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1. Introduction

Monte Carlo methods of numerical simulations play an important role in studying phase
transitions in general and critical phenomena in particular in statistical physics (Amit &
Martin-Mayor, 2005; Binder & Heermann, 1988; Landau & Binder, 2005; Newman & Barkema,
1999). A hallmark of the critical phenomena that a system exhibit in the vicinity of a
second-order phase transition, or in the modern classification, continuous phase transition
(Fisher, 1967) is its diverging correlation length (Amit & Martin-Mayor, 2005; Cardy, 1996;
Ma, 1976; Stanley, 1971). This length scale renders at first sight numerical simulations useless
because they are inevitably carried out on systems of finite sizes that are thus smaller than the
correlation length and thus cannot probe the bulk behavior of the system under considered.
Moreover, real phase transitions occur only in the thermodynamic limit.
Yet, the idea of finite-size scaling has turned this nuisance into a blessing and the method
based on it has become a routine to extract critical properties from numerical simulations of
finite systems (Amit & Martin-Mayor, 2005; Cardy, 1988; Fisher & Ferdinand, 1967; Fisher
& Barber, 1972; Gasparini et al., 2008; Landau & Binder, 2005; Privman, 1990). Under the
assumption that upon a renormalization-group transformation of a length rescaling of factor b,
the coupling constants of a finite system transform in the same way as in the thermodynamics
limit (Brézin, 1982; Brézin & Zinn-Justin, 1985), the singular part of the free energy of the
system then transforms as

F(τ, H, L−1) = b−dF(τb1/ν, Hbβδ/ν, L−1b), (1)

where δ, β, and ν are critical exponents, L is a characteristic length scale of the system, d
the spatial dimensionality, H the external magnetic field (we shall use the terminology of
magnetism throughout), and the reduced temperature τ = T − Tc with Tc being the critical
temperature. As a result, one arrives at the finite-size scaling ansatz for the free energy

F(τ, H, L−1) = L−d f (τL1/ν, HLβδ/ν), (2)

where f is a scaling function. We have neglected possible dimensional factors for conciseness
hereafter. Appropriate differentiations of Equation (2) then give rise to corresponding scaling
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forms for the magnetization M, the susceptibility χ, and the specific heat C as

M(τ, L) = L−β/ν f1(τL1/ν), (3a)

χ(τ, L) = Lγ/ν f2(τL1/ν), (3b)

C(τ, L) = Lα/ν f3(τL1/ν) (3c)

using the scaling laws or relations

α = 2 − dν, (4a)

α + 2β + γ = 2, (4b)

βδ = β + γ, (4c)

where α and γ are critical exponents and the f s including those that will appear later are all
scaling functions. In terms of the infinite system correlation length ξ∞ that diverges at Tc as

ξ∞ ∝ |τ|−ν, (5)

the argument of f s in Equations (3) is proportional to L/ξ∞ that governs the finite-size
behavior; for small L/ξ∞, finite-size scaling appears in which L is a relevant length scale,
while large L/ξ∞ is the thermodynamic limit in which equilibrium behavior shows and L is
irrelevant. Note that all the critical exponents assume their infinite-lattices values due to the
aforemention assumption (Brézin, 1982; Brézin & Zinn-Justin, 1985). Consequently, measuring
the observables for a series of L can then determine the corresponding exponent ratios and
finally the critical exponents themselves, the pitch of the critical properties, from the pure
power laws emerged exactly at Tc or τ = 0 at which f s are assumed to be analytic. In fact, for
too small systems sizes and temperatures too far away from Tc, corrections to scaling (Wegner,
1972) have to be taken into account. Nevertheless, delicate methods have been developed for
extracting critical exponents as well as Tc (Amit & Martin-Mayor, 2005; Landau & Binder,
2005).
A sequence of Monte Carlo updates may be interpreted as a discrete Markov process (Glauber,
1963; Landau & Binder, 2005; Müler-Krumbhaar & Binder, 1973). Consequently, Monte
Carlo simulations can also be applied to study time-dependent dynamic behavior, though
usually studied is stochastic relaxational dynamics instead of ’true dynamics’ in which the
dynamics is determined by the equations of motion derived from a Hamiltonian. Yet, the
stochastic dynamics for the kinetic Ising model with local spin dynamics as realized in the
single-site Metropolis algorithm (Metropolis et al., 1953), for instance, is believed to fall
into the same universality class as that governed by the time-dependent Ginzburg-Landau
equation (Hohenberg & Halperin, 1977). Dynamic critical phenomena (Cardy, 1996; Ferrell
et al., 1967; Folk & Moser, 2006; Halperin & Hohenberg, 1967; Hohenberg & Halperin, 1977;
Ma, 1976) are also companying with a divergent correlation time teq which diverges with the
correlation length ξ∞ as

teq ∝ ξz
∞ (6)

with a new dynamical critical exponent z dynamic finite-size scaling (Suzuki, 1977) can be
obtained by formally incorporating the time argument t in Equation (1), giving rise to

M(τ, H, t, L−1) = b−β/ν M(τb1/ν, Hbβδ/ν, tb−z, L−1b) (7)
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after a derivative with H. As a result, the finite-size scaling form of the order parameter,
Equation (3a), say, now becomes

M(τ, t, L) = L−β/ν f1t(τL1/ν, tL−z), (8)

which implies a dynamic finite-size scaling form for the correlation time

tL = Lz f2t(τL1/ν). (9)

Therefore, at the criticality,
tL ∝ Lz (10)

in the asymptotic region of large time, large size, and small τ. This is again a standard method
to estimate z, though when the asymptotic region is reached is not easy to determine (Landau
& Binder, 2005; Wansleben & Landau, 1991).
However, actual simulations can only be performed inevitably in a limited time for large
system sizes. So, one encounters a situation that is similar to the static case: In order to
have good estimates of z, one needs to wait for a long time that is longer than teq to enter
the asymptotic region similar to the static case in which one needs a large system size that is
bigger than ξ. In fact, even in the static case, one also needs to wait a similar long time to the
dynamic case in order for the system to equilibrate. This is in fact the issue of critical slowing
down. Nevertheless, finite-size scaling has efficiently helped the static case to overcome the
limited-size problem. It is then quite surprised that a finite-time scaling was elusive for nearly
forty years except for several not-well-noticed work on disordered systems (Hukushima &
Nemeto, 1995; Shima & Nakayama, 1998; 1999; Shinomoto & Kabashima, 1991). Recently,
we realized that the linearly driving method we had been applying to study both first-order
(Zhang & Zhong, 1996; Zhong, 2002; Zhong & Chen, 2005; Zhong et al., 1994; 1995; 1998;
Zhong & Zhang, 1995a;b; 1997) and continuous phase transitions (Fan & Zhong, 2007; 2009;
Zhong, 2006; Zhong & Xu, 2005) just offered a realization of such a scaling (Gong et al., 2010;
Huang et al., 2010). The method provides an external effective time scale that is inversely
proportional to the rate R of the driving by which either an external field or the temperature
that varies linearly with time was applied to a system near its criticality. Because of this finite
time scale, the system evolves according to the driving rather than by itself, which takes a
long time near its criticality. As a consequence, both static and dynamic scaling behavior can
be probed effectively without suffering from critical slowing down. In addition, this time
scale is readily manipulable not only in simulations but also in experiments (Zhang & Zhong,
1996) and thus serves as the temporal analogue of the finite size scale, though the latter may
not be so obtainable experimentally (Gasparini et al., 2008). We shall review the theory and
applications of the finite-time scaling in this chapter. However, before entering into the details,
we would like to make some remarks.
First, for the usual Monte Carlo simulations of phase transitions such as those on the Ising
model with the usual Metropolis algorithm (Metropolis et al., 1953), a direct analogue of
the finite-size scaling by measuring observables at a series of time may not work because
the system needs sufficiently long time to sample its configuration space in order for the
observables to be measured correctly.
Second, there exist scalings with the time or its Fourier transform frequency. However, these
are not the kinds of finite-time scaling in the spirit of the finite-size scaling. The central
distinction is that in finite-time scaling there is a driving that imposes on the system a finite

