partial correlation can be determined from the Pearson correlation using the equation:

RXY·Z
RXY − RXZRYZ

√

(1 − R2
XZ)(1 − R2

YZ)
(8)

where RXY·Z and RXY etc. are the short-hand notation for R′(X, Y|Z) and RXY etc.
Partial correlation is similar to stepwise multiple linear regression. The subtle difference is that
in stepwise MLR, successive models are fitted with additional input variables, and variables
are selected (or later rejected) based on the estimated model coefficients. However, in partial
correlation analysis, the magnitude of R′ for each variable is not necessarily equal to the
regression coefficients for a fitted MLR model, since redundancy between variables means
that the solution to the MLR parameter estimation is a line (two redundant coefficients) or
a surface, that is, there will be infinite combinations of equivalent model coefficients. The
partial correlations obtained are in fact one specific solution to the MLR parameter estimation.
Another difference is that forward selection is used in partial correlation analysis, because
once the most salient variable has been selected, it will not be rejected later, and the partial
correlations of subsequent variables will be dependent on those already selected.

7.3 Box-Jenkins

Box-Jenkins time-series analysis (Box & Jenkins, 1976), which considers the development of
linear auto-regressive, moving-average (ARMA) models to represent dynamic processes, is
the most common approach to the development of time-series and process transfer functions.
ARMA models are described by the general form

y(t + 1) =
p

∑
k=0

αky(t − k) +
q

∑
k=0

βku(t − k) (9)

where αk and βk are coefficients and p and q denote the order of the autoregressive (AR) and
moving-average (MA) components of the model, respectively. Identification of the optimal
model parameters p and q forms the goal of Box-Jenkins model identification, and hence
variable selection. The autocorrelation function (ACF), R (Y(t − k), Y(t)), determines q and
the partial autocorrelation function (PACF) determines p. The ACF is determined for a given
time-series sample by

Rk =
∑

n−k
i=1 (xi − x̄)(xi−k − x̄)

∑
n
i=1(xi − x̄)2

(10)

where Rk is the short-hand notation for the auto-correlation of a time-series with a delay of
k. The PACF at a delay of k is denoted by φkk, and is estimated from the ACF based on the
following series of equations
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φ11 = R1 (11)

φ22 =
R2 − R2

1

1 − R2
1

(12)

φkj = φk−1,j − φkkφk−1,k−j, for k ≥ 2 and j ≥ 1, (13)

φkk =
Rk − ∑

k−1
j=1 φk−1,jRk−j

1 − ∑
k−1
j=1 φk−1,jRj

, for k ≥ 3. (14)

The Box-Jenkins methodology can be used to similarly identify optimal linear autoregressive
with exogenous inputs (ARX) models. In this case, the partial cross-correlation is used to
identify the relevant lags of the exogenous variables.
Box-Jenkins and partial autocorrelation analysis have been used as the basis for IVS in the
development of ANN models. In some examples, ANNs have been developed based on
an optimal set determined for an ARX model. The ANNs were found to produce better
predictions than the ARX model, and this has often provided the justification for ANN
modelling in favour of conventional time-series techniques (Rodriguez et al., 1997). However,
although this demonstrated the additional flexibility of ANN architectures to describe more
complex behaviour, the ANN developed may not have been optimal, since the selection of
inputs was based on the identification of a linear model. It may be the case that variables
that are highly informative, but non-linearly correlated with the output variable, will be
overlooked and excluded from the ANN model.

7.4 Mutual information

The limitations of linear correlation analysis have created interest in alternative statistical
measures of dependence, which are more adept at identifying and quantifying dependence
that may be chaotic or non-linear; and which may therefore be more suitable for the
development of ANN models. Mutual information (MI) is a measure of dependence that
is based on information theory and the notion of entropy Shannon (1948), and is determined
by the equation

I(X; Y) =
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (15)

where I denotes the MI between X and Y. MI measures the quantity of information about a
variable Y that is provided by a second variable X. However, it is often convenient to simply
regard MI as a more general measure of correlation, since despite originating from information
theory, rather than statistics, MI is not entirely unrelated to Pearson correlation. In fact, it can
be shown that in the case of noise-free, Gaussian data, MI will be related to linear correlation
according the relationship:

I(X; Y) =
1

2
log

(

1 − R2
XY

)

. (16)

