
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



17 

Parameter Optimization for Simulating Runoff 
from Highlatitude River Basins Using Land 

Surface Model and Global Data Sets 

Yeugeniy M. Gusev and Olga N. Nasonova 
Institute of Water Problems, Russian Academy of Sciences 

Russian Federation 

1. Introduction     

Currently, high latitude regions characterized by a long and severe cold season are receiving 
more and more attention from the hydrometeorological modelling community (Bowling et 
al., 2000; Slater et al., 2001; Bowling et al., 2003; Nijssen et al., 2003; Etchevers et al., 2004; Su 
et al., 2005; Tian et al., 2007; etc.) because these regions are among the most sensitive to 
natural and anthropogenic effects and it is necessary to predict the consequences of such 
effects. At the same time, northern regions are poorly covered with measurements, which 
are necessary to provide the atmospheric forcing data and to estimate the land surface 
parameters for model simulations. One of the possible ways to provide a model with input 
data is to apply, along with existing measurements, available global datasets, which contain 
meteorological data, land-use information, and soil and vegetation characteristics.  
Nowadays there are a lot of global data sets, which differ in spatial and temporal resolution, 
as well as in accuracy and reliability (e.g., Meeson et al., 1995; Hall et al., 2003; Zhao & 
Dirmeyer, 2003). Differences in global datasets are connected with uneven coverage of the 
land surface with ground-based observation systems, difficulties in collecting 
measurements, the problems with instruments, differences in procedures of filling in the 
missing data and interpolation of point measurements into grid boxes (Zhao & Dirmeyer, 
2003). Nevertheless, this source of information is quite attractive for modellers (as it saves 
them from a quite difficult time- and labour-consuming procedure of model input data 
preparation) and global datasets are widely used for atmospheric and hydrological 
applications (e.g., Oki et al., 1999; Nijssen et al., 2001; Su et al., 2005). 
However, the accuracy of most streamflow hydrograph simulations in high latitudes is not 
high, in spite of a good model structure and calibration of a number of model parameters 
against measured river runoff from the whole basin under study or from its sub-basins or 
small catchments, located within the basin. This raises a question: where can one find the 
potentialities to improve the agreement between observed and simulated streamflow 
hydrographs? We believe that one of such potentialities is to introduce adjustment factors 
for the most influencing atmospheric forcing data, along with the land surface 
characteristics, into a set of calibrated parameters.  
As a matter of fact, according to the logic of construction and operation of hydrological and 
land surface models, both the land surface parameters and forcing data represent input 
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information, which can suffer from errors and uncertainties. If the forcing data are based on 
reanalysis products, they contain systematic errors (which reflect the biases and errors in the 
underlying general circulation models), resulting in errors in simulated heat and water 
balance components (Zhao & Dirmeyer, 2003; Nasonova et al., 2008). If the forcing data are 
derived from in situ measurements, their accuracy depends on density and representativity 
of meteorological stations, and interpolation techniques used to obtain gridded data. In this 
case, the accuracy of forcing data can be rather low due to low accuracy of precipitation 
(especially snowfall) measurements, insufficient gauge density, and absence of incoming 
radiation observations. This is a typical situation of the northern regions.  
One of the ways to improve measured precipitation is an application of different correction 
factors (the major of which is wind correction) to measured precipitation. However, this is 
not a trivial way. Wind corrections can be estimated by means of different regression 
equations for different types of precipitation (solid, liquid, and mixed) and gauges using 
observed wind speed and air temperature (Goodison et al., 1998; Yang & Ohata, 2001). 
These equations allow one to take into account wind-induced undercatch of precipitation 
and provide estimates of wind correction factor of positive sign. The equations are 
recommended for wind speeds lower than 6.5 m s-1 at the gauge height, and in the absence 
of blizzards (Goodison et al., 1998). At the same time it is known that in Arctic and sub-
Arctic climates, snowfalls typically occur under strong winds and blizzard conditions. A 
number of investigations of measurement techniques for solid and mixed precipitation in 
pan-Arctic regions have shown that in windy conditions with snow on the ground, blowing 
snow from the ground enters the gauges causing “false” precipitation (Bryazgin & 
Dement’ev, 1996; Bogdanova et al., 2002a,b). Annual “false” precipitation in some pan-
Arctic regions can reach 30-40% of the measured annual totals. Evidently, that in this case, 
“overcatch” of snowfall takes place rather than “undercatch”, and the wind correction factor 
should be negative. Bogdanova et al. (2002 a,b) suggests a bias-correction model for the 
Tretyakov gauge allowing an estimation of the amount of false snow, which depends not 
only on air temperature and wind speed, but also on the state of snow cover surface (fresh 
snow, old snow, snow compressed by wind etc.), weather conditions (blizzard, blowing 
snow), duration of blizzard, the degree to which the gauges are sheltered from surroundings 
and so on. The main difficulties associated with application of this model we see in a large 
amount of input data required, some of which may be inaccessible, particularly, 
characteristics of the blizzard condition and the state of the snow cover surface. 
One more source of uncertainties in forcing data is associated with a ‘point’ character of 
measurements of meteorological variables, when their spatial distribution is needed. 
Generally, point measurements are distributed in space over the catchment by interpolation 
techniques. In the case of sparse observational network, inadequate gauge density may 
provide unrepresentative interpolated estimates of meteorological variables (especially 
precipitation). This also contributes to errors in runoff simulations. 
As to incoming fluxes of shortwave and longwave radiation, they are not measured at 
regular networks and their values are estimated using, in particular, standard 
meteorological observations. Such estimates are not free from uncertainties. Uncertainties in 
the estimates of shortwave radiation are mainly caused by the necessity to take into account 
cloudiness. For this purpose empirical formulae are used. These formulae, firstly, are not 
universal and, secondly, need information both on the amount and the type of clouds. The 
data on the clouds’ type are often inaccessible; the information on the amount of clouds is 
not very accurate because of visual character of observations. For calculating incoming 
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longwave radiation, a lot of empirical formulae have been developed. However, as a rule, 
they were derived under milder climate conditions (compared to Arctic and sub-Arctic 
climate) and their application to the regions with a severe climate results in strong biases 
(Gusev et al., 2006a). At the same time the sensitivity of snowmelt-driven streamflow to 
incoming longwave radiation is rather high, because this radiation greatly influences the 
rate of snow processes. 
One of the ways to solve the problem of uncertainties in the major forcing data is calibration 
of these data within the accuracy of their measurement or estimation. It should be noted that 
the idea of calibration of the main forcings is not novel. Calibration of precipitation and 
potential evapotranspiration (representing the forcing data for some hydrological models) 
was performed in Gan et al. (2006) for SAC-SMA model. Xia (2007) has shown that in the 
cold regions in the Northeast United States, where measured precipitation has large 
systematic biases, calibration of a land surface model using observed annual streamflow can 
be successful, if model parameters and precipitation biases are calibrated simultaneously. It 
is reasonable to expect that this statement will be also valid for other cold regions. 
The aim of the present study is to reveal to what extent optimization (within reasonable 
bounds) of the most important land surface parameters and adjustment factors for 
atmospheric forcings can improve simulating river runoff in high latitudes by a physically 
based land surface model (LSM) SWAP (Soil Water – Atmosphere – Plants). 