471Finite-time Scaling and its Applications to Continuous Phase Transitions

www.intechopen.com



time scale that restricts its natural evolution and thus its scaling and that is controllable in
close analogue to the external length scale in finite-size scaling.
For example, in the short-time critical dynamics (Zheng, 1998), there is a new independent
initial slip exponent θ associated with a small initial magnetization m0 (Janssen et al., 1989).
The dynamic transformation law for M in the absence of H is (Li et al., 1995; Zheng, 1998)

M(τ, t, m0, L) = b−β/ν M(τb1/ν, tb−z, bx0 m0, L−1b), (11)

or
M(τ, t, m0, L) = t−β/νz f3t(τt1/νz, m0tx0/z, L−1t1/z) (12)

by setting b = t1/z, where x0 = θ + β/ν, because for a sufficiently large lattice and small m0

at τ = 0, M ∝ tθ in the initial stage from Equation (12). In addition, one may make a temporal
Fourier transformation to the dynamics. A transformation law in terms of the frequency ω
instead of t similar to Equation (7) can be written, leading then to

M(τ, ω, L) = ωβ/νz f4t(τω−1/νz, L−1ω−1/z). (13)

One may regard Equations (12) and (13) as examples of finite-time scaling. However, t and its
Fourier transform ω are natural evolution time of the system and cannot be varied in contrast
to L in Equation (8) and R in Equations (34) and (47) below.
In the following, we shall first review briefly the theory of finite-time scaling (Section 2),
then summarize the current methods to extract critical properties using finite-time scaling
(Section 3), followed by a summary of the results obtained with them in continuous
transitions of pure and disordered systems (Section 4). Finally, discussions on the merits
and shortcomings of the methods and future studies as well as conclusions are presented
in Section 5.

2. Theory of finite-time scaling

In this section, we shall first briefly review in Section 2.1 the renormalization-group theory
of finite-time scaling both for a field driving (Section 2.1.1) and for a temperature driving
(Section 2.1.2) to justify the scaling (Gong et al., 2010; Zhong, 2006). Then, we shall study
crossovers in Section 2.2 and corrections to scaling in Section 2.3 and discuss the combined
effects of both finite time and finite size by taking into account the latter in Section 2.4.

2.1 Renormalization-group theory of finite-time scaling

Consider the model with the following Ginzburg-Landau functional of a ϕ4 theory in an
external field H,

F[ϕ] =
∫

dr

{

1

2
τϕ2 +

1

4!
gϕ4 +

1

2
(∇ϕ)2 − Hϕ

}

, (14)

where g is a coupling constant and τ is proportional to the temperature distance from
the mean-field Tc. Its dynamics is governed by the Langevin equation for the scalar
non-conserved order parameter ϕ,

∂ϕ

∂t
= −λ

δF[ϕ]

δϕ
+ ξ (15)
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with a Gaussian white noise ξ satisfying

〈ξ(r, t)〉 = 0, 〈ξ(r, t)ξ(r
′, t′)〉 = 2λδ(r − r

′)δ(t − t′), (16)

where λ is a kinetic coefficient. This is the Model A (Hohenberg & Halperin, 1977), which falls
in the same universality class as the kinetic Ising model with local spin dynamics. We shall
consider two driven non-equilibrium situations in which one starts with a sufficiently ordered
state and increases linearly either the external field H = Rt or the temperature τ = Rt with
a small rate constant R across the critical point. As the critical point lies at τ = 0 and H = 0,
our choice of initial conditions means t is in fact t − tc with tc the time at the critical point. For
simplicity, however, we shall still use t below as the shift of initial point makes no difference
in the linear driving, which makes in fact this driving superior to others including the usual
sinusoidal driving (Gong et al., 2010).
In order to use systematic field-theoretic methods, we recast the dynamics into an equivalent
field theory with a dynamic functional (Janssen, 1992),

I[ϕ, ϕ̃]=
∫

drdt

{

ϕ̃

[

ϕ̇+λ(τ−∇2)ϕ+
1

3!
λgϕ3−λH

]

−λϕ̃2

}

(17)

by introducing an auxiliary response field ϕ̃ (Martin et al., 1973). Expectation values can then
be obtained by taking appropriate derivatives of the generating functional

W[h, h̃] = ln
∫

D(ϕ, ϕ̃) exp[−I[ϕ, ϕ̃] +
∫

drdt(hϕ + h̃ϕ̃)] (18)

with respect to the external sources h and h̃ that conjugate respectively to ϕ and ϕ̃.
Accordingly to the field theoretical formulation of the renormalization-group theory, the
critical exponents are associated with the renormalization factors Zs that cure the divergences
in the theory (Amit & Martin-Mayor, 2005; Zinn-Justin, 1996). One notices that since the
variation of T and H is spatially uniform and depends linearly on time with a small R, no new
divergence except the extrinsic one at t → ∞ or ω → 0 in frequency domain is generated. As
a result, no new Z besides the usual ϕ4–theory ones has to be introduced, except the possible
initial slip (Janssen et al., 1989) which does not contribute however because the transition
is independent of the initial condition when we start with a driving sufficiently far away
from the critical point. To deal with the time-dependent external probes, we perform the
renormalization at the critical point at which τ and H vanish, and then make an expansion
about the critical theory (Amit & Martin-Mayor, 2005; Weinberg, 1973; Zinn-Justin, 1996)
by taking as insertions the deviations arising from the driving away from that point. In
this way, the time dependent external probes can be naturally accounted for. Moreover,
the renormalization at the critical point enables us to make direct contact with the original
situation to which no time-dependent field is applied, and thus to solve analytically the
problem almost without any additional labor. We shall treat the cases of varying external
field and varying temperature separately in the following.

2.1.1 Theory of field driving

In this case, H is varying with t linearly and τ is a small constant. The theory can be rendered
finite for d ≤ 4 by introducing the following Z factors (Amit & Martin-Mayor, 2005; Janssen,
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1992; Zinn-Justin, 1996)

ϕ → ϕ0 = Z1/2
ϕ ϕ, ϕ̃ → ϕ̃0 = Z1/2

ϕ̃ ϕ̃, g → g0 = NdμǫZ−2
ϕ Zuu,

λ → λ0 = (Zϕ/Zϕ̃)1/2Zλλ, τ → τ0 = Z−1
ϕ Zϕ2 τ + τc, H → H0 = Z−1/2

ϕ H,
(19)

where ǫ = 4 − d, Nd = 2/[(4π)d/2Γ(d/2)] with Γ being the Euler Gamma function, μ is
an arbitrary momentum scale, and τc the fluctuation shift of the critical point, which can be
neglected as dimension regulations (’t Hooft & Veltman, 1972) are employed. However, we
shall henceforth still use τ to denote τ − τc that is proportional to T − Tc. Consequently, the
critical point at τ = 0 and H = 0 can be chosen to correspond to t = 0 by a proper time
translation. In Equation (19), the subscripts 0 indicate unrenormalized bare variables. By
exploiting the fact that the bare quantities are independent of μ and expanding the averaged
order parameter in a Taylor’s series in τ and H at every definite time instant, namely