The advantage of MI over linear correlation is that MI is based solely on probability
distributions within the data and is therefore an arbitrary measure, which makes no
assumption regarding the structure of the dependence between variables. It has also been
found to be robust due to its insensitivity to noise and data transformations (Battiti, 1994;
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Darbellay, 1999; Soofi & Retzer, 2003). Consequently, MI has recently been found to be a
more suitable measure of dependence for IVS during ANN development. Torkkola (2003)
also discusses the merit of analysing MI, given that it provides an approximation to the Bayes
error rate. Bayes’ theorem, which gives the most general form of statistical inference, is given
by

p(y|x ∈ X) =
p(y ∈ Y)p(x ∈ X|Y)

p(x ∈ X)
(17)

Bayes’ theorem can be used to determine the expectation E (y|x ∈ X), assuming the
probability distributions are known. MI provides an approximation to the error associated
with the Bayes estimate of E(y|X ∈ X), since it can be shown that the minimum error will
be achieved for a maximal value of I(X; Y). In effect, MI provides a generic estimation of
the modellability of an output variable Y, which therefore makes MI an attractive measure
of relevance in determining an optimal set of input variables, since we would seek the set
of input variables that maximises the JMI, that is, the MI between the output and the input
variable set.
The MIFS algorithm is a forward selection filter proposed by Battiti (1994) to address
shortcomings with algorithms based on linear correlation. Considering the candidate set C
and output variable Y, the MIFS algorithm proceeds as follows:

i. Let X → φ.

ii. While |X| < k,

iii. For each c ∈ C,

iv. Estimate I(c, Y|X) = I(c, Y)− β ∑x∈X I(c; x).

v. Find cs that maximises I(c, Y|X).

vi. Move cs to X.

vii. Return X.

MIFS defines a MR filter and identifies suitable candidates according to the estimated bivariate
MI between candidate variables and the output variable. The MI between the most salient
candidate cs and the already selected variables in X is estimated and subtracted from the
relevance in order to achieve minimum redundancy. The heuristic weighting β determines
the degree of redundancy checking within MIFS. If β = 0, then MIFS will neglect relationships
between candidates and MIFS is reduced to a MI ranking filter. Increasing β increases
the influence of candidate redundancy on selections, however if β is too large, then the
redundancy is overstated and candidate interactions dominate the selection of variables,
rather than the input-output relationships (Kwak & Choi, 2002). Battiti (1994) recommends
that a weighting of 0.5–1.0 is appropriate. A criticism of the forward selection approach
is that the JMI of the input variable set must be considered in order to correctly determine
the optimality of the input variables (Bonnlander & Weigend, 1994). However, in MIFS, the
forward selection procedure considers variables individually, and optimality of the JMI is
inferred by the mRMR selection. The heuristic redundancy parameter β provides only an
approximation to the conditional dependence and does not necessarily relate to the JMI.
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7.5 Partial mutual information

Sharma (2000) proposed an IVS filter that is structured similarly to MIFS, but is based
instead upon direct estimation of partial mutual information (PMI). The algorithm has been
successfully applied to select predictors for hydrological models (Sharma, 2000) and ANN
water quality forecasting models (Bowden et al., 2002; Kingston, 2006). The PMI-based filter
also incorporates a mechanism for testing the significance of candidate variables, so that the
termination point of the algorithm is optimally determined, which is an improvement over the
greedy selection of k variables in MIFS. In this case, the termination criterion is based upon the
distribution of the error in PMI estimation, which is numerically approximated by a bootstrap
approach (Sharma, 2000). The significance of the most relevant candidate is determined by
direct comparison to the upper confidence bound on the estimation error.
The details of the algorithm, are as follows (May et al., 2009a):

1: Let X → φ (Initialisation)

2: While C �= φ (Forward selection)

3: Construct kernel regression estimator m̂Y(X)

4: Calculate residual output u = Y − m̂Y(X)

5: For each c ∈ C

6: Construct kernel regression estimator m̂c(X)

7: Calculate residual candidate v = c − m̂c(X)

8: Estimate I(v; u)

9: Find candidate cs (and vs) that maximises I(v; u)

10: For b = 1 to B (Bootstrap)

11: Randomly shuffle vs to obtain v∗s

12: Estimate Ib = I(v∗s ; u)

13: Find confidence bound I
(95)
b

14: If I(vs, u) > I
(95)
b (Selection/termination)

15: Move cs to X

16: Else

17: Break

18: Return selected input set X.

