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1. Introduction

In 1957 the crystalline phase transition in the hard-sphere system was discovered by a Monte
Carlo simulation (Wood & Jacobson, 1957) and a molecular dynamics simulation (Alder &
Wainwright, 1957). The results of their researches were surprising because the phase transition
occurred despite the absence of attractive interparticle interaction. The crystalline phase
transition in the hard-sphere system is sometimes referred to as the Alder transition or the
Kirkood-Alder-Wainwright transition. Nowadays, the Alder transition can be interpreted as
the competition between two entropic effects; if the configurational entropy overcomes the
vibrational one, a disordered fluid phase appears as the stable phase and vise versa. The
phase diagram was determined in 1968 by a Monte Carlo simulation (Hoover & Ree, 1968).
It is temperature-independent and the phase transition from a disordered fluid phase to a
crystalline phase of the face-centered cubic (fcc) structure occurs via a fluid-crystal coexistence
region φf < φ < φs. Here, the density is expressed by the volume fraction of the hard spheres,
φ ≡ (π/6)σ3(N/V) with σ being the hard-sphere diameter, N the number of particles, and
V the volume of the system. The Hoover and Ree’s values (φf = 0.494 and φs = 0.545) have
been revised by a direct crystal-fluid coexsitence simulation (Davidchack & Laird, 1998) to be
φf = 0.491 and φs = 0.542 as extending Mori et al.’s molecular dynamics simulation (Mori et
al., 1995).
In 1960-70s colloidal crystallizations were extensively studied as the Alder transitions in
reality. Indeed, an effective hard-sphere model successfully explained the colloidal crystal
phase transition (Wadachi & Toda, 1972). The recent situation of studies on the colloidal crystal
is different from that in those days; so-called hard-sphere suspensions are synthesized (Antl
et al., 1986), which exhibit a hard-sphere nature in the crystal-fluid phase transition (Paulin &
Ackerson, 1990; Phan et al., 1996; Pusey & van Megen, 1986; Underwood et al., 1994). There is
another trend of studies of the colloidal crystals in recent days. Because in the colloidal crystals
a periodic structure of dielectric constant with the periodicity of the same order of optical
wavelength, the colloidal crystals can be used as photonic crystals. Ohtaka first pointed out
this possibility (Ohtaka, 1979). Two 1987 papers triggered this trend (John, 1987; Yablonovitch,
1987). As compared to micro manufacturing technologies of fabricating the photonic crystals,
the colloidal crystallization is of low cost in introducing equipment and less time consuming
in the fabrication. One of shortcomings of the colloidal crystallization is that the colloidal
crystals contain many crystal defects. From fundamental as well as application point of view,
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the defect in the photonic crystal should be reduced. For example, the photonic band cannot
be opened unless the defect is reduced.
In relation to the reduction of the crystal defects in the colloidal crystals, in 1997 Zhu et al. (Zhu
et al., 1986) found an effect of gravity that reduces the stacking disorder in the hard-sphere
colloidal crystals. They found that a random hexagonal close pack (rhcp) structure formed
under micro gravity. On the other hand, the sediment is rhcp/fcc mixture under normal
gravity (Pusey et al., 1989). The mechanism of reduction of the stacking disorder under gravity
was so far unresolved until the present author and coworkers found a glide mechanism of
disappearance of a staking fault (Mori et al., 2007a). Viewing 〈111〉 fcc is characterized by a
stacking of ABCABC· · · sequence, where A, B, and C distinguish hexagonal planes on the
basis of the position of the particles within the hexagonal plane. On the other hand, hexagonal
close pack (hcp) structure is given by ABAB· · · stacking and rhcp by a random sequence of