M(τ, H) = 〈ϕ(τ, H)〉 = G10,0(τ, H) =
∞

∑
N,N′=1

1

N!N′!
λN+N′

τN′
HN G1N,N′ (0, 0), (20)

the Green function G1N,N′ is defined as

G1N,N′ =
δ1+N+N′

W[h, h̃, τ]

δhδh̃NδτN′ (21)

the renormalization-group equation is thus,

(

μ∂μ + ςλ∂λ + β∂u + γϕ2 τ∂τ +
1

2
γH∂H +

1

2
γ

)

M = 0, (22)

with the Wilson’s functions being defined as derivatives at fixed bare parameters,

ς(u) = μ∂μ ln λ, γ(u) = μ∂μ ln Zϕ, γϕ2 (u) = μ∂μ ln τ, β(u) = μ∂μu, (23)

where ∂i indicates the partial derivative with respect to i. No new Wilson’s function due to
the driving has to be introduced.
At the fixed point

u = u∗, β(u∗) = 0, (24)

the solution of (22) is

M(λ, τ, H, u, μ) = ργ∗/2 M(λρς∗ , τρ
γ∗

ϕ2 , Hργ∗/2, u∗, μρ), (25)

where ρ is a running (momentum) variable and starred quantities denote the corresponding
values at the fixed point. On the other hand, from the naïve dimensions of various variables

|r| ∝ μ−1, τ ∝ μ2, u ∝ μ0, λt ∝ μ−2,

ϕ ∝ μ(d−2)/2, H ∝ μ(d+2)/2, ϕ̃ ∝ μ(d+2)/2,
(26)

one obtains a homogeneous form

M(λ, τ, H, u, μ) = ρ(d−2)/2 M(λtρ2, τρ−2, Hρ−(d+2)/2, u, μ/ρ). (27)
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Applying (27) to the left-hand size of (25) leads to

M(t, τ, H) = ρβ/ν M(tρz, τρ−1/ν, Hρ−βδ/ν), (28)

or in terms of the length variable b,

M(t, τ, H) = b−β/ν M(tb−z, τb1/ν, Hbβδ/ν), (29)

with the critical exponents given by

η = γ∗, ν−1 = 2 − γ∗
ϕ2 , z = 2 + ς∗, (30a)

β/ν = (d − 2 + η)/2, δ = (d + 2 − η)/(d − 2 + η), (30b)

where we have chosen λ as the time unit and used the same symbol to denote functions of
different numbers with arguments.
As we perform the renormalization at the critical point and utilize the scheme of dimension
regulations and minimal subtractions with ε expansion (’t Hooft & Veltman, 1972), a scheme
in which dynamics decouples from statics (De Dominicis & Peliti, 1978), all the Z factors can
be chosen to be identical to the usual ϕ4 model. As a result, all the static critical exponents
and the dynamic critical exponent z determined from (30) are identical to those of the usual
scalar Model A in the absence of the time-dependent field (Zhong, 2006; Zinn-Justin, 1996).
Consequently, Equation (29) is just Equation (7) in the thermodynamic limit L−1 = 0.
Now the linearly varying field H = Rt can be complemented to Equation (29) (Zhong, 2006).
(29) implies H and t transform as

H′ = Hbβδ/ν, t′ = tb−z, (31a)

respectively, where the primes indicate variables after rescaling. In the vicinity of Tc, R should
also scale upon renormalization. Suppose it transforms as

R′ = RbrH , (31b)

since H′ = R′t′, one then obtains from Equation (31) a scaling law

rH = z + βδ/ν, (32)

which may be regarded as a definition of rH that reflects the rescaling of R with that of H and
t since R = H/t. Replacing t with R and setting b = R−1/rH in Equation (29), one finds

M(t, τ, R) = Rβ/νrH m1H(tRz/rH , τR−1/νrH ), (33)

or, in terms of some other pairs of the variables,

M(H, τ, R) = Rβ/νrH m2H(HR−βδ/νrH , τR−1/νrH ), (34)

M(t, τ, H) = H1/δm3H(tHvz/βδ, τH−1/βδ), (35)

M(t, τ, R) = t−β/νzm4H(RtrH /z, τt1/νz), (36)

as only two out of the trio t, R, and H are independent, where all miHs are scaling functions.
Equations (33) to (36) are the finite-time scaling analogues of (3).
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We have therefore justified the finite-time scaling. It is remarkable in this formulation that
the critical exponents are naturally identical with the usual infinite time systems’. Also, no
new independent exponent has to be introduced. In fact, since an expansion of the partition
function in terms of a space-time dependent magnetic field generates correlation functions,
the scaling properties of thermodynamic functions of a time-dependent magnetic field such
as (33) and (34) follow naturally once the field is so small that the system still remains in the
critical region.

2.1.2 Theory of temperature driving

In this case, H keeps zero, but T or τ varies with time linearly. The scaling form can be derived
following the procedure in the last section and can also be found in (Zhong, 2006). Here, we
present an alternative semi-phenomenological derivation.
From Section 2.1.1, one can write directly the renormalization-group equation for the
temperature driving as

(

μ∂μ + ςt∂t + β∂u + γϕ2 τ∂τ +
1

2
γ

)

M = 0, (37)

whose solution at the fixed point, Equation (24), is

M(t, τ, u, μ) = ργ∗/2 M(tρς∗ , τρ
γ∗

ϕ2 , u∗, μρ), (38)

where we have directly used t in place of λ. However, as R is also a parameter, we may also
write the renormalization-group equation as

{

μ∂μ + ςt∂t + β∂u + γϕ2 τ∂τ + r[u(μ)]R∂R +
1

2
γ

}

M = 0, (39)

where we have assumed an additional Wilson function r(u) from a new renormalization factor
associated with R. Its solution at the fixed point, Equation (24), is then

M(t, τ, R, u, μ) = ργ∗/2 M(tρς∗ , τρ
γ∗

ϕ2 , Rρr∗ , u∗, μρ), (40)

where r∗ = r(u∗). Combining with the homogenous equation from dimensional analysis,
Equation (27), results in

M(t, τ, R, u, μ) = ρβ/ν M(tρz, τρ−1/ν, Rρ−rT , u∗, μ) (41)

similar to Equation (28) with the exponents defined in Equation (30) and rT = 4 − r∗ since
the naïve dimension of R is 4. However, because R = τ/t, only the latter two variables are
independent. As a consequence,

∂t f (t, τ) = (∂t − τ/t2∂R)w(t, τ, R), ∂τ f (t, τ) = (∂τ + 1/t∂R)w(t, τ, R) (42)

for two arbitrary derivable functions f and w. Substituting the derivative operators in
Equation (42) into (37) and comparing with (39), one finds that

r(u) = γϕ2 (u) − ς(u). (43)
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Therefore, at the fixed point, Equation (24), one has a scaling law

rT = 4 − r∗ = 4 − γϕ2 (u∗) + ς(u∗) = z + 1/ν (44)

using Equation (30a). Equation (44) can of course be derived as in Section 2.1.1 from a length
scaling version of Equation (41),

M(t, τ, R) = b−β/ν M(tb−z, τb1/ν, RbrT ), (45)

which implies

t′ = tb−z, τ′ = τb1/ν, R′ = RbrT , (46)

relating variables before and after a length rescaling of factor b and τ = Rt (Zhong, 2006).
From Equation (45), finite-time scaling form for the temperature driving can be derived
(Zhong, 2006) as

M(τ, R) = Rβ/νrT m1T(τR−1/νrT ). (47)

Similarly, finite-time scaling forms for the non-equilibrium susceptibility and specific heat that
are defined respectively as the fluctuations of the order parameter and the energy E like their
equilibrium counterparts are

χ(T, R) = R−γ/νrT m2T(τR−1/νrT ), (48)

C(T, R) = R−α/νrT m3T(τR−1/νrT ). (49)

2.2 Crossover

We analyze the crossover between the regime of finite-time scaling and that of equilibrium in
this section.