2. Methodology 

2.1 Model SWAP 
The land surface model SWAP represents a physically based model describing the processes 
of heat and water exchange within a soil–vegetation/snow cover–atmosphere system 
(SVAS). Different versions of SWAP were detailed in a number of publications (e.g. Gusev & 
Nasonova 1998, 2002, 2003, 2004a; Gusev et al. 2006b). The last version of SWAP treats the 
following processes: interception of liquid and solid precipitation by vegetation; 
evaporation, melting and freezing of intercepted precipitation, including refreezing of melt 
water; formation of snow cover at the forest floor and at the open site during the cold 
season; partitioning of non-intercepted precipitation or water yield of snow cover between 
surface runoff and infiltration into a soil; formation of the water balance of aeration zone 
including transpiration, soil evaporation, water exchange with underneath layers and 
dynamics of soil water storage; water table dynamics; formation of the heat balance and 
thermal regime of SVAS; soil freezing and thawing. 
The model can be applied both for point (or grid box) simulations of vertical fluxes and state 
variables of SVAS in atmospheric science applications (Gusev & Nasonova, 1998, 2004; 
Gusev et al., 2004) and for simulating streamflow at different scales — from small 
catchments to continental-scale river basins located in different natural conditions (Gusev & 
Nasonova, 2000, 2002, 2003; Boone et al., 2004; Gusev et al., 2006a). In the case of a small 
river basin (up to the order of 103–104 km2), a kinematic wave equation is used to simulate 
runoff at the basin outlet. In the case of a larger river basin, the basin area is divided into a 
number of computational grid boxes connected by a river network. Runoff is modelled for 
each grid box and then transformed by a river routing model to simulate streamflow at the 
river basin outlet (with accounting for a contributing area of each box). Such a 
transformation may be performed by different ways. Herein, a simple linear transfer model 
in river channels to simulate river discharge is used (Oki et al., 1999).  
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The basic equation for this model is the conservation equation of the water storage in a river 
channel of each computational grid box, which can be written as 

 r
outin

dS
Y Y

dt
= −  (1) 

where Sr is the water storage in a river channel located within a grid box, Yin is the sum of 
runoff, generated within a grid box, and inflow from neighbouring grid boxes, Yout is the 
streamflow at a grid box outlet. The directions of lateral water flow among grid boxes may 
be determined on the basis of Total Runoff Integrating Pathways (TRIP) (Oki & Sud, 1998). 

The value of Yin is usually assumed to be constant within the computational time step Δt, 
used for description of runoff transformation in the channel network. Parameterization of 
Yout is based on the following equation 

 e
out r

c

u
Y S

d
=  (2) 

where ue and dс are the effective velocity and the distance between grid boxes, respectively. 
Mean global value ue is approximately 0.35 - 0.36 m s-1 (Oki et al., 1999). Via substitution of 
(2) into (1) and solving the obtained equation, the following recurrence relation that 
describes water dynamics in the river channel is derived 

 1 1( ) ( ) (1 )    ,    exp( )    ,    c in e
r i t r i t t i i

e c

d Y u
S t C S t C C t t t t

u d
+ Δ Δ Δ += + − = − Δ Δ = −  (3) 

where ( )r iS t  and 1( )r iS t +  are the water storages in the channel at time steps ti and ti+1. On 

the basis of (1-3) and in accordance with the channel network connecting computational 

boxes and schematized in the form of graph, the dynamics of the water storages in the 

channel of each grid box, streamflow at the box outlet and river discharge are calculated. 
During the last 10 years, different versions of SWAP were validated against observations 

including characteristics both related to energy balance or thermal regime of SVAS (sensible 

and latent heat fluxes, ground heat flux, net radiation, upward longwave and shortwave 

radiation, surface temperature, soil freezing and thawing depths) and related to 

hydrological cycle or water regime of SVAS (surface and total runoff from a catchment, river 

discharge, soil water storage in different layers, evapotranspiration, snow evaporation, 

intercepted precipitation, water table depth, snow density, snow depth and snow water 

equivalent, water yield of snow cover). The model validations were performed for “point” 

experimental sites and for catchments and river basins of different areas (from 10-1 to 105 

km2) on a long-term basis and under different natural conditions (e.g., Gusev & Nasonova 

1998, 2000, 2002, 2003, 2004; Gusev et al., 2006a; Boone et al., 2004). The results have 

demonstrated that SWAP is able to reproduce (without calibration) heat and water exchange 

processes occurring in SVAS under different natural conditions adequately, provided that 

input data of high quality are available. In the case of streamflow simulation, the accuracy of 

modelling can be increased due to optimization of model parameters, which influence 

runoff to the greatest extent, using streamflow observations. This approach is very effective 

if measurements required for parameter estimation are absent (Nasonova et al., 2009). This 

situation is typical of most northern river basins of Russia. 
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2.2 Study basins and their schematization 
Three river basins, located in the northeast of the European part of Russia (Figure 1), were 

chosen for investigation: the Mezen River basin (area: 78 000 km2), the Pechora River basin 

(area: 312 000 km2) and the Northern (Severnaya) Dvina River basin (area: 348 000 km2). All 

three basins represent flat forested planes. Forests (with the predominance of coniferous 

species) cover nearly 80% of the area of each basin.  

 

 

Fig. 1. Location of the three river basins  

The climate in the study region is characterized by a short (3-4 months) cool summer and 

long (5–7 months) cold winter with a stable snow cover and soil freezing. There is a 

permafrost in some areas.  Mean air  temperature of  January  ranges across the basins from 

-13 to -17°C, mean air temperature of July is 14-17°C. Mean annual precipitation varies from 

650 to 800 mm over the Mezen and the Northern Dvina basins and from 400 to 600 mm over 

the Pechora basin. Nearly 30-40% of precipitation falls as snow. Mean annual streamflow is 

310, 360 and 400 mm/year, respectively, for the Northern Dvina, Mezen and Pechora Rivers. 