A, B, and C. The stacking disorder is the disorder in the sequence of A, B, and C. For example,
an intrinsic stacking fault is given by a sequence such as ABABC· · · ; here the third C plane
has been removed from ABCABC· · · . We note that even though the stacking is out of order,
the particle density remains unchanged. In this respect, the varieties of stacking sequence are
not affected by gravity. Thus, the mechanism of the reduction of the stacking disorder due to
gravity was a long standing problem. To resolve this problem is the purpose of studies (Mori
et al., 2006a;b; 2007a;b; 2009; Mori & Suzuki, 2010; Yanagiya et al., 2005) reviewed in section
4.1.
In a previous paper (Mori et al., 2007a) looking into the evolution of snapshots of Monte Carlo
simulations of hard spheres (Mori et al., 2006b), in which transformation from a defective
crystal into a less-defective crystal under gravity was observed, we found that a glide of a
Shockley partial dislocation terminating an intrinsic stacking fault shrunk the stacking fault
in fcc (001) stacking. The key is the fcc (001) stacking; in those simulations this stacking
was forced due to a stress from a small periodic boundary simulation box. In contrast, in
the colloidal crystallization a patterned bottom wall is sometimes used recently; the fcc (001)
stacking is forced due to the stress from the pattern on the bottom. Use of a patterned bottom
wall is called a colloidal epitaxy. In 1997 van Blaaderen et al. succeeded in the fcc (001) stacking
using a fcc (001) pattern (van Blaaderen et al., 1997). The basic idea of the colloidal expitaxy
is that the stacking sequence is unique in 〈001〉. The finding of a previous paper (Mori et al.,
2007a) is that in the fcc (001) stacking, even if an intrinsic stacking fault running along oblique
{111} plane is introduced, through the glide of a Shockley partial dislocation terminating the
lower end of the stacking fault the stacking fault shrinks. In other words, their paper points
out superiority of the colloidal epitaxy other than the unique stacking sequence. We note here
that this glide mechanism is merely one of mechanism. The intrinsic stacking fault is mere
one of metastable configurations. Moreover, we have already found a configuration which
was succeeded into a newly grown crystal in the fluid phase in some simulation of the same
condition (Mori et al., 2007b). An additional remark is that a coherent growth occurred in
those simulations (Mori et al., 2006a). Complementarily to the simulations, we have given
elastic energy calculations to understand the driving force of upward move of the Shockley
partial dislocation (Mori et al., 2009; Mori & Suzuki, 2010).
We note again that in those simulations (Mori et al., 2006a;b; 2007a;b; Yanagiya et al., 2005),
fcc (001) stacking was forced due to the stress from a small periodic boundary simulation
box. This artifact has been resolved (Mori, in press). The same stress in those previous
simulations can, in principle, be provided by the use of patterned substrate (the colloidal
epitaxy). However, the system size cannot be systematically enlarged in those simulations
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with the flat bottom wall. As already shown (Mori et al., 2006b), fcc {111} stacking occurs
for a large lateral system size. In a recent paper (Mori, in press) the square pattern has been
used. An advantage of the square pattern is that matching between the crystal grown and
the substrate on the lattice line, not only on the lattice point, in possible (Lin et al., 2000). To
resolve this shortcoming is the purpose of section 4.2.
The remainder of this chapter is organized as follows. In section 2 remarks on statistical
mechanics of the hard-sphere system is described. Simulation method is reviewed in section
3. Results for flat bottom walls are reproduced and discussions for them are given in section
4.1 and some results and discussions for square patterned wall are presented in section 4.2.
Conclusions and remarks are given in section 5.