2.2.1 Field driving

In the case of field driving, the finite-time scaling regime is defined by

τR−1/νrH � 1, τH−1/βδ � 1, τt1/νz � 1. (50)

Note that
|τ|νrH = |τ|νz|τ|βδ ∝ ξ−z

∞ Mδ
eq ∝ Heq/teq ≡ Req (51)

using Equations (5), (6), and (32), where Heq is an equilibrium magnetic field corresponding
to an equilibrium magnetization Meq at τ < 0 and Req is an equilibrium rate. Equation (50)
implies just

R � Req, H � Heq, t � teq, (52)

respectively. Accordingly, the finite-time scaling regime is characterized by an external rate
and field that are larger than their corresponding intrinsic ones and an external time that is
shorter than the intrinsic one and thus all these external scales become relevant similar to
the case of finite-size scaling. As they all originate from the external driving, it is therefore
reasonable and simpler to say that the finite-time scaling regime is characterized by an
effective time scale R−1 shorter than the equilibrium correlation time teq. While in the reverse

cases, for large τR−1/νrH or small R ≪ Req for instance, the field varies so slowly that
although it is changing, before it changes, the system has already equilibrated so that the
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usual equilibrium scaling

M(τ, H) = τβ f4(Hτ−βδ) (53)

emerges. Therefore, the scaling functions miH have a similar asymptotic behavior as,

mi(x, y) →

{

m5H(x), for y → 0,

yβ f4(xy−βδ), for y → ∞,
(i = 1, 2, 3, 4). (54)

The crossover occurs when R ∼ Req or H ∼ Heq or t ∼ teq.
Although the finite-time scaling regime is defined by a large R, for too large R corresponding
to a large H and short t, on the other hand, the system under such a driving is too far away
from equilibrium and may enter another regime.

2.2.2 Temperature driving

In this case, there is only one scaled argument, τR−1/νrT , in the scaling functions. The
finite-time scaling regime is thus defined by the smallness of this argument, viz., |τ|R−1/νrT �
1, or,

|τ|−νrT R = |τ|−νz|τ|−1R ∝ ξz
∞R/|τ| ∝ teqR/|τ| � 1, (55)

where Equations (5), (6), and (44) have been used. The last part of Equation (55) expresses
clearly that the finite-time scaling regime is correctly defined by an effective time scale R−1

that is far shorter than the equilibrium correlation time teq. Accordingly, in close similarity

to finite-size scaling, in this regime, the relevant scale is τR−1/teq = Req/R. In the other
extreme, the external time scale is so longer than teq that although the temperature is changing,
before it changes, the system has already equilibrated in a way that the usual equilibrium
behavior M ∝ τβ emerges independent of R. Therefore, all the scaling functions miT behave
asymptotically as

miT(x) →

{

constant for x → 0,

xβ for x → ∞,
(i = 1, 2, 3). (56)

The crossover occurs near τR−1 ∼ teq.

2.3 Corrections to scaling

So far, we have only considered the relevant variables such as H and τ. If there exist irrelevant
variables, then there will be corrections to scaling induced by them (Wegner, 1972). We shall
briefly discuss this issue in this section.
Assume that the leading irrelevant variable is Y and its corresponding exponent ω > 0,
Equation (45), for instance, is modified to

M(T, R, Y) = b−β/ν M(τb1/ν, RbrT , Yb−ω) (57)

by neglecting the dependent variable t. Accordingly, Equation (47) becomes

M(T, R, Y) = Rβ/νrT m4T(τR−1/νrT , YRω/rT ). (58)

So, even at τ = 0,
M(Tc, R, Y) = Rβ/νrT m5T(YRω/rT ). (59)

It is the scaling function m5T that induces the leading algebraic corrections to scaling (Wegner,
1972). Exactly at the critical point, R = 0 and the corrections disappear; while near it, one can
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expand m5T(x) at x = 0 as a series of x = YRω/rT ,

M(Tc, R, Y) = Rβ/νrT (A0 + A1YRω/rT + A2YR2ω/rT + ...), (60)

where Ai are constants.
From Equations (1) and (11), one can also write down the scaling forms with corrections as

M(T, L, Y) = L−β/ν f5(τL1/ν, YL−ω), (61)

M(T, t, Y) = t−β/νz f5t(τt1/νz, Yt−ω/z) (62)

for finite-size scaling and short-time critical dynamics, respectively. One finds therefore
that the correction-to-scaling exponent decreases sequentially from finite-size scaling (ω),
to short-time critical dynamics (ω/z), and to finite-time scaling (ω/r). This implies the
corrections vary quite gently in the latter as compared to the other two cases and may thus be
ignored without large errors in the first approximations in estimating critical properties.
In addition, if there is a marginal variable (Wegner, 1972), logarithmic corrections to scaling
appears. Finite-time scaling forms in the presence of logarithmic corrections can also be
derived. We leave this for future publications.

2.4 Combined finite-time and finite-size scalings

Up to now in our discussions of finite-time scaling, we have implicitly assumed that the
system size is infinite, i.e., in the thermodynamic limit. We now take the finite-size effects
into account.
In this case, the transformation law for the order parameter in temperature driving, for
example, is

M(T, R, L) = b−β/ν M(τb1/ν, RbrT , L−1b), (63)

from which the finite-time and finite-size scaling form

M(T, R, L) = Rβ/νrT m6T(τR−1/νrT , L−1R−1/rT ) (64)

follows. There are then several consequences that can be drawn.
First, the regime of finite-time scaling is further restricted to L−1R−1/rT << 1 or R−1/rT << L
besides τR−1 < teq from Equation (55). So, for sufficiently large lattice sizes, the finite-size
effects can be ignored. For not so large lattice sizes but still in the finite-time scaling regime,
there are corrections from the finite size. Yet, as L−1R−1/rT << 1, the corrections may still be
small and be neglected.
Second, for L−1R−1/rT >> 1 but τR−1/νrT = τL1/ν(L−1R−1/rT )1/ν << 1 or L << τ−ν ∝ ξ∞,
the system then crossovers to the finite-size scaling regime.
Third, if τR−1/νrT >> 1 besides L−1R−1/rT >> 1, equilibrium follows.
Combining the above three cases, one finds that the scaling function m6T behaves
asymptotically as

m6T(x, y) →

⎧

⎨

⎩

m1T(x), for y → 0 & x → 0, finite time scaling

yβ/ν f1(xy−1/ν), for y → ∞ & x → 0, finite size scaling

xβ, for y → ∞ & x → ∞, equilibrium

(65)

with the scaling functions m1T and f1 defined above in Equations (47) and (3a), respectively.
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The crossover from finite-time scaling to finite-size scaling regime occurs near R−1/rT ∼ L for
sufficiently small τ. In fact, the former regime can be regarded as an effective finite-size scaling
regime in which the driving-induced effective length scale R−1/rT dominates L. This can be
generalized to the concept of driving simulations by which other scalings that one needs or
wants or may be difficult to consider can be simulated with driving-induced effective scales.

3. Methods of finite-time scaling

Currently, there are mainly two catalogs of methods that have been developed to estimate
both static and dynamic critical exponents as well as the critical temperature on the basis
of finite-time scaling. They are respectively based on the field driving and the temperature
driving. The main point underlying the classification is that in the field driving, one has two
variables, τ and H, at ones disposal, while in the temperature driving, only τ is at hand. As a
result, to obtain all the critical exponents, one has to resort to other methods like Monte Carlo
renormalization group. Of course, methods that combine some or all of these are possible.
For example, the field driving with an extended dynamic Monte Carlo renormalization-group
method was first applied to the first-order phase transitions in the two-dimensional Ising
model (Zhong, 2002). Also, combining finite-time scaling with finite-size scaling may be
helpful.