Streamflow of each river can be mainly characterized as snowmelt (up to 50-80%) and rain 

driven. Their annual hydrographs have maximum flood peaks in spring (caused by spring 

snowmelt), low baseflow during winter and summer periods, and relatively small flood 

peaks in autumn (caused by rainfall, along with low evapotranspiration). 
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For modelling purposes, the Mezen River basin (from the head of the river down to the 

Malonisogorskaya gauging station) was represented by ten 1°×1° computational grid boxes 

in accordance with a global river channel network TRIP (Figure 2). The Pechora River basin 

(down to the Oksino gauging station) was schematized by 57 (Figure 3) and the Northern 

Dvina River basin (down to the Ust-Pinega gauging station) by 62 one-degree grid boxes 

(Figure 4). Such a spatial resolution seems to be insufficient for hydrological applications. 

However, it may be acceptable, provided that subgrid effects are taken into account in 

model parameterizations (e.g., in SWAP, spatial heterogeneity of soil hydraulic conductivity 

at saturation is taken into account (Gusev & Nasonova, 1998)). This is confirmed by the 

results of participation of SWAP in the international Rhone-aggregation LSM 

intercomparison project (Rhone-AGG) (Boone et al., 2004). The main goals of the project 

were to investigate how participating LSMs simulate the water balance components of the 

Rhone River basin (covering 86 000 km2 and characterized by a wide variety of natural 

conditions) compared to observations, and to examine the impact of changing the spatial 

resolution of the basin schematization on the simulations. For the SWAP model, it was 

found that differences in the basin-averaged annual runoff and evapotranspiration 

simulated with spatial resolution 8x8 km and 1°×1° were not more than 3.5 and 1.0%, 

respectively. This fact allows us to assume that coarse (1-degree) spatial resolution will not 

lead to significant errors in the simulated runoff from the chosen river basins. 

2.3 Atmospheric forcing data  
Atmospheric forcing data for the SWAP model represent near-surface meteorology 

including air temperature and humidity, precipitation, incoming shortwave and longwave 

radiation, air pressure and wind speed. Here, three versions of atmospheric forcing data 

were used: (1) global reanalysis dataset, (2) global reanalysis product hybridized with 

observations, and (3) measurements from meteorological stations located within the basins. 

2.3.1 Global datasets 
Global atmospheric forcing data were taken from 3-hourly near-surface meteorological 

datasets with 1-degree spatial resolution produced for the Second Global Wetness Project 

(GSWP-2) (Dirmeyer et al., 2002; Zhao & Dirmeyer, 2003) for the period from 1 July 1982 to 

31 December 1995. The first version of global data used here (hereafter, referred to as 

“Version-1”) is based on pure reanalysis product produced by the National Centres for 

Environmental Prediction/Department of Energy (NCEP/DOE) (Kanamitsu et al., 2002). As 

it was above mentioned, any reanalysis product contains systematic errors. One of the 

possible ways to solve this problem is to combine (hybridize) the 3-hourly reanalysis 

estimates with global gridded observations. The latter are usually available at lower spatial 

resolution and cannot be directly used in LSMs. Hybridization of NCEP/DOE reanalysis 

product with global gridded datasets from observations, presented in the International 

Satellite Land-Surface Climatology Project (ISLSCP) Initiative II (Hall et al., 2003), was 

performed for the GSWP-2 project (Zhao & Dirmeyer, 2003). Fully hybridized 

meteorological data, provided within the framework of GSWP-2 and recommended for 

baseline simulations, we used as the second version of atmospheric forcing data (hereafter, 

referred to as “Version-2”) (see Zhao & Dirmeyer (2003) for more details). 
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Fig. 2. The Mezen River basin and its schematization for streamflow modelling. Streamflow 
gauging station location (triangle) and meteorological stations (squares) 
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Fig. 3. The Northern Dvina River basin and its schematization for streamflow modelling (1 is 
streamflow gauging station locations, 2 is meteorological station locations) 
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Fig. 4. The Pechora River basin and its schematization for streamflow modelling. 
Streamflow gauging station locations (triangles) and meteorological stations (squares)  
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2.3.2 Meteorological observations 
Locations of meteorological stations over the basins are shown in Figures 2-4. 

Meteorological observations are far from perfect, especially snowfall measurements, which 

can suffer both from positive and negative biases due to overcatch or undercatch of snow by 

precipitation gauges. At the same time, in high latitudes, where snow is a significant 

contributor to formation of annual streamflow hydrograph, the accuracy of snowfall 

measurements is of great importance. Besides that, distribution and density of 

meteorological stations over the Mezen River and the Pechora River basins cannot be treated 

as satisfactory. Most of the stations are situated along the rivers and may be not 

representative for watershed areas. Insufficient density of meteorological observations, their 

possible non-representativeness, along with the necessity of their spatial interpolation to the 

computational grid boxes, can lead to uncertainties and biases in forcing data for model 

simulations. This mostly concerns precipitation due to its complicated stochastic nature 

resulting in the great problem of estimating area averages from point measurements. 

Incoming fluxes of shortwave and longwave radiation were not measured at meteorological 

stations, they were derived from standard meteorological observations using techniques, 

described in Gusev et al. (2006a). 

Interpolation of meteorological observations to the centers of grid boxes was performed 
using the kriging procedure (Globus, 1987). The classic kriging procedure was slightly 
modified. Its description can be found in Gusev et al. (2008). The obtained forcing data set 
will be referred to as “Version-3”. 

2.4 Land surface parameter datasets 
The soil and vegetation parameters were prepared using global one-degree datasets 

provided within the framework of GSWP-2 (Dirmeyer et al., 2002). Global one-degree 

vegetation datasets contained information on the land surface types in accordance with the 

International Global Biosphere Project (IGBP) classification, which includes 17 types of the 

land surface, and their fractions within each one-degree grid box, as well as time-varying 

monthly values of biophysical parameters (leaf area index, greenness fraction, roughness 

length, zero-plane displacement height, snow-free albedo, root depth) for 1982-1995. Global 

one-degree soil datasets included data on sand, clay, silt and organic matter fractions; 

texture classes (12 soil texture classes according to the classification of US Department of 

Agriculture (USDA)); depth of active soil column and soil hydrophysical parameters 

(porosity, field capacity, wilting point, hydraulic conductivity at saturation, saturated matric 

potential, B-exponent parameter, soil snow-free albedo)  for each grid box. First of all, the 

values of the soil and vegetation parameters were analyzed and checked for consistency 

(they must be reasonable and in a good agreement with each other) as it was described in 

Gusev et al. (2006b). In so doing, some corrections were performed. In addition, several 

SWAP model specific parameters were derived. As a result, a set of a priori parameters was 

obtained. 

