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1. Introduction  

The accurate modeling of the interactions between aerosols and cloud droplets for a multi-

component system is a very difficult task in cloud modeling, since to express a variety of 

properties of the hydrometeors (such as the masses of water and soluble materials inside 

droplets) there is a need for multi-dimensional size distributions.  

The aerosol distribution becomes important as the cloud drops evaporate and the solutes are 

recycled into aerosols that can serve as cloud condensation nuclei (CCN): the larger the 

mass of a hygroscopic aerosol, the lower the supersaturation needed to form a cloud 

droplet. In the marine environment, the aerosol recycling process is believed to be the major 

mechanism responsible for the bimodal shape of the aerosol size distributions (Flossmann, 

1994; Feingold and Kreidenweiss, 1996). The heterogeneous chemical reactions, which add 

nonvolatile solute to each cloud droplet, strongly depend on the salt content and pH of the 

droplet (Alfonso and Raga, 2004). Since aerosols also have a significant influence on cloud 

microphysics and cloud radiative properties, it is necessary to simulate aerosol processes 

realistically and with adequate accuracy. 

The usual approach adopted in detailed cloud microphysical modeling is to describe the 

aerosols and drops in two separate one-dimensional size distributions. Within this 

approach, only the average aerosol mass contained in drops of certain size is known, and it 

is not possible to accurately track the aerosol mass distribution within cloud droplets 

(Jacobson, 1999). 

For the deterministic case (based on the solution of the kinetic collection or stochastic 

collection equation), the aerosol processing due to collision-coalescence was addressed by 

Bott (2000) by extending his previous model (Bott, 1998) to two-dimensional distributions. 

Within this framework each particle is characterized both by the mass of its dry aerosol 

nucleus and by its water mass. By adopting this framework, there is no need to 

parameterize the activation process.  

Nevertheless, in real situations, there are several types of aerosols that act as CCN, and form 

an internal or an external mixture. Thus, the number of components of the system can be 

larger than two. The solution of the kinetic collection equation when the number of 
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components is larger than two is not an easy task and the alternative seems to be the 

stochastic treatment of the coalescence process (Alfonso et al., 2009).  

Clouds that also contain ice crystals, as well as aerosols and cloud droplets, constitute even 
much more complex systems to be modeled.  For mixed phase clouds, the components of 
the system are not only the particle mass and the aerosol mass inside the particles, but also 
the type of ice particle, such as ice crystals of different geometries (columns, plates, and 
dendrites), graupel or aggregates. In this case, the number of components in the system is 
very large and the kinetic framework is extremely difficult to implement. As a consequence, 
simplified treatments are adopted to deal with this problem. For example, in many models 
only one type of ice crystal is considered in order to make the problem more manageable.  
Therefore, most models do not deal with several types of ice, and not take into account the 
aggregation of ice particles. When a variety of types of geometries are considered, then the 
system of kinetic equations can be actually very complex. For example, Khain and Sednev 
(1995) considered the interactions between water drops, columns, crystals (plate like crystals 
and dendrites), snowflakes, graupel and hail. The resulting system consists of seven 
complex kinetic equations that need to be solved with the Berry and Reinhardt (1974) 
method. In Alfonso et. al (2009), the algorithm of Gillespie (1976) for chemical reactions in 
the formulation proposed by Laurenzi et al. (2002) was applied to calculate the evolution of 
a two-component system (the masses of pure water and soluble material). The algorithm 
could be easily extended to any multi-component cloud system, with the possible inclusion 
of the ice phase. 
Another less known drawback of the deterministic approach (based on the solution of the 
kinetic collection equation)  is the fact that this equation can exhibit non-conservation of 
mass (gelation) under certain conditions. These limitations of the KCE are carefully 
analyzed in two previous papers (Alfonso et al, 2008 and Alfonso et al., 2010) by a direct 
comparison of numerical and analytical solutions of the KCE with true averages obtained 
with the stochastic method of Gillespie (1976). In these papers, a numerical criterion is 
proposed in order to calculate the validity time or breakdown time of the KCE.  
Although it is easy to implement, the stochastic framework developed by Gillespie (1976) 
has an important limitation: It is computationally very expensive, and consequently, only 
small cloud volumes can be considered in the simulations. A possible solution to this 
problem can rely in the implementation of the grouping method (Ormel and Spaan, 2008) 
that allows modeling coalescence in a sufficiently large region. 
This chapter is organized as follows. In section 2 we are concerned with drawbacks of the 
deterministic framework. Section 3 describes the multi-component collection stochastic 
algorithm and its application to solve kinetic collection equation. In Section 4 the multi-
component stochastic algorithm is incorporated into a particle based microphysical model, 
and applied to model the microphysical evolution of an orographic cloud in Section 5. 
Section 6 summarizes the main results of the chapter. 