3.1 Field-driving method

This method is based on Equation (34) (Gong et al., 2010; Huang et al., 2010). In the finite-time
scaling regime, the external time scale dominates and drives the system off equilibrium.
Hysteresis then emerges even at Tc. In order to deal with the situation of two variables in
Equation (34), we scan H back and forth with the same rate R to form a hysteresis loop and
integrate over H to get its area A =

∮

MdH. We then obtain from Equation (34) finite-time
scaling forms of the coercivity Hc at M = 0, A, and its derivative as,

Hc(τ, R) = RnH m6H(τR−1/νrH ), (66a)

A(τ, R) = RnaH m7H(τR−1/νrH ), (66b)

∂A(τ, R)/∂τ = Ra1 m8H(τR−1/νrH ), (66c)

with
nH = βδ/νrH , naH = β(δ + 1)/νrH , a1 = β(δ + 1)/νrH − 1/νrH . (67)

At τ = 0, exact power laws

Hc(0, R) ∝ RnH , A(0, R) ∝ RnaH , ∂A(0, R)/∂τ ∝ Ra1 (68)

follow, from which nH , naH , and a1 can be determined. The critical temperature can also
be determined by finding the temperature at which minimum deviations from the power
law behavior, Equation (68), occurs from studying Equations (66). Combining the exponents
found with the hyperscaling law β(δ + 1) = dν from Equation (4), one can calculate all the
static and dynamic critical exponents from

δ = nH/(naH − nH), β/ν = d(naH − nH)/naH , z = d(1 − nH)/naH , rH = d/naH ,
β = (naH − nH)/(naH − a1), ν = naH/d(naH − a1).

(69)
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Note that in Equations (69) the first line requires only nH and naH , while the last line needs a1,
which usually has a large statistical error due to numerical derivatives.
Of course, other observables such as χ (Huang et al., 2010) may also be employed.
The hysteresis critical exponents nH and naH (or the rate exponent rH = d/naH) have a
particular meaning. Due to the scaling laws, Equations (4) and (30b), usually two critical
exponents suffice to determine others for equilibrium critical phenomena. However, as δ
is directly related to η via Equation (30b), knowing these two can only produce ratios of
exponents instead of individual exponents, because

(γ/ν) = (β/ν)(δ − 1), (70a)

(γ/ν) = 2 − η, (70b)

2(β/ν) + (γ/ν) = d. (70c)

In fact, these two exponents can be used to characterize the so-called ‘weak’ universality
class in which exponent ratios instead of exponents themselves are identical (Suzuki, 1974).
If dynamics is taken into account, one then needs z besides those two because in the usual
critical dynamics, z is independent of the static ones. However, owing to the new scaling law,
Equation (32), in the finite-time scaling, they are related. One can easily find indeed that nH

and naH (or rH) suffice to determine δ, η, and z.

3.2 Temperature-driving method: Finite-time scaling with Monte Carlo renormalization

group

This method is based on Equation (47) for a temperature sweep. However, it can at best give
rise to the exponent ratios and Tc. In order to obtain more information, one way is to combine
it with an extended dynamic Monte Carlo renormalization-group approach (Zhong, 2002).
This approach may be regarded as a direct realization of Equation (46). It consists in matching
correlation functions on different-sized lattices at different levels of renormalization to obtain
renormalization-group eigenvalues and hence associated exponents. As a method to estimate
the blocked variables, one resorts to a nearest-neighbor correlation function Gnn defined on a
system of size Lb and assumes that after one block, it exactly matches that of a smaller system
of size L without blocked, viz.,

G′
nn,Lb(T′

p, R′) = Gnn,L(Tps, Rs), (71)

where Tp is the temperature at the peak of Gnn and s indicates quantities on the small lattice.
In other words, one identifies the blocked variables with their unblocked counterparts on the
small lattice. Consequently, one finds

rT = log(Rs/R)/ log b, ν = log b/ log(τps/τp) (72)

from Equation (46) and hence z from Equation (44). Moreover, as the two systems whose Gnns
are compared have the same size, size effects are thus reduced.
Iterating this blocking procedure produces a series of exponents which should be invariant
after a couple of blockings that iterate away the irrelevant variables if there is a fixed point
controlling the scaling behavior, because the correlation functions will then track each other.
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Furthermore, combining the first two equations of Equation (46) at Tp, one finds an invariant
constant

a ≡

(

τp

R1/νrT

)′

=
τp

R1/νrT
∝

(

τpR−1

teq

)1/νrT

(73)

under rescaling, which reflects again the similarity with finite-size scaling in which the ratio
of the correlation length ξL(Tc) of a system of size L at Tc to L, ξL(Tc)/L, is scale invariant
(Amit & Martin-Mayor, 2005). Therefore,

Tp = Tc + aR1/νrT , (74)

which offers both a method to estimate Tc and also a consistent check of the hysteresis
exponents 1/νrT with that derived from Equation (72). Equation (74) is reasonable because at
R = 0, or equilibrium, the correlation function ought to exhibit a peak at Tc. At a finite-time
scale R−1, there is an overshoot or hysteresis embodied in Tp due to the driving out of
equilibrium.
The fitting and the Monte Carlo renormalization-group method then provide Tc, ν, rT , and z.
Like the case of field driving, there is a scaling law, Equation (44), relating the static exponent
ν to dynamic ones rT and z. As a result, verifying one out of the three then verifying the
other two since there is a consistent check of the correctness of 1/νrT . In order to obtain other
exponents, one can invoke the finite-time scaling forms of the order parameter, Equation (47),
and other observables such as the non-equilibrium susceptibility, Equation (48), and specific
heat, Equation (49), all of which can be measured during the course of heating without the
need for independent setups. As the arguments of the scaling functions miT have been known,
one can then just adjust one exponent in each case to collapse the curves of various Rs or fit
M or χ or C at τ = 0 or at their respective peaks if available similar to Equation (68) to obtain
directly the corresponding exponents.
As a lot of critical exponents can be obtained independently, one can then test the scaling laws,
Equations (4) and (70). This is important for two reasons. First, the scaling laws may be broken
in some cases (Fisher, 1986; Grinstein, 1976) in which there is a dangerous irrelevant variable
(Wegner, 1972). Second, if valid, they give strong evidences for the asymptotic nature of the
exponents obtained which is not easily obtainable in disordered systems, because asymptotic
exponents ought to satisfy scaling laws if they are valid.

4. Summary of results from finite-time scaling

We summarize briefly in this section the main results that have been obtained using the
methods of finite-time scaling presented in Section 3. We again present them according to
the classification we adhered to in this chapter.

4.1 Results obtained using field-driving method

The field-driving method has been applied successfully to the two-dimensional and
three-dimensional Ising models (Gong et al., 2010) and the two-dimensional three- and
four-state Potts models (Huang et al., 2010).