2. Hard sphere system

The hard sphere system is comprised of the hard-sphere potential

VHS(rij) =

{

∞ rij ≤ σ

0 rij > σ
. (1)

Here, rij is the interparticle separation between particles i and j. The total system energy is
given by summing Vij ≡ V(rij) as

U = ∑
(i,j)

Vij, (2)

where the summation is taken for all pairs. The configurational integral is defined as

Z =
∫

· · ·
∫

dr1 · · · drN exp[−U/kBT],

=
∫

· · ·
∫

dr1 · · · drN ∏
(i,j)

exp[−Vij/kBT], (3)

where kBT is the temperature multiplied by Bolzmann’s constant. In the integrand, by

substituting VHS
ij [Equation (1)] for Vij, the quantity exp[−Vij/kBT] takes either 0 or 1.

exp[−Vij/kBT] =

{

0 rij ≤ σ

1 rij > σ
. (4)

A special remark is that the commutation of the thermodynamic limit, N → ∞ with N/V

kept a finite value, and the hard-sphere limit, Vij → VHS
ij , is not guaranteed. After calculating

the probability distribution using a continuum potential Vij and then taking the hard-sphere
limit is not appropriate. Thus, the probability distribution is no longer a continuum function.
Monte Carlo simulations are, thus, performed on the basis of equation (4). That is, if any pairs
of particle overlap after a Monte Carlo move, then the attempt configuration is rejected, and
otherwise accepted. The interaction between a particle and vessel walls is treated in the same
manner if the walls are hard bodies.
The present system is exerted to the gravitational field. Thus, the gravitational energy

Ug =
N

∑
i=1

mgzi, (5)
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is added to the hard-sphere interaction. Here, zi is the z-coodinate of particle i.

In equation (3), U is replaced with UHS +Ug.

Z =
∫

· · ·
∫

dr1 · · · drN ∏
ij

exp

⎡

⎣−
VHS
ij

kBT

⎤

⎦ ∏
k

exp

[

−mgσ

kBT

zk
σ

]

. (6)

Here, the dimensionless quantity mgσ/kBT ≡ g∗, which plays a central role in the hard-sphere
system under gravity, is referred to as the gravitational number or the gravitational constant.
Accordingly, the attempt configuration after a Monte Carlo move of a particle k from rk ≡
(xk , yk, zk) to rk + ∆r ≡ (xk + ∆x, yk + ∆y, zk + ∆z) is accepted with the probability

exp[−g∗∆z∗], (7)

in a usual manner, such as Metropolis’ method, unless the overlap between particle k and any
other ones occurred. Here, ∆z∗ ≡ ∆z/σ is the change in z coordinate of particle k in unit of
length of σ (hereafter, ∗ indicates this reduced unit).

3. Simulation method

3.1 Stepwise control of the gravitational number

In a gravitational sedimentation the gravitational number g∗ is controlled through the
temperature T. In the previous work (Mori et al., 2006b) we proposed the stepwise control
of g∗ in order to avoid trapping of the system in a metastable configuration such as a
polycrystalline state. Indeed, if g∗ such as g∗ ≥ 0.9 was turned on from the beginning, the
system polycrystallized (Yanagiya et al., 2005). The basic idea of the stepwise g∗ control is
that in the simulated tempering (Lyubartev et al., 1992; Marinari & Parizi, 1992), unlike the
simulated annealing (Kirkpatric et al., 1983), no bias of lowering the temperature exists. We
considered that if the system was relaxed with no such bias, the trapping into a metastable
state such as a polycrystalline state might be avoided.
We note here that g∗ can be controlled more effectively in centrifugation sedimentation of
a colloidal dispersion. In the centrifugation method of the colloidal crystallization, such as
done previously (Ackerson, 1999; Megens et al., 1997; Suzuki et al., 2007), g in g∗ ≡ mgσ/kBT
can be directly controlled. Taking into account the fact that by the stepwise g∗ control we
could successfully avoid the trapping into a metastable state such as a polycrystaline state, a
stepwise control of the centrifugation rotation velocity, or a more sophisticated control, must
bring a effective control of the crystal defects in the colloidal crystals.
In this chapter, we reproduce results obtained by stepwise g∗ control and will not presented
results for simulations with sudden switch-on of gravity. For flat wall simulation (section 4.1)
we kept g∗ at a certain value for ∆t = 2 × 105 Monte Carlo cycles and then increased by ∆g∗

= 0.1. Here, one Monte Carlo cycle is defined as it contains N Monte Carlo particle moves.
That is, during one Monte Carlo cycle one Monte Carlo particle move is attempted per one
particle on average. For square patterned wall simulations (section 4.2) we report results for
∆t = 2 × 105 Monte Carlo cycles for N = 6656 and ∆t = 8 × 105 Monte Carlo cycles for N =
26624. ∆g∗ = 0.1 for both system sizes.