2. Drawbacks of the deterministic approach 

2.1 Non conservation of mass after gelation 

One of the most important mechanisms for the formation of rain is the collision and 
coalescence of smaller droplets into larger ones. The deterministic approach to model this 
process is based in the solution of the kinetic collection (stochastic collection, coagulation) 
equation, which in discrete form is expressed as (Pruppacher and Klett, 1997): 
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i-1

j=1 j=1

N(i,t) 1
= K(i-j,j)N(i-j)N(j)-N(i) K(i,j)N(j)

t 2

∞∂
∂ ∑ ∑  (1) 

 

where N(i,t) is the average number of droplets with mass xi as a function of time. In Eq. (1), 
the time rate of change of the average number of droplets with mass xi is determined as the 
difference between two terms: the first term describes the average rate of production of 
droplets of mass xi due to coalescence between pairs of drops whose masses add up to mass 
xi, and the second term describes the average rate of depletion of droplets with mass xi due 
to their collisions and coalescence with other droplets.  
The known limitations of the KCE are analyzed carefully in two papers (Alfonso et al., 2008 
and Alfonso et al., 2010) by a direct comparison of numerical and analytical solutions of the 
KCE with true averages obtained with the stochastic method of Gillespie (1976). In these 
papers, a numerical criterion is proposed in order to calculate the validity time or 
breakdown time of the KCE.   

The collision coalescence process is a stochastic one and is more accurately described by the 

stochastic coagulation equation for the joint probability distribution 1 2 kP(n ,n ,...,n ,...,t)  for the 

occupation numbers 1 2 kn=(n ,n ,...,n ,...)  at time t. This equation has the form (Bayewitz et al., 

1974; Lushnikov, 1978;  Tanaka and Nakazawa, 1993; Inaba et al., 1999; Wang et al., 2006): 

N N

i j i j i+j
i=1 j=i+1

P(n)
= K(i,j)(n +1)(n +1)P(...,n +1,...,n +1,...,n -1,...;t)

t

∂
∂ ∑ ∑  

 
N

i i i 2i
i=1

1
+ K(i,i)(n +2)(n +1)P(...,n +2,...,n -1,...;t)

2
∑  (2) 

N N N

i j i i
i=1 j=i+1 i=1

1
- K(i,j)n n P(n;t)- K(i,i)n (n -1)P(n;t)

2
∑ ∑ ∑  

In (2) ni is the number of droplets with mass xi ,  and N is the total number of size bins. The 
KCE results from taking the first moments:: 

 k k
n

n = n P(n;t)∑  (3) 

and assuming that i j i jn n = n n . Under these assumptions Eq.(2) reduces to the kinetic  

collection equation (1). Then, the average spectrum obtained from Eq.(1), and the ensemble 

average obtained from different realizations of the stochastic collection process are different. 

Bayewitz et al. (1974) showed that the solution of the KCE and the expected values 

calculated from the stochastic equation are equal only if the covariances are omitted from 

the probabilistic model. 
Equation (1)  is not expected to be accurate when the initial number of particles is small, or if 
K(i,j) increases sufficiently rapidly with xi and xj.  For example, in the analytic solution for 
the case K(i,j)=Cxi×xj, with monodisperse initial conditions N(1,0)=N0, the total mass starts 
to decrease after a certain time and there is an increase in the second moment. Drake (1972) 

calculated the analytical solutions of the KCE for polynomials of the form K(x,y)=Cxy . In 

this case the second moment evolution is given by: 
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 2 0
2

2 0

M (t )
M (Ǖ)=

1-CM (t )Ǖ
 (4) 

Where M2 (Ǖ) defined by the expression (for the discrete case): 

 
dN

2
2 i

i=1

M (t)= x N(i,t)∑  (5) 

Where Nd is the total number of size bins. Note that when  

 
-1

2 0Ǖ= CM (t )⎡ ⎤⎣ ⎦  (6) 

The second moment M2 is undefined and the total mass of the system starts to decrease. This 

is usually interpreted to mean that a macroscopic runaway particle has formed (known as a 

gel). The product kernel i jK(i,j)=Cx ×x , is the prototype example where the process exhibits 

a phase transition (also called gelation). After gelation occurs, there is a transition from a 

continuous system to one with a continuous distribution plus a massive runaway particle. 

The critical time is defined in terms of the existence of solutions of the coagulation equation 

(1) which is mass-conserving. Tgel is the largest time such that the discrete model has a 

solution with 1 1M (t)=M (0)  for t<Tgel     and   1 1M (t)<M (0)   for t>Tgel.  
As analytical expressions for the gelation time only exist for very simple kernels, it can be 
estimated (for real kernels relevant to cloud physics) using a Monte Carlo method (Alfonso 
et al., 2008, 2010), based on the original algorithm proposed by Gillespie (1976). Following 
the conjecture made by Inaba et al. (1999), the Tgel is estimated as the maximum of the ratio 
of the standard deviation for the largest particle mass over all the realizations, to the 
averaged value evaluated from the realizations of the stochastic algorithm: 

L1 S, L1 L1M =STD(M ) M . The standard deviation for the largest droplet mass is calculated for 

each time by using the expression: 

 ( )
rN

2
i

L1 L1 L1
i=1r

1
STD(M )= M -M

N

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  (7) 

where ML1 is the ensemble mean of the mass of the largest droplet over all the realizations 
(given by Eq. (17)), Nr is the number of realizations of the Monte Carlo algorithm and MiL1 is 
the largest droplet for each realization.  