The last group of data represents topographic characteristics including mean elevation of 

grid boxes, taken from the EROS (Earth Resources Observation Systems) Data Centre (EDC), 

and the slopes of the surface of each box in the meridianal and latitudinal directions, 

required for the simulation of runoff transformation within a box. The latter were derived 

from mean elevations of neighbouring grid boxes. 
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2.5 Optimization procedure  
The goal of a model parameter optimization procedure is to find the values of parameters 

that minimize an objective function Ext, which is a measure of the discrepancy between the 

model outputs and observations. The objective function is usually expressed as  
 

 
1

1
lt

t t t
t

Ext w Cal Obs
t

Δ

=
= −
Δ ∑   (4) 

 

where Calt and Obst are, respectively, the simulated and measured values of output variable 

(here, daily river runoff R), which is used for parameter optimization, at time t; Δt is the 

length of optimization period; l is a parameter, equalled to 1 or 2; wt is the time-varying 

weight. The values of the two last characteristics depend on the goals of the users. In 

particular, if correct runoff reproduction is important for each moment of a year, parameters 

l=2 and wt=1 are used (these values will be used here). When correct simulation of spring 

flood hydrograph is of the most importance, the values of wt must be higher for the spring 

compared to the rest seasons. 

Overview of different methods of finding the minimum of the objective function Ext is given 

in a number of publications (e.g., Törn & Zilinskas, 1989; Pintér, 1996). As it was shown 

there, when the objective function does not have an analytical expression (as in the present 

study), application of minimization techniques like a gradient search (Jacobs, 1977) is 

impossible. In this case, methods of direct search are usually used if Ext is a single-

extremum function; otherwise, methods of global optimization are applied (Rosenbrock, 

1960; Powell, 1964; Nelder & Mead, 1965; Solomatine et al., 1999; Duan, 2003). Many of them 

are based on the statistical methods of finding the extremum of Ext (vector of optimized 

parameters) (Rastrigin, 1968; Gupta et al., 1998; Solomatine et al., 1999). It should be noted, 

that the method of blind random search in the parameter space with the pseudo-uniform 

distribution of points is n-times (where n is the total number of parameters) as effective as 

the method of search on the deterministic grid (Rastrigin, 1968).  

Here, optimization of parameter values was performed using an automatic procedure for 

two different global optimization algorithms. The first one, based on ideas from Bastidas 

et.al. (1999) and Solomatine et.al. (1999) and detailed in Gusev et al. (2008), applies a 

statistical method for direct search of the optimum (or Random Search Technique - RST) of 

an objective function. The second one is the Shuffled Complex Evolution algorithm (SCE-

UA) developed by Duan et al. (1992). The SCE-UA has been found to be robust, effective, 

and an efficient optimization algorithm (Duan et al., 2003) and it is widely used in 

hydrological modelling. Two objective functions were calculated during optimization: 

Ext=1-Eff, where Eff is the Nash–Sutcliffe coefficient of efficiency (Nash & Sutcliffe, 1970), 

and the relative value of systematic error Bias (mean difference between the modelled and 

observed values of the output variable normalized by the mean observed value): 

 

2

2
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where xsim and xobs are simulated and observed values of a variable x and Ω is a discrete 
sample set of variable x.  
Application of Bias along with Eff was motivated by the fact that maximum values of Eff do 
not guarantee low Bias. This becomes clear if Eff is expressed in the terms of root-mean-
square error RMSE 

 

2
RMSE

1
STDobs

Eff
⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

 (7) 

where STD is the observed standard deviation. Since RMSE includes the systematic and 
random errors, the same value of RMSE (and, evidently, Eff) may correspond to different 
values of the systematic error (bias). Consequently, among the sets of “optimal” parameters 
corresponding to the lowest RMSE (or the highest Eff) one should select the parameter set 
that provides the lowest bias. 

2.5.1 RST  
Random search technique (RST) has several stages (Gusev et al. 2008). At the first stage, 

sufficiently wide feasible parameter space is specified by fixing the lower and upper 

parameter bounds defined from the maximum plausible ranges for the parameters based on 

physical reasoning. A prescribed number of model runs (realizations) are performed using 

different values of calibrated parameters, which are determined within their fixed bounds 

using a generator of uniformly distributed random numbers. For each realization, 

streamflow simulation and estimation of Ext and Bias are carried out. Then, the “best” 

realizations, i.e. with the lowest values of Ext and near-zero values of Bias, are selected and 

corresponding values of calibrated parameters are used to reduce (“manually”) the feasible 

parameter space. At the next stage, a new search of the optimum of the objective functions is 

performed for the reduced parameter space that allows one to reduce the number of 

realizations. This is especially important for a large set of optimized parameters, because if 

the feasible parameter space is fixed during optimization, the number of realizations needed 

to find the optimum with the specified accuracy grows exponentially with an increase in the 

number of parameters (Solomatine et al., 1999). If it is necessary, further reduction of 

parameter space may be done and searching the optimum may be continued until there will 

be no progress in minimization of Ext. When the optimization procedure is stopped, N 

points (N=4-5) with the lowest values of Ext and near-zero values of Bias are selected. The 

values of optimized parameters corresponding to these points are averaged (with the 

weights that may differ from 1.0). The obtained mean values of parameters are considered to 

be optimal and their standard deviations, divided by N , allows one to assess the accuracy 

of estimating the optimal values of model parameters. Figure 5 illustrates the described 

optimization algorithm for the case of two parameters X and Y. 

Figure 5b gives an example of relation between Ext and Bias obtained from a large number 
of model runs within the boundaries of Region-1 at the first stage of realization of algorithm.  
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Fig. 5. An example of a direct search of the minimum of the objective function Ext (b) for 2-
dimentional case (а). Here, 1 is the boundary of Region-1 with initial population of quasi-
random points (4) with coordinates (X, Y); 2 is the boundary of Region-2 with the best points 
(5) from the initial population; 6 – points from the repeated optimization within the 
boundaries of Region-2; 3 is the boundary of Region-3 with the best points (close to optimal) 
generated during the repeated optimization. 

Selecting the group with the “best” realizations, i.e. with the lowest values of Ext and near-
zero values of Bias (marked in Figure 5b by the red rectangle), and the corresponding range 
of the parameter values (the red rectangle in Figure 5a), we reduce the feasible parameter 
space (from Region-1 to Region-2) and continue to search optimal values of the parameters 
within the new boundaries. If it is necessary, further reduction of parameter space (from 
Region-2 to Region-3 in Figure 5a) may be done and searching the optimum may be 
continued until there will be no progress in minimization of Ext. 