3.2 System size and configuration

In section 4.1 we reproduce results of Monte Carlo simulations of N = 1664 hard spheres in
a system with L∗x = L∗y = 6.27 and L∗z = 49.23 (Mori et al., 2006b; 2007a). Flat hard walls were
located at z =0 and Lz.
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After a random initial configuration at g∗ = 0 was prepared, g∗ was increased as mentioned
in section 3.1. We note that φ = 0.45 for this system was lower than φf. Lz was enough large
so that at g∗ where the defect disappearance was observed a vacuum formed on the top. In
horizontal (x and y) directions the periodic boundary condition was imposed. In section 4.2
we report the results of Monte Carlo simulations of N = 6656 and 26624 systems. The former is
four times larger than N = 1664. Both Lx and Ly were doubled, i.e., L∗x = L∗y = 12.55. The latter
is four times larger than N = 6656; L∗x = L∗y = 25.09. For both systems we set L∗z = 200 because
volume of the vacuum region on the top of the system do not give affect to the crystal formed
at the bottom if the vacuum region is enough large. There is an advantage in preparing a
random initial configuration in a case of large Lz; we should pay a spatial attention regarding
surface ordering on the bottom and top walls and remnant of the crystalline order of the
starting configuration if Lz is small. As for the flat wall case the periodic boundary condition
was imposed in horizontal directions. A square patterned hard wall was put at z = 0 and a
flat hard wall at z = Lz. The square pattern is as illustrated in Figure 1. A grid made of square
grooves with width 0.70710678σ was formed. The diagonal distance of intersections of the

longitudinal and transverse grooves was 0.70710678σ ×
√

2 = 0.9999999997σ. Thus, a hard
sphere located on the lattice point of the bottom square lattice can fall into the intersection of
the grooves, at most, by almost the half of the hard-sphere diameter; it means that the hard
sphere cannot fall on to the bottom of the groove even if the groove depth is larger than 0.5σ.
The distance between edges of neighboring grooves was 0.338σ.

0.707106781σ 

0.338σ 

0.9999999997σ 

Fig. 1. Illustration of square pattern on the bottom wall.

4. Results and discussions

4.1 Flat wall case

We plot snapshots projected on xz plane for the flat bottom wall case in Figure 2. At g∗ = 0.1
the system was disordered except for the bottom crystalline layers [Figure 2(a)]. At g∗ = 0.5
a defective crystal was formed on the bottom and fluid phase above it [Figure 2(b)]. At g∗ =
0.9, 1.3, and 1.5 we find a less-defective crystal on the bottom, a defective crystal above it, and
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a fluid phase above the defective crystal [Figure 2(c-e)]. Comparing Figure 2 (c) and (d) we
find that the boundary between the less-defective and defective crystals moved upward. Also
the top of the defective crystal moved upward. On the other hand, comparing Figure 2 (d)
and (e) we find that both the boundary between less-defective and defective crystals and the
top of the defective crystal almost remained unchanged. Comparing Figure 2 (c)-(e) we find
that the top of the fluid phase lowered with g∗. We can say that at g∗ ∼ 0.9, that is, when the
gravitational energy mgσ was comparable to the thermal energy kBT, the defect appearance
occurred.
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Fig. 2. Projections of snapshots for hard spheres in a system with flat wall; at (a) g∗ = 0.1, (b)
0.5, (c) 0.9, (d) 1.3, and (e) 1.5. Snapshots at the end of duration while g∗ was kept at the value
indicated on the top of each figure were plotted. Reprinted with permission from THE
JOURNAL OF CHEMICAL PHYSICS 124, 174507 (2006). Copyright 2006, American Institute
of Physics.

Before looking into a detail of the process of the defect disappearance, let us note that six
crystalline layers exist along x and y axes, although Lx = Ly are four times the fcc lattice
constant of the hard-sphere crystal at the crystal-fluid equilibrium. Moreover, [100] and [010]
are no longer parallel to x and y axes, respectively. By a close look, it is found that x and y
directions are, respectively, parallel to [110] and [11̄0]. It means that the pressure at the bottom
was higher than that at the crystal-fluid equilibrium. In a mechanical equilibruim

∂P

∂z
= −mgρ(z), (8)

holds, where P(z) is the pressure at the altitude z and ρ(z) the coarse-scale number density
at z. We can understand the higher pressure at the bottom according to this equation. If the
relation between P and ρ (i.e., the equation of state) is known, we can solve equation (8) with
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the condition
∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2

∫ Lz

0
ρdxdydz = N, (9)

such as done previously (Biben et al., 1993). Without doing so, we can understand the high
pressure through an inequality of thermodynamic stability ∂P/∂ρ > 0.

 
y/σy/σ y/σy/σ y/σ 

Fig. 3. 3D snapshots during defect disappearance occurred (g∗ = 0.9) for hard spheres in a
system with flat wall; at (a) 1.99, (b) 1.92, (c) 1.94, (d) 1.96, and (e) 1.97 ×106 Monte Carlo
cycle. Reprinted with permission from Molecular Physics, Vol. 105, No. 10, 20 May 2007,
1377–1383. Copyright 2007, Taylor & Francis.