In Alfonso et al. (2008) the gel transition timeτ  for an initial monodisperse distribution of 

100 droplets of 14 Ǎm in radius (droplet mass 1.1494×10-8g) was estimated from analytical 

solutions and from Monte Carlo simulations. The volume of the cloud was set equal to 1 

cm3. Using a value of C=5.49×1010cm3 g-2 s-1, then τ in (6) is 1379 sec. For the same analytical 

conditions, the behavior of ML1,S was calculated from 1000 realizations (Nr=1000) of the 

Monte Carlo algorithm. The results are displayed in Fig. 1. The maximum of Lǔ  was 

obtained for τ=1335 sec, very similar to the analytical estimation from Eq. (6), indicating that 

the statistic parameter in Eq. ( 7) is a good estimate of the transition to gel. 
For more realistic kernels, relevant to cloud physics modeling, the validity time can be 
estimated in a similar manner. Alfonso et al. (2010) estimated the breakdown of the 
coagulation equation for the hydrodynamic kernel: 
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Fig. 1. The ratio (defined in Eq. 7) as a function of time, for the product kernel K(x,y)=Cxy, 
(C=5.49×1010 cm3 g-2 s-1). Note that STD(ML1)/ML1  reaches a maximum when the runaway 
droplet appears.  

 ( ) ( )2
K x,y =Ǒ R(x)+r(y) E x,y V(x)-V(y)⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , x y≥  (8) 

where V(x),V(y) and R(x), r(y) are the terminal velocities and radiuses of droplets with 
masses x and y respectively, and the values of the collision efficiencies E(x,y) were taken 
from Hall (1980).  The behavior of the ratio ML1,S (Eq. 7) was evaluated from 1000 
realizations of the Monte Carlo algorithm, and the time when the maximum of the statistics 
(7) was reached compared with the time when  the liquid water content (LWC), obtained 
numerically with a finite difference scheme, starts to decrease. 
A cloud volume of 1cm3 was simulated, that initially contained a bidisperse droplet 
distribution: 50 droplets of 14 Ǎm in radius, and 50 droplets of 17.6 Ǎm in radius. Figure 2 
shows that the liquid water content (or total mass) of the system is no longer conserved after 
800 sec. This time is very close to the time when the statistics ML1,S determined from the 
Monte Carlo realizations, reaches its maximum (850 sec). 
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Fig. 2. Time evolution of total liquid water content calculated from the numerical  solution 

of the KCE for the hydrodynamic kernel (dashed line) and the statistics L1 L1STD(M ) M  

(solid line) estimated from the Monte Carlo algorithm. The simulations were performed for 

the hydrodynamic kernel with a bidisperse initial condition N(1;0)=50  and N(2;0)=50 . 
 

A second simulation was performed, with twice the initial number of droplets, and again  

the results show a good correspondence between the time of the ML1,S maximum (430 sec.) 

and the gelation time obtained from the numerical solution of the KCE (415 sec.). These 

results confirm the fact that total mass calculated assuming a continuous droplet 

distribution starts to decrease around the time when the runaway droplet appears. 

3. Stochastic approach for the collection process 

3.1 Definition of species and multi-component stochastic collection algorithm 

Within the stochastic framework, each species represents a large number of hydrometeors 

with the same attributes and position. These attributes are: a) the type of particle 
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(unactivated and activated droplets, and ice crystals of different geometries), b) the particle 

mass, and c) the dry aerosol mass for each substance.  

Warm clouds are composed of only one type of hydrometeor since unactivated CCN in 

equilibrium at a given supersaturation and activated droplets are treated as particles of the 

same type. In this case the attributes are only the droplet mass and the mass of dry aerosols. 

In a multi-component system, each species is characterized by a vector of properties 

( )Ǎ 1 2 Nu = u ,u ,...,u , such that, a droplet with composition uμ is a member of the Ǎth species.  
After time t=0 the species will randomly coalesce according to: 

 
1 2 N 1 2 N 1 1 2 2 N Nu ,u ,...,u u ,u ,...,u u +u ,u +u ,...,u +uA +B =C′ ′ ′ ′ ′ ′  (9) 

where 
1 2 Nu ,u ,...,uA  and 

d a a1 2 a3
m ,m ,m ,mB ′ ′ ′ ′  are droplets with compositions ( )Ǎ 1 2 Nu = u ,u ,...,u  and 

( )Ǎ 1 2 Nu = u ,u ,...,u′ ′ ′ ′ , respectively. The transition probabilities for coalescence events follow 