2.5.2 SCE-UA  
The SCE-UA algorithm has been described in detail in Duan et al. (1992). At the first step, the 

SCE-UA selects an initial population of optimized parameters by random sampling 

throughout the feasible parameter space for n parameters, based on given parameter ranges. 

For each point, the objective function values are calculated. Then, the population is partitioned 

into several communities (complexes), each consisting of 2n+1 points, based on the 

corresponding objective function values. Each community is made to evolve independently for 

a prescribed number of times based on the downhill simplex method (Nelder and Mead, 1965). 

The communities are periodically consolidated into a single group and the population is 

shuffled to share information and partitioned into new communities. As the search progresses, 

the entire population tends to converge toward the neighbourhood of global optimum, 

provided the initial population size is sufficiently large. The evolution and shuffling steps are 

repeated until a prescribed convergence criterion is satisfied.  

SCE-UA is a single-objective optimization algorithm. To apply SCE-UA for our two 
objective functions Ext and Bias, we decided to minimize Ext under condition that the 
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absolute value of Bias did not exceed 5%. If the fulfilment of this condition resulted in 

relatively low Eff (Eff<0.9⋅Eff0, where Eff0 is the efficiency without this condition, i.e. the 
efficiency corresponding to global optimum), we removed this condition and the point with 
Eff=Eff0 was treated as an optimum. Evidently, that in this case absolute value of Bias is 
larger than 5%. 
The distributive diskette for the SCE-UA code was taken from the site 
http://www.sahra.arizona.edu/software/. 

2.5.3 Selection of parameters to be optimized 
Since LSMs usually contain a lot of model parameters, the procedure for selection of 
parameters to be optimized is very important. The total number of optimized parameters 
should not be too small to ensure sufficient degrees of freedom for obtaining a good 
agreement between the simulated and observed daily streamflow. At the same time the 
number should not be too large to obtain the steady values of the calibrated parameters 
under a reasonable number of realizations. Evidently, those parameters, whose changes 
influence daily streamflow to the greatest extent, should be calibrated. 
Our significant experience has shown that in high latitudes the following SWAP model 
parameters can be calibrated: (1) soil hydrophysical parameters: hydraulic conductivity at 

saturation K0, parameters describing the dependence of soil water potential ϕ on soil 

moisture W (В-exponent parameter and saturated matric potential ϕ0 in the 

parameterization of function ϕ(W) by Clapp and Hornberger (1978)), plant wilting point 
Wwp, field capacity Wfc, soil porosity Wsat, soil column thickness h0 (here, the depth from the 
soil surface to the upper impermeable layer); (2) vegetation parameters: the root layer depth 

hr, the leaf area index LAI, the snow-free vegetation albedo αsum, the vegetation albedo in the 

winter period (with snow on tree crowns) αwin; (3) albedo of snow on the ground αsn; (4) 
parameters controlling the transformation of runoff both within a grid box (the Manning 
roughness coefficient n) and in a river channel network (effective velocity of water 
movement in a channel ue). 
Only seven land surface parameters from the above listed were chosen for calibration: K0, h0, 

hr, αsum, αsn, n, and ue (the other parameters were taken from the GSWP-2 global datasets) 

because of the following reasons. The hydraulic conductivity at saturation K0 is one of the most 

important parameters of SWAP because it controls partitioning of water reaching the soil 

surface between infiltration and surface runoff. Besides that, in SWAP, subgrid effects are 

taken into account through K0. Thus, when modelling infiltration and surface runoff, subgrid 

spatial variability of K0 is considered by using not only mean value of K0 for each grid box, but 

also root-mean-square deviation (Gusev and Nasonova, 1998). SWAP is also sensitive to the 

soil column thickness h0, which, affecting the total soil water storage, controls to a great extent 

(along with some other factors) the partitioning of water entering a soil between an increment 

of soil water storage and drainage from the soil column. The root layer thickness hr affects the 

maximum water storage available for transpiration, which occurs from this layer. The 

parameter αsum determines the amount of non-reflected incoming solar radiation, which 

influences heat and water exchange at the land-atmosphere interface. The value of albsn 

influences energy balance at the snow surface and, consequently, the rate of snow formation 

processes, in particular, snow evaporation, snow accumulation and snowmelt; this is 

especially important for formation of flood peaks of streamflow hydrograph in spring. The 

shape of the streamflow hydrograph is also influenced by the parameters n and ue. 
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Since the sensitivity of runoff, simulated by SWAP, to the parameters В and ϕ0 is not 
significant, they were excluded from the list of calibrated parameters. As to Wwp, Wfc, Wsat, 
and LAI, analysis of their values, taken from the global datasets, has shown that they are 
quite reasonable for the three river basins and their calibration within narrow physically 
meaningful bounds will hardly improve the quality of runoff simulation. Besides that, first 
attempts of model calibration have shown correlation between the impact of these 

parameters and the parameters h0 and hr on the value of ( )Ext par
→

 (where par
→

 is the vector 

of calibrated parameters) (in particular, decrease in Wfc together with increase in hr does not 
practically change Ext) that makes the search of the optimum of Ext using the indicated 
parameters extremely complicated. 
The meteorological forcing data, as it was mentioned in Introduction, suffer from 
uncertainties and errors, therefore some authors began to calibrate the most influencing 
meteorological characteristics along with parameters of hydrological and land surface 
models (Gan et al., 2006; Xia, 2007). Since precipitation and incoming radiation influence 
runoff formation to the greatest extent, we decided to use the following adjustment factors 
for these forcings: klp, ksp, ksw and klw for rainfall, snowfall, shortwave and longwave 
radiation, respectively. 
To reduce the list of calibrated parameters the following steps were undertaken. When 
adjustment factors for forcing data are involved in the process of parameter optimization, 

one of the four parameters αsum, αsn, αwin and ksw must be excluded from the list because in 
the model these parameters are presented as a product of the corresponding albedo and the 

intensity of shortwave radiation. The parameter αwin with rather realistic values for the river 

basins was excluded. The parameters αsn, n, ue and the adjustment factors ksw, klw, klp and ksp 
were assumed to be the same for all the basin grid boxes, while the values of K0, h0, hr and 

αsum varied from a box to a box that resulted in a great number of parameters, which require 
calibration. To reduce the number of calibrated parameters and to increase their stability, 

instead of K0, hr and αsum for each grid box, we decided to calibrate their adjustment factors 

kK0, khr and kαsum, which were taken to be constant for the entire basin. In addition, we set 

h0=kh0⋅hr for each box, where kh0 is also an adjustment factor taken to be constant for each 
basin. As a result, the total number of calibrated parameters was reduced to 11: seven for the 

land surface: kK0, khr, kαsum, kh0, αsn, n, ue and four for the forcing data: ksw, klw, klp and ksp. 