Let us look into the process of the defect disappearance. In Figure 3 evolution of the
configuration during g∗ = 0.9 is shown in 3D. First of all, we notice that vertical stacking
is basically two-fold, indicating the fcc (001) stacking; if the vertical stacking is fcc (111), it is
three-fold, namely, ABC· · · . This characteristic can be observed in Figure 2, too.
An intrinsic stacking fault is marked by a red line (an evidence that this defect is an intrinsic
stacking fault will be given later). We see that the intrinsic stacking fault is shrinking in
the course of the simulation. The altitude of the lower end of the stacking fault coincides
with the z coordinate of the boundary of the less-defective and the defective crystals. We
find that the transformation from defective crystal into the less-defective one observed in the
two-dimensional snapshots (Figure 2) is accomplished by the shrinking of an intrinsic stacking
fault. We note that if we used a different random number in a Monte Carlo simulation the
position and the direction of the stacking fault were changed.
The evolution of the center of gravity during g∗ = 0.9 is plotted in Figure 4. The center of
gravity moved downward overall as the simulation proceeded. Sinking of the center of gravity
is understood by taking into account the particle deficiency of the dislocation core located at
the lower end of the stacking fault. As the core moves upward the center of gravity sinks. We
see plateaus during 1.84-1.9 and 1.96-2×106 Monte Carlo cycles. This means that the system
was trapped into metastable configurations during those durations. If the dislocation core
goes up and enters into the fluid region, sinking of the center of the gravity finishes. The
dislocation core in Figure 3 have not gone and not yet entered into the fluid region. So, if we
continue the simulation longer than 2 × 105 Monte Carlo cycles, further sinking of the center
of gravity is expected. It is suggested that the defect disappearance in this case proceeded
with temporal trapping by a metastable configuration, though we have not looked into the
metastable configuration in the particle level yet.
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σ

Fig. 4. Evolution of the center of gravity for hard spheres in a system with flat wall during g∗

= 0.9. The centers of gravity are calculated at instant at every 104 Monte Carlo cycle.
Reprinted with permission from Molecular Physics, Vol. 105, No. 10, 20 May 2007, 1377–1383.
Copyright 2007, Taylor & Francis.

g*=0.9 1940000MCC

-202

y/σ

15

16

17

18

z/σ

Fig. 5. Magnified spanshot of a defect for hard spheres in a system with flat wall (at
1.94 × 106 Monte Carlo cycle). Reprinted with permission from Molecular Physics, Vol. 105,
No. 10, 20 May 2007, 1377–1383. Copyright 2007, Taylor & Francis.

An evidence that the defect appearing in Figure 3 is an intrinsic stacking fault with a Shockley
partial dislocation terminating its lower end can be given by looking into a magnified
snapshot around the lower end of the defect. Figure 5 is a magnified snapshot around a
lower end of the defect. The bottom layer includes no fault. The second and above layers
include a fault, which is marked by a red line. We note that this fault is parallel to (111).

The region up-left of this fault is shifted by b
I = (1/6)[211] ≡ a1/3 + a2/6 + a2/6, where

a1, a2, and a2 are the three lattice vectors. b
I is the Burgers vector of a Shockley partial

dislocation. Accordingly, at the lower end of the fault marked in Figure 5 a Shockley partial

dislocation is formed. Because b
I is the vector connecting a mid point of a upper triangle in
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(111) triangular lattice (say, point B) to a mid point of the adjacent lower triangle in (111) lattice
(say, point C), the stacking sequence around the fault is ABABC· · · or equivalent to this. In
other words, removing the third C plane from ABCABC· · · is equivalent to shifting all planes

right from the third C plane by b
I . In this way, the fault marked in Figure 5 is shown to be

an intrinsic stacking fault. In a previous paper (Mori et al., 2007a), further, we observed shifts

of magnitude of, respectively, a/2
√

2, a/6
√

2, and a/6 along [110], [11̄0], and [001]. Here, a is
the fcc lattice constant. Readers may read a monograph (Hirth & Lothe, 1982) for learning the
crystallography of defects.