Laurenzi et al. (2002) and are given by: 

-1
i ja(i,j)=V K(i,j)N N dt  ≡  Pr{  Probability that two particles of species i and j (for i ≠ j) 

with populations (number of  particles) Ni  and Nj will collide within the imminent 
time interval} 

(10)

( )i i-1
N N -1

a(i,i)=V K(i,i) dt
2

 ≡Pr{ Probability that two particles of the same species i  

with population (number of particles) Ni collide within the imminent time interval} 

(11)

In (10) and (11), K(i, j)  is the collection kernel, V is the cloud volume; and Ni and Nj are the 

total number of droplets for the species i and j. An index is assigned to each species 

(particles with a specific ( )Ǎ 1 2 Nu = u ,u ,...,u composition). Within this framework, there is a 

unique index ǎ for each pair of droplets i, j that may collide. For a system with Ns species 

( )1 2,, ... , NS S S  
( )s sN N +1

ǎ
2

∈ . The set { }ǎ   defines the total collision space, and is 

equal to the total number of possible interactions. The transition probabilities (10) and (11) 

are then represented by one index ( ǎa ). 

In Alfonso et al. (2009) the stochastic algorithm of Laurenzi et al. (2002) was implemented to 

calculate two-component droplet growth. This version of the algorithm is difficult to 

implement in cloud microphysical models, that considered a constant time step. 

Consequently, a modification is introduced following Sue et al. (2007). First the number of 

collisions occurring during a time step Δt is determined from the expression: 

 

s sN N

i j
i=1 j=1

T

Δt K(i,j)N N

=
V

C
∑∑

 (12) 

Where Ns is the total number of species. Then, the collision pairs are selected by generating 

CT random numbers ri from a uniform distribution in the interval (0, 1), and the indexes ǎ 

for the CT collisions determined from the inequality: 
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Ǎ-1 Ǎ

ǎ i ǎ
ǎ=1 ǎ=1

a <rα< a∑ ∑  (13) 

Where 

( )s sN N +1

2

ǎ
ǎ=1

α= a∑  (14) and i=1, …,CT. After each collision event, the size distribution is 

updated by taking into account: 

 i iN =N -1  , j jN =N -1  (14) 

 

If new species are created, then ( s sN =N +1 ). For the new species, the droplet and aerosol 

masses for each component are equal to the sum of the droplet and aerosol masses of the 

colliding droplets following Eq. (9). The Monte Carlo algorithm can be summarized as 

follows: 
1. At t=0, the event counter is set to zero and the initial number of species N1, N2, …, NN is 

defined. 
2. The total number (CT) of collisions in the time interval Δt are determined from the 

expression (12). 
3. Generate CT random numbers from a uniform distribution and determine the NT 

collision indexes from (13). 
4. Change the numbers of species to reflect the execution of CT collisions. 
5. Return to step 2. 
The approach follow by Sun et al. (2007) was adopted and only a single stochastic 

experiment was run. This can be justified by considering that the statistical error is 

proportional to droplets1 N , where Ndroplets is the total number of droplets in the coalescence 

volume. Then, in order to reduce the statistical error, volumes larger that 103 cm3 are 

considered in our simulations. This problem was carefully studied by Laurenzi et al. (2002). 

They found that the differences between the KCE and the results of the Monte Carlo for one 

single realization were almost negligible for sufficiently large coalescence volumes. 

In order to check the performance of the previously described Monte Carlo algorithm, a 
simulation with the sum kernel (K(i,j)=B(xi+xj) was performed and compared with the 
analytical solution of the one-component kinetic collection equation derived by Scott (1968) 
for a monodisperse initial condition. 
 

 ( )0
1N(t) N T= −  (15a) 

 ( )0 0
1T exp BN v t= − −  (15b) 

 

In Eqs. 15a,b N0 and v0 correspond to the initial number and volume of droplets, 
respectively. We simulate a cloud volume equal to 5000 cm3, containing 5×105 droplets (N0) 
of 14 Ǎm in radius (v0=1.1494×10-8cm3). Following Long (1974), a value of 8.83×102 cm3g-1s-1 
was assumed for constant B in the sum kernel. The results obtained for the total 
concentration can be checked in Fig. 3, with a good correspondence between the analytical 
and the Monte Carlo results. 
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Fig. 3. Time evolution of the total  number of particles obtained from the MC method 
(diamonds) , versus the analytical solution of the kinetic collection equation (solid line). 