2.6 Model calibration and validation  
Daily streamflow hydrographs, measured at the Malonisogorskaya gauging station (Figure 

2b), the Ust-Pinega station (Figure 3b) and the Oksino station (Figure 4b) during the period 

of 1986-1995 and taken from the GRDC (Global Runoff Data Centre) database, were used for 

parameter optimization and validation. The period from 1986 to 1990 was used for 

parameter optimization, which was performed for each river basin and for each version of 

the forcing data. To reveal the impact of optimization of adjustment factors for forcing data 

we performed calibration with and without application of the adjustment factors. In the 

former case, 11 parameters were calibrated, while in the latter case 8 (11 minus 4 adjustment 

factors and plus αwin) parameters.  

Validation of the model with different sets of parameter values was performed for the 
period of 1991-1995. The results of daily streamflow simulations were compared with 
observations and with each other. The agreement between simulated and observed 
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streamflow for each river basin was estimated at daily time scale using several goodness-of-
fit statistics: the Nash-Sutcliffe coefficient of efficiency Eff, systematic error Bias and the 
coefficient of correlation r. Hydrographs were also compared visually to reveal how the 
model reproduces the shape of hydrograph, including timing of peaks, recession slopes and 
low flows.  
The agreement between simulations and observations is usually considered to be 
satisfactory if Eff >0.5 (if Eff =1 the simulation is ideal). If Eff<0, temporal variability of 
variable х is reproduced badly (in this case, a simple averaging of observations is better than 
model simulation). Generally speaking, the threshold values of Eff characterizing the quality 
of simulations are subjective and depend on the problem to be solved. The scale of accuracy 
commonly used for evaluation of the quality of streamflow forecasts is as follows (Appolov 

et al., 1974): the accuracy is regarded as “good” when Eff≥0.75, as “satisfactory” when 

0.36≤Eff<0.75, and as “unsatisfactory” when Eff<0.36. As to the Bias, it should be taken into 
account, that a systematic error in daily, monthly, and annual values of the measured river 
runoff is on the average not less than 5% (this value can be much greater for flood periods). 

Therefore, we can assume that when ⏐Bias⏐≤5%, the quality of modelling can be considered 
as “good”. 

3. Results 

3.1 Comparison of RST and SCE-UA optimization algorithms 
Optimization of 11 model parameters using RST and SCE-UA optimization algorithms 
allowed us to compare their effectiveness. Four sets of optimal values of calibrated 
parameters were obtained for each river by application of RST and SCE-UA algorithms for 
Version 1 and Version 2 of forcing data. Then streamflow simulations were performed using 
the optimized parameter values. Table 1 summarizes the results of comparison of simulated 
and measured daily streamflow for the calibration and validation periods and for the entire 
calculational period.  
Analysis of the results shows that application of the two different optimization algorithms 

for the same set of calibrated parameters gives closely consistent values of daily Eff and Bias. 

On average, RST-set of optimal parameters results in daily Eff equalled to 0.82, 0.81 and 0.81 

for the calibration, the validation and the entire 1986-1995 period, respectively, while 

absolute Bias for the same periods is 1.8%, 5.8% and 2.6% respectively. Application of SCE-

UA provides Eff equalled to 0.83, 0.82 and 0.83, while absolute Bias is 3.6%, 2.6% and 1.8%, 

respectively, for the calibration, the validation and the entire periods. Visual comparison of 

hydrographs reveals negligible differences. The differences can be explained by a limited 

number of realizations in both cases. These results mean that RST calibration technique is as 

effective as SCE-UA. The advantage of the former is that a user can interfere in the process 

of calibration and to speed up it by analyzing the preliminary results and reducing the 

feasible parameter space. For example, calibration of parameters for the Northern Dvina 

River by SCE-UA technique took us about two weeks against 2-3 days by RST (increase of 

the number of realizations in the latter case could improve the results, which are somewhat 

worse than in the former case, especially with respect to the validation period). If the time is 

not limited, it is more convenient to use the SCE-UA procedure, which does not need user 

interference and, consequently, depends on a user’s experience to a less extent and is a less 

labour-consuming procedure. 
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Version 1 Version 2 
River 

Optimization 
algorithm Bias,% Eff r Bias, % Eff r 

Calibration period (1986-1990) 

Mezen RST -4 0.72 0.85 -1 0.80 0.89 

 SCE-UA -6 0.75 0.87 2 0.83 0.91 

Pechora RST - - - 0 0.89 0.94 

 SCE- UA 0 0.87 0.94 4 0.85 0.92 

Northern Dvina RST 4 0.84 0.93 0 0.87 0.93 

 SCE-UA 6 0.85 0.93 0 0.89 0.94 

Validation period (1991-1995) 

Mezen RST -7 0.82 0.91 1 0.84 0.91 

 SCE-UA 2 0.73 0.86 6 0.82 0.91 

Pechora RST - - - -6 0.75 0.88 

 SCE- UA -6 0.85 0.92 -1 0.76 0.87 

Northern Dvina RST -11 0.80 0.90 4 0.85 0.92 

 SCE-UA -3 0.90 0.95 1 0.90 0.95 

Entire period (1986-1995) 