4.2 Squared patterned wall case

We have performed seven Monte Carlo simulations for N = 6656 system and three for N =
26624 with different random numbers. In two of these for N = 6656 defect disappearance
at g∗ less than 0.9 was observed. Remember that the defect disappearance occurred during
g∗ = 0.9 for the flat wall case (Mori et al., 2007a). In four of these for N = 6656 the defect
disappearance occurred at g∗ greater than 0.9. For remainder one the defect disappearance
was not appreciable. For N = 26624 the defect disappearance occurred at g∗ less than 0.9 for
all three cases. In two of three the defect disappearance occurred during g∗ = 0.5 and in the
remainder one during g∗ = 0.7. The results below are essentially the same as a recent paper
(Mori, in press).
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Fig. 6. Snapshot for 6656 hard spheres in a system with the square-patterned wall for a case
that defect disappearance occurred at g∗ lower than 0.9; at (a) g∗ = 0.7, (b) 0.8, (c) 0.9, and (e)
1.0.

Figure 6 shows snapshots at g∗ = 0.7-1.0 for N = 6656 system for a case that defect
disappearance occurred at g∗ less than 0.9. The random number for this simulation is different
from that in a recent paper (Mori, in press). Throughout this section the random numbers for
reported simulations are different from those in that paper. Though defects in lower portion
remained, a defect in appearance expanded over the middle portion disappeared during g∗ =
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1.0 again. In fcc (001) stacking, if a single stacking fault runs along one of {111} planes, [110]
or [11̄0] lattice line makes an array of two separated points in a projection on to (110) or (11̄0).
And, on the other projection we can observe a fault directly. To understand Figure 6 we must
take into account the fact that the x and y direction correspond to [110] and [11̄0], respectively
(Mori et al., 2006b). In Figure 6 (a) splitting is observed in both xz and yz projections. Only
the splitting in xz projection in portion 7 < z∗ < 11 disappeared in Figure 6 (b). Also, the
splitting in xz projection in portion z∗ > 15 in Figure 6 (c) disappeared in Figure 6 (d). We
conjecture that two stacking faults such as along (111) and (11̄1), not (111) and (111̄), coexisted
and then that along (111) shrunk. Splitting in both (110) and (11̄0) is seen in a case that two
stacking faults such as along (111) and (11̄1) coexist. Making three-dimensional snapshot to
observe intersections between (110) or (11̄0) may give an direct answer to this conjecture.
The surface structure of the 3D snapshots was, however, so complicated that we could not
follow the edges of the stacking faults although we saw crossing two faults. We left these
observations as a future research. Disappearance of only one of projections of lattice lines
means the disappearance of the fault in corresponding direction and remaining of the fault
in the other direction. There appear defects expanded in a lower-mid region, which remained
stably throughout. We see an upper triangular shape at its right in xz projection and an lower
triangular shape at its middle in yz projection. Upward and downward triangular shapes in
projections imply the stacking fault tetrahedra. In (001) stacking, a tetrahedron surrounded by
{111} makes upward and downward triangles in projections on to [110] and [11̄0], respectively.
Identification of tetrahedra by observing the snapshot layer by layer traversing [001] is left for
a future subject. The stacking fault tetrahedra are suggested to be sessile.
The evolutions of the center of gravity for N = 6656 system during g∗ = 0.8 and 1.0 are plotted
in Figure 7 for a case that defect disappearance occurred at g∗ lower than 0.9. During g∗ =
0.8 [Figure 7 (a)] the relaxation is of a single mode and has not reached to equilibrium yet.
Figure 7 (a) is essentially the same as the corresponding figure in a recent paper (Mori, in
press). Despite that the defect disappearance was proceeded, the system was not trapped into
any metastable configuration. During g∗ = 1.0 [Figure 7 (b)], after a first relaxation, sinking
of the center of gravity was slowed and then reached to equilibrium. The fluctuation after
slowing (during 1.87-1.9×106 Monte Carlo cycle) may be fluctuation around a metastable
equilibrium. Sinking of the center of gravity in this duration might undergo a temporal stop
as for the case of flat bottom wall. Those behaviors are observed in the corresponding figure
in a recent paper (Mori, in press). Also, observation of metastable configuration in the particle
level has not yet done.
Figure 8 shows snapshots at g∗ = 0.7-1.0 and 1.3-1.4 for N = 6656 system for a case that defect
disappearance occurred at g∗ greater than 0.9. We confirm no defect disappearance in Figure 8
(a)-(d). On the other hand, comparing Figure 8 (e) and (f) we find the defect disappearance in
yz projection. The defect disappearance occurred during g∗ = 1.4 for this case is vary similar to
that observed in Figure 6. What is suggested is essentially the same. The splitting of projection
of lattice lines on yz direction disappeared during g∗ = 1.4. This behavior is exactly the same
as that reported in a recent paper (Mori, in press) except for the direction of the fault. Existence
of a planner defect in the less defective portion z∗ < 10, which seems as a line in projection,
is observed in yz projection of Figure 8 (f) and xz projection of the corresponding figure in a
recent paper (Mori, in press).
The evolutions of the center of gravity for N = 6656 system during g∗ = 1.0 and 1.4 are plotted
in Figure 9 for a case that defect disappearance occurred at g∗ lower than 0.9. That during
g∗ = 0.8 essentially the same as Figure 7 (a) including the statistical error. We may regard the
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Fig. 7. Evolution of the center of gravity for 6656 hard spheres in a system with the
square-patterned wall for a case that defect disappearance occurred at g∗ lower than 0.9;
during (a) g∗ = 0.8 and (b) 1.0. Running block average over 103 Monte Carlo cycles at every
103 Monte Carlo cycle is taken. Statistical errors are within 0.011σ for (a) and 0.008σ for (b).