4.1.1 Simulation details

For the Ising model (Ising, 1925) in the presence of an external field, there is an inversion
symmetry, which also reflects in the hysteresis loops. The coercive field can then be simply
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d naH nH a1 rH δ z β ν
2 0.4965(18) 0.4653(19) 0.244(7) 4.028(15) 14.9(1.3) 2.154(11) 0.124(10) 0.983(28)

0.49487(15)† 0.46394(14)† 0.24743(8)† 4.0415(12)† 15‡ 2.1665(12)§ 1/8‡ 1‡

3 0.6650(28) 0.5466(22) 0.314(7) 4.511(19) 4.62(15) 2.045(13) 0.337(11) 0.632(13)

0.6647(6)† 0.5499(5)† 0.3131(6)† 4.513(4)† 4.789(2)♭ 2.031(3)♮ 0.3265(3)♭ 0.6301(4)♭

Table 1. Measured and derived exponents of the Ising model. †: calculated from other
exponents in the same row (Zhong, 2006); ‡: exact results; §: from (Nightingale & Blöte, 1996)

(Nightingale & Blöte, 2000); ♭: from (Pelissetto & Vicari, 2002); and ♮: average of the values
estimated by (Grassberger, 1995) and (Kikuchi & Ito, 1993).

defined as in Section 3.1. In the case of the q-state Potts model (Potts, 1952), we apply an
external field along one Potts state. No inversion symmetry in the hysteresis loops exist
any more. We then employ the peak of a non-equilibrium susceptibility as a definition of
the coercivity. Periodic boundary conditions are applied throughout. We choose several
temperatures around the critical point of a model and a series of rates at each temperature.
There are several considerations for the rates chosen. First, they cannot be too large to avoid
far away from equilibrium, which may be qualified when the equilibrium equation of state
away from the transition region is followed. Second, they cannot be too small to avoid leaving
the finite-time scaling regime for the equilibrium or finite-size scaling regime. Third, they
should be as small as possible in order to reduce errors from the relatively large values of an
observable at large rates as compared to the small ones. Then, for each chosen temperature
and rate, we start a Monte Carlo simulation at an ordered state with a sufficiently large
external field that is larger than the closure field of the hysteresis loops at that rate to ensure
closure of the loops and that has otherwise been checked to have no effect on the results.
Several Monte Carlo steps suffice to equilibrate the system as it is far away from its critical
point. After equilibrium, the field is swept with the rate back and forth for 100 times, say, to
obtain 100 hysteresis loops. Averaged values of A and M can then be obtained. The method
presented in Section 3.1 then yields Tc and exponents.

4.1.2 Results

The Tcs for both models determined from the minimum deviations of A from pure power
laws agree well with their respective exact results. Knowing Tc can then give rise to the critical
exponents, which are given in Tables 1 (Gong et al., 2010) and 2 (Huang et al., 2010). One sees
that the present results agree reasonably well with the exact ones, showing the effectiveness
of the method. Note that besides the early real-space renormalization-group studies (see (Wu,
1982) for a review), the present is the one that directly applies an external field to estimate
δ, though it can also be estimated by other critical exponents through scaling laws. Slightly
overlapped within the statistical errors as they are, our δs for q = 3 and 4 still support their
respective conjectured values. The dynamic critical exponent zs obtained for both the q = 3
and q = 4 Potts model agree well with previous Monte Carlo simulation results (de Alcantara
Bonfim, 1987; Tang & Landau, 1987). Along with z in Table 1 of the two-dimensional Ising
model that is equivalent to the q = 2 Potts model, they appear to confirm the dynamic weak
universality (de Alcantara Bonfim, 1987; Tang & Landau, 1987) according to which the Potts
model with q = 2, q = 3, and q = 4 all share the same z. However, they are apparently distinct
from the short-time dynamic results of z = 2.29 for q = 4 (da Silva et al., 2002; Fernandes et
al., 2006) but z = 2.19 for q = 3 (da Silva et al., 2002; Okano et al., 1997; Zhang et al., 1999).
Thus, further studies are still needed here.
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q naH nH a1 rH δ β/ν β ν z
3 0.4969(12) 0.4624(9) 0.200(10) 4.025(10) 13.4(6) 0.139(6) 0.116(5) 0.838(3) 2.164(7)

0.4962(8)‡ 0.4631(8)‡ 0.1985(10)‡ 4.031(7)‡ 14† 2/15† 1/9† 5/6†

4 0.4954(13) 0.4645(21) 0.154(12) 4.039(11) 15.1(1.3) 0.124(10) 0.0900(7) 0.726(3) 2.163(10)
0.4953(12)‡ 0.4643(11)‡ 0.1238(15)‡ 4.038(10)‡ 15† 1/8† 1/12† 2/3†

Table 2. Measured and derived exponents of the two-dimensional Potts model. †: conjectured
values (Wu, 1982); ‡: calculated from the conjectured values and the measured zs.

4.2 Results obtained using temperature-driving method

This method has been applied successfully to pure systems including the two-dimensional
Ising model (Zhong & Xu, 2005) and the three-state Potts model (Fan & Zhong, 2007), and
disordered systems including a two-dimensional random-bond Potts model with the state
number q = 5 and q = 8 (Fan & Zhong, 2009), a three-dimensional random-bond Ising model
(Xiong et al., 2010a), and a three-state random-bond Potts model (Xiong et al., 2010b).

4.2.1 Simulation details

In this case, in addition to the general considerations and boundary conditions given in
Section 4.1.1, a pair of lattice sizes, for example, 128 and 64 in three dimensions has to be
used owing to the two-lattice matching in renormalization. For a given R and, in the case of
disordered systems, a disorder strength and a sample of its fixed realization, we start a Monte
Carlo simulation from a completely ordered state at an initial temperature that is chosen to be
so far away from Tp that it has been checked to have no effect on the results. After one time
unit consisting of a sequential sampling of all the spins with the usual Metropolis algorithm
(Metropolis et al., 1953), T is increased by R. The system then evolves with time until a
disordered state is reached. At each time in the course of heating, we calculate a sample
of M, Gnn, and E and perform sequentially blockings on the configurations from which the
renormalized Gnn is computed by means of a majority rule with b = 2. Ties are broken by a
random selection among the tied states. Each quantity is then averaged at each time step over
different samples.

4.2.2 Results

So far, the critical temperatures obtained agree quite well with either exact results (Fan &
Zhong, 2007; 2009; Zhong & Xu, 2005) or existing estimates (Fan & Zhong, 2009; Xiong et al.,
2010b) or an approximate theory (Xiong et al., 2010a;b). The critical exponents obtained for
the pure two-dimensional Ising model, ν = 0.97(8), z = 2.15(13), and β = 0.12(1) for only
8 to 40 samples, and for the pure two-dimensional three-state Potts model, ν = 0.816(27),
z = 2.171(62) and β = 0.108(4) for more than 200 samples and hence smaller statistical errors,
agree well with the corresponding values listed in Tables 1 and 2. A positive α = 0.368(54)
calculated from the hyperscaling law, Equation (4a), has also been testified by a scaling
collapse of the specific heat curves for the latter model (Fan & Zhong, 2007).
Disorder is ubiquitous; its effects on critical behavior are thus important. This has become
clear from Harris criterion (Cardy, 1996; Harris, 1974), namely, uncorrelated quenched
randomness coupled to local energy density is irrelevant and the universality class of the
pure system persists when its specific heat critical exponent α < 0, while such randomness
will lead to a new universality class controlled by a new ‘random’ fixed point when α > 0. To
identify the asymptotic critical exponents that characterize the random fixed point in the latter
case is, however, not a simple task, as disorder-dependent critical exponents are frequently
obtained, possibly reflecting the competition of different fixed points (Berche & Chatelain,
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r0 q rT ν 1/νrT z β β/ν α = 2 − dν
3 8 4.39(12) 0.757(43) 0.302(16) 3.07(12) 0.130(15) 0.172(10) 0.49(9)

5 4.15(8) 0.818(43) 0.295(13) 2.93(7) 0.128(10) 0.157(4) 0.36(9)
10 8 5.43(13) 1.021(35) 0.181(7) 4.45(13) 0.170(20) 0.167(14) -0.042(70)