Mezen RST -5 0.75 0.87 0 0.82 0.90 

 SCE-UA -1 0.74 0.86 4 0.82 0.91 

Pechora RST - - - -3 0.81 0.91 

 SCE- UA -3 0.86 0.93 2 0.80 0.90 

Northern Dvina RST -3 0.81 0.91 2 0.86 0.93 

 SCE-UA 1 0.88 0.94 1 0.90 0.95 

Table 1. Statistical estimation of two optimization algorithms  

3.2 Streamflow simulations with different sets of forcing data and optimal parameters 
Table 2 summarizes the results of statistical estimation of agreement between measured and 
modelled daily streamflow for three rivers in different model runs with three versions of 
forcing data and with different sets of parameter values: a priori estimated parameters (Run-
1) and optimized parameters without (Run-2) and with (Run-3) involving adjustment factors 
for forcing data. Optimization was performed by SCE-UA procedure. 
Comparison of Run-1 and Run-2 results shows that calibration of eight model parameters 
has resulted in substantial improvement of the quality of streamflow simulations for each 
version of forcing data as compared to a priori estimated parameters. This is clearly seen 
from Figure 6, which shows the results averaged over three rivers. Thus, in Run-1, Eff was 
mainly negative, while in Run-2 mean Eff reached 64%, 72% and 84%, respectively, for 
Version 1, Version 2 and Version 3 of forcing data for the calibration period. The 
corresponding values of r were 0.87, 0.89 and 0.92, while the mean absolute Bias was 28%, 
26% and 5%. Therefore, the best progress was archived for Version 3 of forcing data (when 
real observations form meteorological stations were used). As to the global forcing datasets, 
hybridized product was better than reanalysis one in terms of efficiency, while differences in 
the mean values of r and Bias were rather small. If we consider the validation period, the 
statistics for Version 3 was again the best. At the same time the quality of model 
performance using Version 1 of forcing data was even higher than with Version 2. For the 
entire period, the results for Version 1 and Version 2 were nearly the same. All this mean   
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Version 1 Version 2 Version 3 
Model 

run 
River 

Bias,% Eff r 
Bias, 

% 
Eff r 

Bias, 
% 

Eff r 

Calibration period (1986-1990) 

Run-1 Mezen 32 0.45 0.84 30 -0.34 0.83 -47 0.00 0.35 

 Pechora -28 -0.26 0.19 3 -0.66 0.45 -60 -0.16 0.25 

 Northern Dvina 68 -0.68 0.76 56 -0.93 0.83 -46 0.29 0.69 

 Mean 43 -0.16 0.60 30 -0.64 0.70 51 0.04 0.43 

Run-2 Mezen 26 0.58 0.78 33 0.70 0.87 -3 0.82 0.91 

 Pechora 0 0.83 0.91 1 0.78 0.89 -11 0.83 0.92 

 Northern Dvina 57 0.52 0.91 45 0.67 0.91 0 0.88 0.94 

 Mean 28 0.64 0.87 26 0.72 0.89 5 0.84 0.92 

Run-3 Mezen -6 0.75 0.87 2 0.83 0.91 0 0.90 0.95 

 Pechora 0 0.87 0.94 4 0.85 0.92 3 0.92 0.96 

 Northern Dvina 6 0.85 0.93 0 0.89 0.94 -4 0.89 0.94 

 Mean 4 0.82 0.91 2 0.86 0.92 2 0.90 0.95 

Validation period (1991-1995) 

Run-1 Mezen 38 0.37 0.79 42 -0.34 0.86 -43 0.14 0.46 

 Pechora -23 -0.03 0.36 2 -0.56 0.51 -57 0.05 0.50 

 Northern Dvina 48 -0.38 0.64 55 -0.62 0.80 -40 0.40 0.75 

 Mean 36 -0.01 0.60 33 -0.51 0.72 47 0.20 0.57 

Run-2 Mezen 31 0.71 0.87 42 0.69 0.87 -7 0.86 0.93 

 Pechora -5 0.79 0.89 2 0.71 0.86 -11 0.69 0.84 

 Northern Dvina 38 0.71 0.90 53 0.68 0.91 0 0.90 0.95 

 Mean 25 0.74 0.89 32 0.69 0.88 6 0.82 0.91 

Run-3 Mezen 2 0.73 0.86 6 0.82 0.91 -4 0.90 0.95 

 Pechora -6 0.85 0.92 -1 0.76 0.87 3 0.76 0.89 

 Northern Dvina -3 0.90 0.95 1 0.90 0.95 -5 0.89 0.95 

 Mean 4 0.83 0.91 3 0.83 0.91 4 0.85 0.93 

Entire period (1986-1995) 

Run-1 Mezen 35 0.41 0.81 36 -0.34 0.85 -45 0.08 0.40 

 Pechora -25 -0.13 0.29 3 -0.60 0.49 -59 -0.04 0.40 

 Northern Dvina 58 -0.50 0.69 56 -0.74 0.81 -45 0.36 0.72 

 Mean 39 -0.07 0.60 32 -0.56 0.72 50 0.13 0.51 

Run-2 Mezen 29 0.66 0.83 38 0.69 0.87 -5 0.84 0.92 

 Pechora -3 0.81 0.90 2 0.75 0.87 -11 0.76 0.87 

 Northern Dvina 47 0.64 0.90 49 0.67 0.91 0 0.89 0.95 

 Mean 26 0.70 0.88 30 0.70 0.88 5 0.83 0.91 

Run-3 Mezen -1 0.74 0.86 4 0.82 0.91 -2 0.90 0.95 

 Pechora -3 0.86 0.93 2 0.80 0.90 3 0.83 0.92 

 Northern Dvina 2 0.88 0.94 1 0.90 0.95 -4 0.89 0.95 

 Mean 2 0.83 0.91 2 0.84 0.92 3 0.87 0.94 

Table 2. Statistical evaluation of different model runs. Mean Bias was obtained for absolute 
values 
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that, first, forcing data based on real meteorology are of better quality than forcing data 
taken from the global datasets; second, high correlation between measured and simulated 
streamflow in all three cases, along with lower values of Eff and Bias in Version 1 and 
Version 2 compared to Version 3, confirms that global forcing data contain systematic errors 
(in spite of hybridization of pure reanalysis product with observations, which was 
undertaken to decrease the errors); third, these errors are not compensated by optimization 
of the land surface parameters, therefore to reduce their impact on streamflow simulations 
the adjustment factors for the key forcing data are required. 
Further improvement of the above results was archived by means of involving adjustment 
factors for forcing data in the process of parameter optimization. This is confirmed by 
comparison of the results from Run-2 and Run-3 (see Figure 6 and Table 2). For Version 1  
 

 

Ve rs io n  1

0

10

20

30

40

50

1 2 3

M o d el ru n

A
b

so
lu

te
 b

ia
s,

 %

Ve rs io n 3

0

10

20

30

40

50

1 2 3

M o d el ru n

A
b

so
lu

te
 b

ia
s,

 %

1986- 1990

1991- 1995

1986- 1995

V ers ion  2

0

10

20

30

40

50

1 2 3

M o de l  ru n

A
b

so
lu

te
 b

ia
s,

 %

V e rsio n 1

- 20

0

20

40

60

80

100

1 2 3

M o de l ru n

E
ff

ic
ie

n
cy

, %

6

Ve rs io n 2

- 20

0

20

40

60

80

100

1 2 3

M od e l run

E
ff

ic
ie

n
cy

, %

Ve rsio n3

-20

0

20

40

60

80

100

1 2 3

M od e l run

E
ff

ic
ie

n
cy

, %

V ers io n  1

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

M o de l ru n

C
o

ef
fi

ci
en

t 
o

f 
co

rr
el

at
io

n

Ve rs io n  2

0.0

0 .2

0 .4

0 .6

0 .8

1 .0

1 2 3

M o d e l ru n

C
o

ef
fi

ci
en

t 
o

f 
co

rr
el

at
io

n

Ve rs io n  3

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

M o de l ru n

C
o

ef
fi

ci
en

t 
o

f 
co

rr
el

at
io

n

 