sinking of the center of gravity during g∗ = 1.0 [Figure 9 (a)] to be of a single relaxation mode
and a fluctuation around equilibrium as in a recent paper (Mori, in press). Unlike a recent
paper (Mori, in press), the sinking during 1.9-1.93×106 Monte Carlo cycle may be regarded as
splitting a metastable state before this duration and an equilibrium state after that. However,
as compared to Figure 9 (b) and the corresponding figure in a recent paper (Mori, in press),
the multiple relaxation manner is not significant. Thus, the sinking of the center of the gravity
during g∗ = 1.0 is of a single relaxation mode or of two stage manner with week activation
barrier between two stages. We can regard the sinking of the center of gravity in Figure 9 (b) to
be a two stage manner; the system stay in a metastable equilibrium state during 2.63-2.66×106

Monte Carlo cycle and then relaxes to an equilibrium state after 2.75 × 106 Monte Carlo cycle.
The two stage manner is more pronounced in a recent paper Mori (in press); the system stays
in a matastable equilibrium state during 2.63-2.71×106 Monte Carlo cycle and then relaxes to
an equilibrium state after 2.75 × 106 Monte Carlo cycle. An interesting thing is that despite
shrinking of a “single" stacking fault is involved in Figure 6 (d) and Figure 8 (f), the sinking
of the center of gravity in Figure 7 (b) and Figure 9 (b) is of a multiple manner. Of course, this
is not surprising. Those behaviors are just similar to that in N = 1664 small system with a flat
bottom.
Figure 10 shows snapshots at g∗ = 0.4-0.5 and 0.8-0.9 for N = 26624 system. Comparing xz
projection of Figure 10 (a) and (b) we see that the splitting of the projection of lattice lines
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Fig. 8. Snapshot for 6656 hard spheres in a system with the square-patterned flat wall for a
case that defect disappearance occurred at g∗ higher than 0.9; at (a) g∗ = 0.7, (b) 0.8, (c) 0.9, (d)
1.0, (e) 1.3, and (f) 1.4.