3.2 The grouping method 

Since the total collision rate CT (see equation 12) is proportional to the number of particles, 
we can conclude that the application of the stochastic approach in systems involving a large 
number of particles and with only two physical particles colliding per MC cycle is highly 
impractical. 
The procedure previously described is not very useful when simulating a cloud large 
volume, because of the high cost in computation. For example, in a three dimensional cloud 
model the typical coalescence cell has a volume of 109 cm3 and considering a droplet 
concentration at cloud base typical of maritime clouds (102 cm-3), then the number of 
droplets will be about 1011 cm-3. A possible solution to this problem relies in the 
implementation of the grouping method developed by Ormel and Spaans (2008), where 
particles of the same species are divided into groups and only collisions between groups of 
identical particles are considered in a MC cycle.  
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A similar approach for the stochastic collection (the Super Droplet method) was proposed 
by Shima et al. (2007). They defined collision between Super Droplets (that are actually 
species): droplets with the same attributes and position) and show that the result of Monte 
Carlo scheme agrees with the solution of the kinetic collection equation for the one 
component case. Nevertheless, for the Super Droplet method to reproduce accurately the 
solution of the kinetic collection equation, the number of species should be extremely large 
(around 217). As a consequence, the method doesn’t reproduce well, for example, the time 
evolution of a monodisperse initial condition and will be discarded as an option to model 
the collection process for large coalescence volumes. In the grouping method (Ormel and 
Spaans, 2008) the species are divided into groups composed of identical particles. Thus, for 
the number of species: 

 i iN =w 2 iz  (16) 

Where wi is number of groups, and zi is the zoom number. Then, instead of tracking Ni 
droplets, we will simulate the collision between wi groups, each containing 2 iz droplets. The 
number of groups will now determine the collision rate. The coagulation is accelerated 
significantly, because collisions are now between groups of particles, and not between 
individual particles. The total number of physical particles is: 

 
s

i

N
z

T i
i=1

N = w 2∑  (17) 

where Ns is the total number of species. The collision rates between groups of different 
species are calculated in the form (if i jz z≤  ): 

jzG -1
i ja (i,j)=V K(i,j)N N dt 2  ≡  Pr{  Probability that two groups of species i and j (for i 

≠ j) with populations (number of  particles) Ni  and Nj will collide within the 
imminent time interval} 

(18)

And the collision between groups of the same species: 

( )
i

-1
i i z -1G V K(i,j)N N -1

a (i,i)= 2
2

 ≡  Pr{  Probability that two groups of the same 

species i  with population (number of particles) Ni collide within the imminent time 
interval } 

(19) 

In the general case i jz z≤ , then each i particle collides with  j iz -z
2 j particles. After the 

collision event, only one group consisting of iz2 particles is obtained. For the new particles, 
the mass of the k-component is calculated as: 

 j iz -z

ki kjm +2 m  (20) 

The grouping algorithm in the form implemented in Ormel and Spaans (2008) is not feasible 
for incorporating into a microphysical framework, because the simulation results are the 
averages over several realizations, and we need a single realization and a constant time step 
for linking to a microphysical model. Thus, the modification of the Monte Carlo algorithm 
proposed by Sun et al. (2007) is also implemented for the grouping method. The algorithm 
can be summarized as follows: 
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1. At t=0, the event counter is set to zero and the initial number of species N1, N2,…,NN 
are defined. 

2. Set the zoom numbers for each species ( i iN =w 2 iz ) 
3. Determine the total number of group collisions (CGT) in the time interval Δt by using the 

expression (where aG(i,j) is calculated according to Eqs. 18 and 19) :  

 

s sN N
G

i=1 j=1

Δt a ( , )

=
V

G
T

i j

C
∑∑

 (21) 

4. Generate G
TC  random (ri) numbers from a uniform distribution and determine the 

collision indexes from the relation: 

 
Ǎ-1 Ǎ

G G G
v i v

ǎ=1 ǎ=1

a <rα < a∑ ∑  (22) 

In (22), G G
vα =a ( , )i j and

( )N N+1

2
G G

v
ǎ=1

α = a∑ , where the index { }ǎ  defined the total collision 

space. 

5. Reduce the number of groups for the colliding species: wi=wi-1, wj=wj-1,  and the 

number of physical particles for the species: If  i jz z≤ then iz
i iN =N -2 and  

jz

j jN =N -2 . For the new species created in the collision the number of particles is 

increased by j iz -z
2 . 

6. Return to step 2. 
The performance of the algorithm was checked again by comparison with the analytical 

solution for the sum kernel (Eqs.15 a, b). We have calculated the evolution of an initial 

monodisperse distribution of 108 droplets of 14 Ǎm in radius (droplet mass 1.1494×10-8g) in a 

cloud volume of 106 cm3. As was pointed out, only a single stochastic experiment was run 

with a zooming factor (zi) of 10. Thus, the number of particles in each group was 210=1024. 

Figure 4 displays the comparison between the analytical and the MC total concentrations, 

indicating a very good correspondence between the two methods.  