Here, B is the bootstrap size; and I
(95)
b denotes the 95th percentile bootstrap estimate of the

randomised PMI, Ib. The algorithm is structured in a similar fashion to MIFS (Battiti, 1994),
but has two advantages. First, PMIS inherently handles redundancy within the candidate
set through the direct estimation of PMI, whereas MIFS approximates the effect of selected
inputs by means of a heuristic weighting factor. Second, while MIFS uses greedy selection
of a pre-specified number of input variables, PMIS includes a criterion that automatically
determines the optimum point at which to terminate the selection procedure. The optimality
of the input variable set is ensured because PMI is directly estimated, and the JMI can be
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determined as a result of the MI chain-rule decomposition, which is given as (Cover &
Thomas, 1991)

I(x1, . . . , xp; y) = I(x1; y) + I(x2; y|x1) + · · ·+ I(xp; y|x1, . . . , xp−1). (18)

Recall that in MIFS, the JMI cannot be directly approximated because redundancy is only
approximated by a heuristic weighting factor. The termination criterion in PMIS automatically
determines the optimal number of input variables, since the increase in JMI is additive, and
once the contribution of an additional input variable is insignificant, the selection process
terminates and the JMI will be maximised.
An additional benefit of the PMI-based approach is that the information yield during IVS
provides a useful indication of the contribution of each input variable to the prediction of
the output variable. Several methods for determining the usefulness of input variables based
on analysis of the trained model have been described and range from sensitivity analysis,
to aggregation of the weights associated with each input variable. However, the relative
importance of an input variable can be determined statistically from the MI between each
input and the output variable (Soofi & Retzer, 2003). The PMI estimated for a given variable
can potentially also be used to classify input variables as informative, or weakly informative,
as defined by Kohavi & John (1997), by considering the conditional relevance. Kingston (2006)
considered several techniques for determining the relative importance (RI) of input variables
and found that the method based on PMI yielded similar estimates of RI as methods based on
analysis of the connection weights for a trained MLP. The method for estimating RI was based
on the formula

RI(i) =
I′(xi; y)

∑x∈X I′(x; y)
, (19)

where I′ denotes the PMI estimated for candidate variable x during PMIS.
The usefulness of RI is that it provides an indication of the way in which the ANN generates
predictions. Although it is assumed that the ANN is using all of the input variables, it may in
fact only require some small subset of the available input variables to generate predictions.
In this case, further refinements to the ANN can be made based on this interpretation.
Such considerations might be important when considering the cost of data collection that is
associated with ongoing deployment of ANN models. One might consider sacrificing model
accuracy in favour of cost reductions in ANN maintenance by reducing the number of input
variables even further, which would reduce data requirements. The RI of variables may also
encourage increased efforts toward the development of measurement techniques to ensure
data quality for important variables.
The main limitation of the PMI filter is the computational effort associated with the bootstrap
estimation of MI. Even obtaining a single estimate of MI is an expensive computation due
to the O{n2} density estimation, and computational efficiency is therefore influenced by the
sample size, n. The use of a bootstrap-based test for significance further adds to the overall
computational burden by increasing the number of estimations of MI required to implement
IVS. Sharma (2000) restricts the size of the bootstrap to 100 in order to maintain reasonable
analysis times. However, a small bootstrap of this size might compromise the accuracy of the
termination criterion, since potentially the confidence bounds may be poorly estimated. May
et al. (2009b) introduce several alternative termination criteria that eliminate the bootstrap
significance-test from the algorithm. These were found to provide a significant improvement
in both the accuracy and computational effort associated with the PMI-based algorithm.
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Fernando et al. (2009) also present a fast implementation of the PMI-based filter design using
an average-shifted histogram (ASH) (Silverman, 1986), rather than kernel density estimation,
for the computation of PMI during selection.

7.6 ICAIVS

A hybrid ICA and IVS filter algorithm (ICAIVS) was proposed by Back & Trappenberg (2001),
which consists of two main steps: (Trappenberg et al., 2006)

i. Produce a set of candidates which are as independent as possible (ICA).

ii. Measure relevance between the independent candidate variables and the desired output
variables (IVS).

Here, the statistical analysis of input relevance is based on estimation of the joint dependence
of combinations of input variables and considers all combinations from c(x

p
1 , y) through to

c(x
p
1 , . . . , x

p
n, y), where p denotes the order of the dependence that is measured. The IVS

procedure then compares the relevance for each subset of variables, with respect to the
average dependence for all subsets, and a subset is selected if the dependence exceeds some
threshold value K.
A drawback of ICAIVS is that the algorithm does not scale well, given the large number
(3n

− 1) of statistical tests that must be performed, considering only second-order statistics.
Recently, an improved version of ICAIVS was described that utilised MI as the statistical
measure of dependence (Trappenberg et al., 2006). This reduced the number of statistical tests
by considering only first order MI. However, the problem of specifying a suitable threshold
value still remains. Both Back & Trappenberg (2001) and Trappenberg et al. (2006) used a value
of 0.2 for this threshold. However, in this case the threshold value is heuristically determined,
and a suitable value may vary depending on the dataset.