5 5.12(7) 1.027(23) 0.190(5) 4.15(7) 0.161(20) 0.157(16) -0.054(46)
15 8 5.75(15) 1.098(27) 0.158(6) 4.84(15) 0.173(20) 0.158(14) -0.196(54)

5 5.44(10) 1.112(34) 0.167(5) 4.54(9) 0.164(20) 0.148(14) -0.22(7)
20 8 5.88(17) 1.180(35) 0.144(5) 5.03(17) 0.176(20) 0.149(13) -0.36(7)

5 5.62(14) 1.182(34) 0.151(5) 4.77(14) 0.170(20) 0.144(13) -0.36(7)

Table 3. Critical exponents of the two-dimensional random-bond Potts model.

r0 rT ν 1/νrT z β α γ β/ν γ/ν
2 3.60(6) 0.651(18) 0.427(7) 2.061(32) 0.374(6) −0.035(16) 1.389(18) 0.575(18) 2.13(7)
4 3.57(5) 0.682(18) 0.410(7) 2.108(35) 0.349(6) −0.046(17) 1.330(22) 0.512(16) 1.95(7)
5 3.57(5) 0.689(18) 0.407(7) 2.119(37) 0.343(6) −0.052(17) 1.333(22) 0.498(16) 1.93(7)
10 3.48(5) 0.765(19) 0.376(6) 2.175(35) 0.354(6) −0.130(29) 1.420(32) 0.463(17) 1.86(5)

Table 4. Critical exponents of the three-dimensional random-bond Ising model.

r0 rT ν 1/νrT z β α γ β/ν γ/ν
2.5 4.28(3) 0.518(11) 0.451(7) 2.38(3) 0.206(8) 0.54(2) 1.16(2) 0.40(2) 2.24(6)
5 4.30(4) 0.540(9) 0.431(6) 2.44(3) 0.25(2) 0.48(3) 1.15(2) 0.46(4) 2.13(5)

7.5 4.32(5) 0.542(10) 0.426(6) 2.47(4) 0.29(3) 0.40(3) 1.15(2) 0.54(6) 2.12(5)
10 4.31(5) 0.554(9) 0.419(6) 2.51(4) 0.30(3) 0.36(3) 1.15(3) 0.54(6) 2.08(7)
15 4.34(6) 0.566(15) 0.408(7) 2.57(3) 0.31(3) 0.29(4) 1.15(5) 0.55(6) 2.03(10)
20 4.34(7) 0.569(16) 0.406(9) 2.58(5) 0.32(3) 0.28(4) 1.15(5) 0.56(6) 2.02(12)
30 4.21(11) 0.673(25) 0.353(9) 2.72(8) 0.34(4) 0.27(4) 1.25(5) 0.51(6) 1.86(10)

Table 5. Critical exponents of the three-dimensional three-state random-bond Potts model.

2004; Folk et al., 2003). We have studied three random-bond models in which the single
pure bonds can randomly select between a weak bond K and a strong one r0K with equal
probability with r0 characterizing the disorder strength. The three-dimensional random-bond
Ising model in its pure version has a continuous transition with a positive α, while the two-
and three-dimensional Potts models studied have first-order phase transitions in their pure
version and disorders make them continuous (Aizenman & Wehr, 1989; Cardy & Jacobsen,
1997; Hui & Berker, 1989). All the three models will thus exhibit new universality classes in
principle.
The exponents obtained using the method detailed in Section 3.2 of the three models are listed
in Tables 3 to 5. They have been checked to be independent of the lattice sizes used for some
disorder strengths in all the models. Generally speaking, our exponents agree quite well with
existing results except ν and α of the latter model (Xiong et al., 2010b). Details can be found
in the original papers and we shall not discuss them here to save space. Rather, we shall only
focus on those special aspects.
For the two-dimensional random-bond Potts model, its exponents in Table 3 exhibit two
distinct regimes with α showing opposite signs, which, as indicated, is calculated by the
scaling law, Equation (4a), and has been checked by scaling collapses. A positive α means
ν < 1 as seen, which violates the bound

ν ≥ 2/d (75)

suggested to be satisfied for disordered systems (Chayes et al., 1986). This violation was also
found in (Cardy & Jacobsen, 1997) but was later argued to be due to the insufficient disorder
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strength because for q � 2 it was found that the bound (75) was satisfied for stronger disorders
in agreement with our results, suggesting the violation was a result of crossover from the
pure fixed point to the random fixed point (Jacobsen, 2000). However, in our case, q > 4
and the pure model exhibits a discontinuous rather than a continuous transition. Although
the hyperscaling law, Equation (4a), has been testified in this case and hence the activated
dynamics proposed originally for the random-field Ising model (Fisher, 1986) is excluded
(Deroulers & Young, 2002), as no further exponents have been obtained, one cannot draw
definite conclusions about this regime. For q = 8, r0 ∼ 10 was found to be close to the random
fixed point (Cardy & Jacobsen, 1997) and our β/ν of r0 = 10 appears to be a little larger
than 0.142(1) (Cardy & Jacobsen, 1997), 0.153(3) (Chatelain & Berche, 1998), and 0.153(1)
(Jacobsen & Picco, 2000). Yet, r0 = 8 to 20 was found to locate the random fixed point
with β/ν = 1.50 to 1.55 (Picco, 1998). If we averaged the three values within this range,
we would get β/ν = 1.58(8) that would agree quite well with those quoted values and also
with 0.157(2)/0.156(11) of short-time critical dynamics (Yin et al., 2004). The same average
yields ν = 1.100(19) which appears again a little larger than about 1.02 (Cardy & Jacobsen,
1997; Chatelain & Berche, 1998). However, ν was found to increase slightly with q with the
q = 3 value of 1.02(2) (Jacobsen, 2000). So, a slightly larger ν for larger q may be still possible.
We may also consider averages over r0 = 15 and 20 whose exponents appear closer in value.
Anyway, the true critical exponents for the random fixed point in this model still need further
studies.
The three-dimensional disordered Ising model as a paradigm of a positive α in the pure case
has attracted much interest (Folk et al., 2003) and its renormalization-group theory has reached
a level of up to six loops (Pelissetto & Vicari, 2000). However, problems still exist concerning
for example its true critical exponents (Xiong et al., 2010a). As a lot of exponents can be
estimated, we are able to test the scaling laws as shown in Table 6. One sees that in the middle
range of disorders, the exponents satisfy the three scaling laws tested and vary little. The
averaged exponents within this range are thus regarded as the asymptotic critical exponents
of the random fixed point. They agree well with results of other types of disorders and of
the renormalization-group theory. These results thus lead to several conclusions. First, for
the random fixed point, we have proved the validity of the scaling laws, which was invoked
previously to reckon the correctness of the obtained exponents (Pelissetto & Vicari, 2000).
Second, they help to unify the exponents. For example, our dynamic critical exponent of
z = 2.114(51) supports a lower value found by renormalization-group analyzes, experiments,
and some Monte Carlo simulations rather than the larger values of z ≈ 2.6 (Parisi et al., 1999;
Schehr & Paul, 2005) and z ≈ 2.35 (Calabrese et al., 2008; Hasenbusch et al., 2007). Third, they
corroborate the universality of the random fixed point with respect to the form of disorders.
Fourth, they show that corrections to scaling can indeed be ignored in estimating exponents
in finite-time scaling. Fifth, they also demonstrate the effectiveness of finite-time scaling in
probing both static and dynamic critical behavior. The exponents at r0 = 2 and r0 = 10 do not
satisfy all scaling laws and may thus be crossover exponents that reflect crossover from the
random fixed point to the pure and to the percolation fixed point, respectively. Conversely,
validating of a single or even two scaling laws may not be invoked as an indication of the
asymptotic nature of the obtained exponents.
The three-dimensional random-bond Potts model shows gross features that are similar to the
random-bond Ising model. In particular, one finds from Table 7 that the first two scaling laws
are satisfied within the errors for r0 ≃ 10 to 20, and almost satisfied for r0 = 7.5, but not
for the other disorder strengths, while the third law can be considered as satisfied for all r0
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r0 2 4 5 10 Exact value
α + dν 1.92(6) 2.00(6) 2.01(6) 2.17(6) 2