An additional simulation was performed, using the constant kernel, and the results 

compared with the analytical solution of the two-component kinetic collection equation: 

m n

m'=0 n'

N(m,n;t) 1
= K(m-m ,n-n ;m ,n ;t)N(m-m ,n-n ;t)N(m ,n ;t)

t 2

∂ ′ ′ ′ ′ ′ ′ ′ ′
∂ ∑∑  

 
m =0 n 0

-N(m,n;t) K(m,n;m ,n )N(m ,n ;t)
∞ ∞

′ ′=

′ ′ ′ ′∑ ∑  (23) 

 

In (23), N(m,n,t) is the average number of particles consisting of m and n monomers of the 
first and second kind respectively (with water mass from size bin m and aerosol mass from 
size bin n). The water mass in size bin m equals the volume of a droplet in the smallest 
(monomer droplet) bin multiplied by m, the aerosol mass in size bin n equals the volume of 
an aerosol in the smallest bin (monomer aerosol) multiplied by n. 
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Fig. 4. Time evolution of the total number of particles obtained from the grouping method 
(diamonds), versus the analytical solution from the kinetic collection equation (solid line). 

Solutions to (23) can be obtained for an important class of collection kernels, such as when 
the kernel depends only on the total number of monomers (droplets and aerosols) in each 
colliding particle. In this case: 

 1 1 1 1K(m,n;m ,n )=K(m+n,m +n )  (24) 

Lushnikov (1975) constructed an explicit form for the composition distribution for this type 
of kernel, which corresponds to coagulation of initially monomeric particles. In this case 

1N(1,0;0)=c  and 2N(0,1;0)=c , corresponding to the situation with initially c1 droplets and c2 
aerosols. The composition distribution may be expressed as (Lushnikov, 1975): 

 

m n

1 2
0 1 2

0 0

m+n c c
N(m,n;t)= N(m+n,t) c =c +c

n c c

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 (25) 

where 
m+n

n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are the binomial coefficients, and N(m+n,t) is the number of particles 

composed of (m+n) monomers (m monomer droplets and n monomer aerosols). Lushnikov 
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(1975) showed that N(m+n,t) , for the type of kernels (24) is a solution of the one-component 

kinetic collection equation (1). For the constant kernel 1 1K(m,n;m ,n )=A and a monodisperse 

initial distribution with concentration c0, the analytical size distribution for the one-

component KCE is: 

 
i-1

0 i+1

(T)
N(i,t)=4c

(T+2)
  with        0T=Ac t  (26) 

Then, for the constant kernel, the analytical solution of Eq. (23), calculated according to the 

expression (25) for the constant kernel -4 3 -1K(m,n;m ,n )=1.2×10 (cm sec )′ ′ was compared with 

results of the Monte Carlo two-component simulation which was conducted for initially 

monomeric particles (droplets and aerosols) with concentrations c1=30000 and c2=30000 

( 3N(1,0;0)=30 10× and 3N(0,1;0)=30 10× ).  The initial volume was set equal to 1000 cm3.  The 

results are displayed in Figs. 5a,b. Again, a good agreement between the two approaches is 

found.  These results support the validity of the grouping method for two-component 

stochastic coalescence. 

4. The multicomponent microphysical framework 

The stochastic algorithm described in section 3 was incorporated into a multicomponent 
cloud microphysical framework. This particle-based cloud microphysical model will 
explicitly resolve the composition of individual droplets containing different types of CCN 
and is designed to accurately track the evolution by activation, condensation and 
coalescence of the composition of individual droplets with internally or externally mixed 
aerosols. 

4.1 Modeling of dynamical processes 

The microphysical model is coupled with a simple parcel model. The air parcel is assumed 
to be adiabatic and homogeneous with no heat and mass exchange with the environment, 
with a pressure that adjusts instantaneously to that of the surrounding air, which is in 
hydrostatic equilibrium. The vertical velocity is prescribed. The set of equations for this case 
has the form (Pruppacher and Klett, 1997): 

 e
Ph

pa pa

gUdT L
=- + C

dt c c
 (27a) 

 L
w

dQ
C =

dt
 (27b) 

 V
w

dQ
=-C

dt
 (27c) 

Where T is the temperature; U, the vertical velocity; g, the acceleration of gravity, cpa the 
specific heat of air; Le , the latent heat of evaporation; QV and QL are the  water vapor and 
water mixing ratios and Cw is the rate of condensation. There is no sedimentation of drops 
with this simplified treatment of the dynamics.  
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(a) 

 

(b) 

Fig. 5. Two dimensional droplet distribution N(m,n)  for the constant kernel obtained by a) 
the grouping method and b) from the analytical solution of the two-component KCE. 
Simulations were conducted with initial conditions N(1,0)=30000  and N(0,1)=30000. 