disappeared in portion 3 < z∗ < 10. This indicates shrinking of one or a few staking faults
running along (11̄1) or (11̄1̄) as discussed already. Comparing yz projection of Figure 10 (c)
and (d) we see that the splitting of the projection of lattice lines disappeared in portion 2.5 <

z∗ < 8. The splitting of the projection of lattice lines in xz direction has already disappeared
at g∗ = 0.8. This means shrinking of one or a few stacking faults running along (11̄1) or (11̄1̄)
occurred. What is notable is the formation of triangular shapes both in xz and yz projections
in Figure 10 (d). The suggestion of the stacking fault tetrahedron is as already discussed.
The evolutions of the center of gravity for N = 26624 system during g∗ = 0.5 and 0.9 are
plotted in Figure 9. During g∗ = 0.5 [Figure 11 (a)] the relaxation is of a single mode and has
not reached to equilibrium yet. Figure 11 (a) is essentially the same as the corresponding figure
in a recent paper (Mori, in press). Despite that the defect disappearance was proceeded, the
system was not trapped into any metastable configuration. The activation barrier for the glide
of dislocations or the motion of defect toward disappearance may become lower or vanishing
as the system size becomes larger. Figure 11 (b) is quite similar to the corresponding figure
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Fig. 9. Evolution of the center of gravity for 6656 hard spheres in a system with the
square-patterned wall for a case that defect disappearance occurred at g∗ higher than 0.9;
during (a) g∗ = 1.0 and (b) 1.4. Running block average over 103 Monte Carlo cycles at every
103 Monte Carlo cycle is taken. Statistical errors are within 0.010σ for (a) and 0.007σ for (b).

in a recent paper (Mori, in press). It is of a single relaxation mode and fluctuation around
equilibrium is observed.

5. Concluding remarks

We demonstrated the glide mechanism of a Shockley partial dislocation, which terminated an
intrinsic stacking fault, for defect disappearance in hard-sphere colloidal crystal in fcc (001)
stacking under gravity by Monte Carlo simulations (Mori et al., 2007a). This mechanism was
seen at g∗ ∼= 0.9 in a fcc (001) stacking crystal. Thus, we can say that we have pointed out a
superiority of the colloidal epitaxy, which realizes the fcc (001) stacking.
However, the fcc (001) stacking in those simulations is forced by a stress from a small periodic
boundary simulation box. That is, the driving force for the fcc (001) stacking was artificial.
To resolve this shortcoming we have replaced the flat bottom wall with a square patterned
one. By this mean, artificial driving force has been replaced with a realizable one. We have
demonstrated the defect disappearance in those simulations.
In this chapter, we have concentrated on the defect disappearance and looked into the
snapshot at relatively high g∗. Crystallization processes at low g∗ have already been observed
for the flat wall (Biben et al., 1994; Marechal & Dijkstra, 2007). Formation of a few crystalline
layers at the bottom for the flat and square-patterned cases, details of which have been omitted
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Fig. 10. Snapshot for 26624 hard spheres in a system with the square-patterned wall.

624 Applications of Monte Carlo Method in Science and Engineering

www.intechopen.com



������

�	��

����

�
��

����

����

�	��

����

�
��

��	 ��� ��
 ��� �
� ���

�� ��σ

������

���

��


���

	�

	��	

	���

	��


	���


�� 
�
 
�� � ��	
� ���

�� ��σ

Fig. 11. Evolution of the center of gravity for 26624 hard spheres in a system with the
square-patterned wall; during (a) g∗ = 0.5 and (b) 0.9. Running block average over 103 Monte
Carlo cycles at every 103 Monte Carlo cycle is taken. Statistical errors are within 0.0002σ for
(a) and 6 × 105σ for (b).

in this chapter, is in agreement with the previous observation. More detailed analyses are in
progress.
In simulations reported in this chapter, we adopted a conventional Monte Carlo method.
Hence, the time corresponding to one Monte Carlo cycle varied. Indeed, acceptance ration
varied depending on the density with a fixed maximum displacement of the Monte Carlo
particle move. To perform kinetic Monte Carlo simulations to reproduce time evolution
corresponding to real time is of interest. Also, molecular dynamics and Brownian dynamics
simulations are planned.
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