α + 2β + γ 2.10(3) 1.98(3) 1.97(3) 2.00(5) 2
2β/ν + γ/ν 3.28(10) 2.97(9) 2.93(8) 2.79(8) 3

Table 6. Test of scaling laws for the three-dimensional random-bond Ising model.

r0 2.5 5 7.5 10 15 20 30 Exact value
α + dν 2.09(4) 2.10(4) 2.03(4) 2.01(5) 1.97(6) 1.99(6) 2.30(9) 2

α + 2β + γ 2.10(3) 2.13(5) 2.13(7) 2.11(7) 2.06(9) 2.07(9) 2.20(10) 2
2β/ν + γ/ν 3.04(8) 3.05(9) 3.20(13) 3.16(14) 3.13(16) 3.14(16) 2.88(18) 3

Table 7. Test of scaling laws for the three-dimensional random-bond Potts model.

studied. Therefore, conclusions similar to the Ising model can also be drawn. For example,
the exponents within r0 ≃ 10 to 20 are asymptotic and controlled by the random-fixed point in
the model while those outside are only crossover. Corrections to scaling can again be ignored,
etc.
However, there is an important difference. α for the random fixed point is positive and
thus ν violates the bound (75) in contrary to recent numerical studies (Ballesteros et al.,
2000; Chatelain et al., 2001; 2005; Mercaldo et al., 2005; 2006; Murtazaev et al., 2007; 2008;
Yin et al., 2005; 2006) and a renormalization-group analysis (Aharony et al., 1998). In the
two-dimensional random-bond Potts model, a positive α has also been found as pointed out
above. However, for large disorder strengths, α becomes negative and ν satisfies the bound.
In the present case, α is still a large positive number even for r0 = 30, whose ν = 0.673(25) is
on the verge of 2/d albeit with a large error. A hint for a positive α has also been found but
with ν > 2/d in a three-dimensional random-bond Potts model in the large-q limit (Mercaldo
et al., 2005; 2006). Yet, the author claimed that the asymptotic region for the specific heat
was far from the possibilities of present-day numerical calculations (Mercaldo et al., 2005;
2006). Negative αs have been obtained on a small range of lattice sizes (L = 20 − 44) using
finite-size scaling but without considering corrections to scaling (as the exponent is several
times bigger than that of finite-time scaling, Section 2.3) and without showing scaling collapse
for the three-dimensional three-state Potts model with site dilutions (Murtazaev et al., 2007;
2008). This was obtained by fitting the peaks of the specific heat to

C = c1 − c2Lα/ν (76)

for a negative α, where c1 and c2 are positive constants. We have found that in some ranges
of rates, a fit to Equation (76) with L replaced by R−1/r according to Section 2.4 does give a
negative α, but the C curves collapse badly even we adjust α in the negative region (Xiong et
al., 2010b). On the contrary, in the case of the random-bond Ising model, fits to such a form
indeed lead to those negative αs listed in Table 4, which collapse the specific curves well. In
contrast, fits to the positive α forms can also yield positive αs but then the specific curves
collapse badly (Xiong et al., 2010a). In addition, in the two-dimensional three-state pure Potts
model, we have essentially applied the same methods to correctly identify its positive α as
mentioned in the first paragraph in this section. Moreover, all exponent ratios agree well with
existing ones. Furthermore, z agrees well with that from short-time critical dynamics (Yin et
al., 2005). This single exponent then lends support to our ν and through Equation (4a) α as
pointed out in Section 3.2. All these therefore strongly support our positive α and ν < 2/d.
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In fact, for a dirty system, it has been known that its stability is not directly related to its α,
which may thus assume positive values (Andelman & Berker, 1984; Kinzel & Domany, 1981),
though the opposite is true for a pure system according to the Harris criterion (Harris, 1974).
Moreover, it has also been pointed out that for systems in which self-averaging breaks down
(Aharony & Harris, 1996; Wiseman & Domany, 1995; 1998), the ν that is found by finite-size
scaling and was proved to satisfied the bound (75) (Chayes et al., 1986) may be different from
the intrinsic ν that might escape it, since the former is found to be only a result of the grand
canonical ensemble average used (Pazmandi et al., 1997), though a renormalization-group
analysis shows that the average procedure is irrelevant (Aharony et al., 1998). If this is true,
finite-time scaling will be superior.

5. Conclusion

We have reviewed in this Chapter the idea, the theory, and the methods of finite-time scaling
and the results of their applications to the continuous phase transitions in both pure and
disordered two- and three-dimensional Ising and Potts models. Both field driving and
temperature driving have been considered. Both static and dynamic critical exponents as
well as the critical points can all be estimated. As a lot of exponents can be determined
independently, scaling laws can be tested, which is a valuable information for reckoning the
asymptotic nature of the exponents. So far, most results obtained agree quite well with those
from other sources and those disagreed appear quite possibly true. If the latter is shown to be
correct, finite-time scaling will be superior to finite-size scaling. Even if it were finally shown
to be wrong, the former results still have already demonstrated its effectiveness; and the
lessons gained would certainly push it forward. We conclude that the idea behind finite-time
scaling is physically so simple and in so close analogue to that of finite-size scaling that it
should at least be a useful concept in statistical physics.
To end the review, we remarks on some other advantages and disadvantages of the finite-time
scaling. It is a nonequilibrium approach that drives a system out of equilibrium. As a
consequence, hysteresis ensues even at Tc. It is distinct from usual approaches in that it
manipulates the dynamics of a system by an external driving field or temperature. This
enables it to avoid critical slowing down (Gong et al., 2010; Huang et al., 2010). As has
been pointed out, the correction-to-scaling exponent is rather small compared to finite-size
scaling and short-time critical dynamics. This has two sides. On the one hand, it makes
estimation of exponents rather simple since the corrections appear negligible. Moreover, the
error bars of the exponents so estimated are also on a par with other usual methods. On the
other hand, if one wants to make more precise estimations including the correction-to-scaling
exponent, large ranges of time scales appear necessary. We have so far concentrated on the
local dynamics as realized in the Monte Carlo simulations of single-site Metropolis algorithm
and their equivalent Langevin dynamics, the idea of finite-time scaling, however, should be
applicable to other dynamics as well. Finally, we would point out that the method of linear
driving may probably be the simplest but most general approach to finite-time scaling and
should also be amenable to experiments (Gong et al., 2010). It may also be generalized to
a concept of driving simulations (Section 2.4) that apply the linear driving to simulate other
effects like system sizes near criticality.
Future studies may include applying and testing finite-time scaling in other systems including
quantum ones, exploiting the combined scalings of both finite times and finite sizes,
developing approaches to improve the precision of the present methods, and applying the
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scaling experimentally to study critical phenomena, etc. Another area that finite-time scaling
is helpful is the scaling behavior in first-order phase transitions by driving (Zhang et al., 1995).
In fact, the renormalization-group theory for the linear driving developed first in this area
(Zhong & Chen, 2005). Moreover, the linear driving may possibly be crucial here (Fan &
Zhong, 2010).
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