4.2 Condensation and evaporation of droplets 

The usual form of the growth equation is not feasible for multicomponent microphysics. 
Therefore, we will consider the mass change of the species through the condensation -
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evaporation process according to the modified form of the Köhler theory proposed by 
Mircea et al. (2002): 

 
j jw s w i i

3
i_inorg j_orgv w w i j

ǎ m2ǔM 3Φ M ǎ m
S= - × +

R Tǒ r 4Ǒǒ r M M

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ ∑  (28) 

This form of the Köhler equation takes into account the presence of multiple components 
(wate soluble organic compounds,WSOC and inorganic salts) in the CCN. In (28) S is the 

supersaturation ratio, Mw and ρW  are the molecular mass and density of water, σ is the 

surface tension, Φs is the osmotic coefficient (Φs=1), Rv is the gas constant, T is the 
temperature,  and r is the droplet radius. The number of dissociated ions, soluble mass and 
molecular mass respectively of the inorganic and organic components of CCN particles are 

represented by  νi, mi, Mi and νj, mj, Mj. An ideal solution is assumed ( ρs=ρW ).  
Then, according to (28) the governing equation for diffusional growth of a water droplet of 
radius r is (Rogers and Yau, 1989): 

 

j jw s w i i
3

i_inorg j_orgv w w i j

k d

ǎ m2ǔM 3Φ M ǎ m
(S-1)- + × +

R Tǒ r 4Ǒǒ r M Mdr
r =

dt F +F

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑

 (29) 

 w
k

v

L Lǒ
F = -1

R T kT

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (30) 

 w v
d

s

ǒ R T
F =

De (T)
 (31) 

Here S is the ambient, saturation ratio, Fk is represents the thermodynamic term associated 
with heat conduction, Fd is the term associated with vapor diffusion. In (30) and (31) Rv is 
the individual gas constant for water vapor, k is the coefficient of thermal conductivity of 
air, D is the molecular diffusion coefficient, L is the latent heat of vaporization and es(T) is 
the saturation vapor pressure. 
In order to allow larger integration steps for the condensation process an implicit Euler 
discretization scheme was adopted: 

 
2 2 3
n+1 n n+1 n+1

k d

a b
(S-1)-

r -r r r
=

2 t F +F

+

Δ
 (32) 

Where w

v w

2ǔM
a=

R Tǒ
and 

j js w i i

i_inorg j_orgw i j

ǎ m3Φ M ǎ m
b= × +

4Ǒǒ M M

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ ∑   

The droplet radius rn+1 in the n+1 iteration were calculated with the Newton Raphson 
method. In the model there is no need to parameterize the activation process since the 
equation (29) was applied to both the unactivated equilibrium droplets and activated drops. 
In the first case, the numerical solution of (29) gives the equilibrium radius for a given 
saturation ratio, which satisfies the Köhler equation: 
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3

n+1 n+1

a b
S=1+

r r
−  (33) 

4.3 Treatment of supersaturation 
For calculating the saturation ratio, a time splitting procedure was used, and the evolution 
of the variables due to dynamical processes is calculated first:  

 * n

pa

gU
T =T -Δt

c
× , * n

V VQ =Q  (34) 

There is no change in the water vapor mixing ratio due to dynamics because the air parcel is 
assumed to be adiabatic with no mass exchange with the environment. By taking into 
account the microphysical processes, the temperature and water vapor at the n+1 time step 
are calculated as: 

 n+1 *
e

pe

Δt dχ
T =T + ×L

c dt
,  n+1 *

V V

d
Q =Q -Δt×

dt

χ
 (35) 

Where Δt is the time step, and dχ dt  is the condensation rate, which is calculated from the 

expression: 

 2w i
i i

ia

dχ ǒ dr
= N 4Ǒr

dt ǒ dt
∑  (36) 

Here, Ni is the total number of droplets (unactivated and activated) for the species with 

index i, ri is the droplet radius, ǒw and ǒa are the water and air densities, and idr dt  is 

calculated from (29). The saturation ratio at th n+1 time step can be found from the equation 

(Hall, 1980): 

 

*
n+1 V

n+1 V
n+1 n+1

*VS
e

p

dχ
Q -Δt×

Q dtS = = Δt dχQ (p,T ) T + ×L
c dt

 (37) 

Which is solved iteratively using the secant method. In (37) the condensation rate dχ dt  is 

evaluated at ( )n n+1
m mS =0.5 S +S  and n+1

mS  is iteratively determined until n+1 n+1 -8
m m-1S -S <10 . After 

that, the saturation ratio ( )n n+1
m mS =0.5 S +S  is applied directly to the growth equations that 

are integrated implicitly.   