Fig. 6. Averaged over the three considered rivers daily efficiency, coefficient of correlation and 
absolute value of Bias from a priori simulations (model run 1) and calibrated results without 
(model run 2) and with (model run 3) application of adjustment factors for forcing data for the 
calibration period (red), the validation period (green) and the entire period (blue). The results 
are given for three versions of forcing data. All statistics are averaged over the three rivers. 
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and Version 2, the progress in model performance was significant, especially with respect to  
Eff and Bias. For the entire calculational period, mean Eff increased by 13-14% and mean 
absolute Bias decreased by 24-28% as a result of calibration of adjustment factors for forcing 
data. For Version 3, the improvement in mean Eff was only 4% and in mean absolute bias 
2%. Therefore the quality of forcing data based on observations from meteorological 
stations, on average, was rather good. At the same time for the Mezen River and Pechora 
River, increase in Eff and decrease in absolute Bias sometimes reached 7-9%, while for the 
Northern Dvina the differences were much smaller, i.e. in the latter case the quality of 
forcing data was higher. 
The obtained results have shown that optimization of model parameters and adjustment 
factors for forcing data makes it possible to use global datasets for streamflow simulations and 
to obtain results of a good quality. The lower the quality of input data the more effectiveness of 
such optimization. This is clearly illustrated by Figure 7 where hydrographs simulated for the 
Northern Dvina River in different model runs are compared with the measured hydrograph 
for the period of 1986-1995. The grey hydrographs were simulated without any optimization. 
Their agreement with measurements is very poor. Differences between grey hydrographs in 
the upper and middle panels are due to differences in the global atmospheric forcing data (the 
values of model parameters are the same here). In these cases both forcing data and model 
parameters (which were also taken from global datasets) contribute to the low accuracy of 
streamflow simulation. In the bottom panel, poor simulation (without calibration) is due to 
inadequate values of a priori estimated model parameters (taken from global datasets), while 
real meteorology, as it was shown above, is rather good. Optimization of parameter values 
allowed us greatly improve the modelled hydrographs (compare grey lines with blue lines in 
all panels). Further improvement was made by means of simultaneous optimization of model 
parameters and adjustment factors for forcing data (compare blue lines with green lines). 
Coincidence of green and blue hydrographs in the bottom panel confirms the above made 
conclusion that there is no necessity to use the adjustment factors for forcing data if the quality 
of forcing data is rather high. 
At last, Figure 8 shows that it is possible to obtain a good accuracy of streamflow 
simulations using any of three versions of forcing data if optimization of model parameters 
and (if it is necessary) adjustment factors has been performed in a proper way. As can be 
seen from Figure 8, three hydrographs modelled by SWAP using different versions of 
forcing data are in a good agreement with each other and with measured hydrograph. 

4. Conclusions 

The main conclusions from this investigation can be summarized as follows.  

• Direct application of the global data on meteorological characteristics and land surface 
parameters, developed within the framework of the ISLSCIP-II and GSWP-2 projects, 
for simulating streamflow for three northern rivers, located in the European part of 
Russia, by the LSM SWAP leads to poor results (low Nash-Sutcliffe efficiencies and 
large biases). Optimization helps to compensate to some extent uncertainties and 
shortcomings in input data and model parameters. Uncertainties and errors in forcing 
data can be partly compensated by application of adjustment factors for those 
meteorological characteristics, which influence runoff generation to a greater extent. 
Calibration of such factors together with model parameters allows one to reduce the 
influence of systematic errors in forcing data on optimization of model parameters and 
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Fig. 7. Measured and simulated streamflow of the Northern Dvina River. Simulations were 
performed for three versions of forcing data using a priori (Run-1) estimated parameters 
and optimized parameters without (Run-2) and with (Run-3) application of adjustment 
factors for forcing data. The days are numbered from the 1 January 1986. 
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Fig. 8. Measured and simulated (Run-3) streamflow of the Northern Dvina River. The days 
are numbered from the 1 January 1986. 

on model performance. All calibrated parameters should be kept within a reasonable 
range so as not to violate physical constraints while providing a close match between 
simulated and measured daily streamflow. 

• Forcing data based on real meteorology from the meteorological stations located within 
a basin require adjustment factors only in the case of low quality of data (if the density 
of measurements is poor, or location of the stations cannot provide the study basin with 
representative information, or measurements contain errors etc.). 

• Application of two different global optimization algorithms (RST and SCE-UA) has 
shown that both algorithms lead to practically the same results. The advantage of the 
former is that a user can interfere in the process of calibration and to speed up it by 
analyzing the preliminary results and reducing the feasible parameter space. SCE-UA 
does not need user interference and, consequently, depends on a user’s experience to a 
less extent and is a less labour-consuming procedure. At the same time SCE-UA is a 
more time-consuming procedure, but if the time is not limited, it is more convenient to 
use SCE-UA optimization technique. 

• Application of the LSM SWAP with global parameter datasets and with different 
versions of atmospheric forcing data (based on (1) global reanalysis product, (2) global 
reanalysis product hybridized with gridded observations and (3) real meteorology from 
meteorological stations) allows one to reproduce hydrographs of the northern rivers of 
the European part of Russia after optimization of a set of model parameters and 
adjustment factors for forcing data with a good accuracy, which is confirmed by 
statistical estimation of agreement between simulated and measured hydrographs and 
their visual comparison. 

Future research should be concentrated on the solution of the following problems. First, 
development of methodology for predicting changes in river runoff due to climate change 
and anthropogenic effects. Second, development of methods for modelling river runoff in 
ungauged basins, i.e. when streamflow measurements are absent and it is not possible to 
perform optimization of model parameters and to validate the results. These problems are 
difficult; however, the possible ways for their solutions may be as follows. The former 
problem can be solved on the base of application of LSMs, along with climate forecast 
generators and land use scenarios of a high spatial and temporal resolution. The second 
problem can be solved on the base of LSMs and construction of relations between calibrated 
model parameters and natural characteristics of river basins. 
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