8. Summary

Input variable selection remains an important part of ANN model development, due to the
negative impact that poor selection can have on the performance of ANNs during training
and deployment post-development. The brief taxonomy of variable selections indicates the
different classes of algorithms that have been employed to perform the IVS task, of which
many more variations within each class are described within ANN literature. A summary of
the attributes of different IVS algorithms is given in Table 2.
Several key considerations should guide a modeller in determining the most appropriate
approach to take for IVS in any given circumstance. The first consideration is whether
the algorithm is suitable for identifying non-linear relationships, which is a fundamental
requirement for the development of ANN models. Many methods applied successfully
within the context of linear regression are not suited to ANN development, where there
is a presumption of non-linearity, and important relationships within the data may not be
identified by a linear selection algorithm.
The choice between model-free and model-based IVS algorithms is also a key consideration.
The restriction imposed by wrapper designs on the choice of model architecture, and the
computational requirements associated with training multiple model instances, will dictate
which approach to use. Where portability between ANN architectures is not required, the use
of wrapper or embedded algorithms is likely to be straightforward to implement, and are a
pragmatic approach to take. However, in all cases a wrapper that includes a regularisation
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Algorithm Criterion Type Non-linear Redundancy Search

Rank-R Correlation Filter No No Greedy
Box-Jenkins ACF/PACF Filter No Yes Greedy
R’ Correlation Filter No Yes Stepwise
SVR Rank error Wrapper Yes No Greedy
Forward selection Error Wrapper Yes Yes Nested
Backward selection Error Wrapper Yes Yes Nested
GA-ANN Error Wrapper Yes Yes Heuristic
MIFS MI Filter Yes Yes Nested
PMIS PMI Filter Yes Yes Nested
RFE Weight size Embedded Yes Yes Nested
EANN Error Embedded Yes Yes Heuristic

Table 2. Characteristics of input variable selection algorithms

term, or considers the impact of model size, should be used to achieve an optimal trade-off
between model performance and size.
High computational requirements are the main drawback of model-based techniques. The
training time for a single instance of an ANN will be a strong indication of the feasibility
of a model-based approach. Popular methods for wrappers and embedded algorithms
are typically applied where the number of training examples is relatively small, and the
number of candidate input variables is large. Alternatively, fixed ANN architectures like the
GRNN provide fast-training, which increases the suitability of model-based IVS. The search
strategy employed in a wrapper approach also represents a balance between the number of
unique solutions considered, and the computational effort expended. Backward elimination
algorithms, such as RFE, train relatively few ANN models and can be highly efficient, but will
restrict the search due to nesting behaviour. Brute force search is likely to be infeasible in most
cases, but evolutionary search approaches can provide a suitable compromise that allows for
greater coverage of combinations of input variables. If evolutionary optimisation is to be used
for ANN training, than the embedded EANN approach may be appropriate, as an extension
of weight optimisation.
In contrast to model-based IVS, filter algorithms offer a fast, model-free approach to variable
selection, and are particularly suited to applications where independence from a specific ANN
architecture is required; or, where computational efficiency is sought. A generic estimation
of input variable importance and redundancy avoids the traps of model over-fitting, or
idiosyncrasies of a specific ANN architecture. The ability to identify an optimal set of input
variables prior to training an ANN eliminates the computational burden associated with
training and model selection, which can reduce the overall effort of ANN development.
Most filter designs are based on bivariate statistics, since estimation of statistics for
multivariate data is often too inaccurate to facilitate IVS due to finite-sample error, and
typically use a ranking scheme or sequential forward selection scheme. Simple ranking
schemes are greedy and select more input variables than necessary, by ignoring redundancy
of candidates, and are not ideally suited to multivariate ANN regression. Forward selection
provides an efficient search, and greediness can be overcome provided that adequate
redundancy checking is incorporated into the statistical analysis of variables. This ensures
that the approach selects the most informative input set with the smallest number of variables.
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Mutual information provides a generic measure of the relevance of a candidate input
variable and is highly suitable for ANN development because it measures the strength of
both linear and non-linear relationships. MI is also less sensitive to data transformations
than correlation, which makes it more reliable, even for linear data analysis applications.
The PMI-based forward selection approach provides a forward selection strategy that both
minimises redundancy and maximises relevance. The approach determines the optimal set
of input variables by estimating the maximum joint mutual information. Estimation of MI
is more computationally intensive than estimation of correlation, due to the need to estimate
density functions of the data. However, several refinements related to estimation of critical
values, and the use of faster methods for density estimation can significantly reduce the
computational effort of this approach.
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