5. Simulation results 

The parcel model described in section 4 was used  to simulate the microphysical evolution 
of an orographic cloud sampled on November 20, 2007,  located in the northwest corner of 
Nebraska. 
The initial CCN distribution for the simulation represented an external mixture of 3 
different composition categories: pure sodium chloride: (NaCl), oxalic acid-elemental carbon 
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mixture (OC-EC) and ammonium sulfate-elemental carbon: ((NH4)2SO4-EC)  (Figure 6).  The 
initial CCN total number concentration was 531 cm-3. The (OC-EC) and ((NH4)2SO4-EC) 
particles where assumed to consists of 90% water soluble materials, with a 10% of elemental 
carbon. NaCl particles were assumed 100% solubility. The smallest NaCl aerosol particles 
require a supersaturation of 0.33 % to activate, a value that was never exceeded in the 
simulations (see Figure 7b). The largest critical supersaturation for the OC-EC particles is 
0.24 %. 
The air parcel ascends with a constant vertical velocity of 0.5 ms-1 from cloud base at -8ºC 
and 764 hPa. The calculation starts at 98% relative humidity with moist adiabatic lapse rate. 
A cloud height from the cloud base of 200 m was simulated. The parcel volume was 
assumed to be 105 cm3 (100 liters), with zoom numbers for the grouping algorithm zi=5 for 
all the species (which means we have 25= 32 droplets in each group), and a time step of Δt=1 
sec.  Therefore, the initial number of particles in the simulation was 531×105. 
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Fig. 6. CCN size distributions that served as basis of calculations for the three different 
compositions. 
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Fig. 7. Wet radius for interstitial aerosols as a function of height above cloud base, and 
supersaturation profile for the simulated cloud. 

In a first experiment, the size distribution was allowed to evolve only by nucleation and 
condensation. The vertical profile of supersaturation obtained in this simulation is shown in 
Figure 7b. As can be observed, the maximum supersaturation is about 0.3%.  
After peak supersaturation is reached, the aerosol number total concentration decreased 

from 531 cm-3 to 42 cm-3 due to nucleation scavenging (a 92% decrease), in agreement with 

field observations of Hegg & Hobbs (1983) . The number concentration of the different 

components show the following evolution: the NaCl and (NH4)2SO4-EC aerosol particles 

decreased by 80% (from 106 to 21 cm-3) and 100% of the OC-EC aerosol particles were 

nucleated. This is consistent with the cloud supersaturation spectra (CSS) which have 

maximum critical supersaturations of 0.25% for the aerosol particles with OC-EC 

compositions. Consequently, all the particles in this category get activated after the 

maximum supersaturation of 0.3 % is reached. The aerosol particles that were not activated 

to droplets remain as interstitial aerosols and in equilibrium with ambient supersaturation 

conditions (Figure 6a). 

Figure 8 shows the evolution as a function of height above cloud base for the largest droplet 

in each of the three aerosol composition species. The droplets formed on the (OC-EC) CCN 

achieve a larger size than the droplets that contain the inorganic salts. 

In a second simulation, the size distribution was allowed to evolve by activation, 

condensation and the collision-coalescence process in the manner described in section 4.  

The zoom numbers were assumed to be zi=5 for all the species (which means we have 25= 32 

droplets in each group), with a time step of Δt=1 sec.  Despite the large number of particles 

for the parcel under analysis, the coalescence was almost negligible with a maximum of 3 

collision events per time step. Nevertheless, at the end of the parcel ascent the number of 

species was incremented up to 593. The huge increment in the number of species (from 57 to 

593) is only explained by the coalescence, since the condensation and activation processes 
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conserved the number of species. Due to the fact that we have a four-component system 

(droplet radius and three types of aerosols inside droplets), practically every collision leads 

to the formation of a new species. The maximum droplet radius was 7.35 µm with an aerosol 

with composition OC-EC and radius 0.3999 µm. An additional simulation was performed 

with a parcel volume of 5000 cm3 and a zoom factor of z=0 for all the species in order to 

compare with the previous simulation. In that case we were considering collisions between 

particles, not between groups.  The same maximum droplet radius was obtained as a result 

of the simulation. These preliminary findings are encouraging and show the potential of this 

modeling approach. 

 
 
 

 
 
 

Fig. 8. Largest droplet radius for the activated species.  
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6. Conclusions 

In this work, a novel Monte Carlo multicomponent framework for the collection process was 
introduced, and its characteristics discussed in detailed. The Monte Carlo algorithm is based 
on the grouping method proposed by Ormel and Spaans (2008), and allows accurate 
simulation of the coalescence process in large cloud volumes with reasonable cost in 
computation. Therefore, it can be a useful tool to simulate microphysical evolution in cloud 
models with complex dynamics.  
The applicability of the Monte Carlo grouping method was demonstrated by linking the 

stochastic framework with a microphysical model with simple dynamics, and presenting  

very preliminary results of an orographic cloud formation with four component 

microphysics.  

Simulation results suggest that the Monte Carlo grouping method can be computationally 

more efficient than the deterministic framework (based on the solution of the KCE), when 

the number of components of the system is larger than 2. Then, it is expected to be more 

feasible for modeling complicated microphysics, and provides us with a new tool to solve 

open problems in cloud modeling. 

Even though a more thorough validation of the method is still needed, we believe that this 
stochastic algorithm will prove to be a useful new approach to simulations of 
multicomponent microphysics.  It is particularly applicable to studies of cloud and aerosol 
interactions with multiple types of CCN, the modeling of collection process in mixed phase 
clouds and cloud chemistry. 
As a future work, an important effort will be required to extent this method to model the 
microphysical evolution of mixed phase clouds, and to include the chemical processes. This 
work attempts to be a first step toward the accomplishment of these goals.  
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