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1. Introduction 

High power fibre lasers (HPFLs) find applications in the material processing, automotive, 
medical, telecoms and defence industries. Over 1kW of output power [1] has been 
demonstrated as the race to scale up the power while maintaining excellent beam quality 
and achieving impressive power conversion efficiency is ongoing. During the mature stages 
of the HPFLs technology, the automated simulation-based optimization of HPFLs is 
expected to contribute significantly to the formulation of optimal designs and to improve 
intuition for the conception of new fibre lasers. This chapter researches the common ground 
between computational photonics and direct search optimization methods with the prospect 
to propose optimized fibre designs for HPFLs. 
Published work on the subject of pump light enhancement in the active core of cladding 
pumped fibres could be categorized as follows: 
a. Pump absorption ion system optimization [2-5] 
b. Pumping techniques focusing on how to couple more power into the inner cladding [6-

10] 
c. Fibre designs that focus on maximizing the overlap between the coupled pump light 

and absorbent core volume [11-15] 
d. Holistic solutions that attempt to address (b) and (c) simultaneously [16-18] 
Schemes in (c) are usually compatible with categories (b) and (d) meaning that the special 
fibres proposed by (c) can be pumped by schemes in (b) or they can be modified for use in 
the schemes of category (d) to further increase the pump absorption. 
In category (b), Koplow et al [9] list a set of pumping schemes evaluation criteria and propose 
an embedded mirror side pumping scheme after discussing the contemporary pumping 
methods. Their technique initially appeared attractive and for that it was tested numerically 
within the computation environment of the simulation method proposed in [19]. It was found, 
however, that it does not benefit from the fibre cross section optimization because it reduces 
the percentage of higher order modes resulting in absorption degradation. Another side 
pumping technique which, in contrast with the previous, did not require machining of the 
pumped fibre was proposed by Polynkin et al [8]. A DCF was pumped via evanescent field 
coupling. This scheme appears to be fully compatible with the incorporation of optimized fibre 
topologies in place of the conventional circular inner cladding with centred core. Lassila [6] 
proposed a scalable side pumping scheme that could benefit from tailored axially symmetrical 
(presumably as far as the inner cladding is concerned) cross sections. 
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A pump absorption enhancing scheme that could fit in category (c) was proposed by Baek et 
al [14]. The authors incorporated a long period fibre grating (LPFG) in a cladding pumped 
configuration and measured a 35% increase in pump absorption as a direct result of the 
LPFG. A similar approach based on the reflection of the residual pump light was reported 
by Jeong et al [15]. The free end of the single-end pumped DCF was shaped into a right-
angled cone that reflected more than 55% of the unabsorbed pump light that offered an 18% 
increase in absorbed pump power. This is one more scheme which could benefit from 
optimised fibre topologies. Recently, the use of a large area helical core was proposed [11] 
for the enhancement of pump absorption and simultaneous rejection of high order lasing 
modes naturally suggesting that optimized helical solid-state holes (that may be fabricated 
by rotation just like the helical core) could exhibit a similar tapering effect [19] as that 
reported here. This could avoid the need to increase the core area when increasing the inner 
clad area [12] to accept more pump power.  
In the category of holistic solutions, Kouznetsov and Moloney proposed [16] and modelled 
analytically [17] the tapered slab delivery of multimode pump light to a small diameter 
inner cladding. This scheme combines the specially designed pump waveguide and 
corresponding inner cladding that could also fit in the shallow-angle single pumping 
category listed in [9]. It benefits highly from the coupling of multimode light into a narrow 
inner cladding while potential drawbacks are the leakage of high order pump modes and 
the fabrication difficulties. An alternative approach is demonstrated experimentally by 
Peterka et al [18]. The proposed DCF is single-end pumped and has a double-D cross section 
with the core at the centre of its half section. The input side is processed so that signal and 
pump delivery fibres can be spliced on the two specially fabricated facets. Overall, a 
promising way forward appears to be the development of generic and modular solutions 
within categories (a), (b) and (c) and then the synergistic combination of the three. This 
would act as a practical two stage approach that could amplify the pump absorption 
enhancement and consecutively the laser output power. 
The results reported in this chapter fit in the aforementioned second category of pump 
absorption enhancing schemes. The interpretation of the original NM algorithm [20] as well 
as the deterministic cross section shape perturbation technique [21] are presented in this 
chapter in the form of structured pseudocode-functions. The proposed notation serves as the 
background for the development and validation of improved methods. Furthermore, 
additional fibre topology encoding schemes at higher dimensions are introduced and a 
modern interpretation of NM is given prior to the proposal of stochastically enhanced NM 
forms described in pseudocode syntax. The proposed algorithms are compared with 
commercial implementations of the genetic algorithm (GA) [22], generalised pattern search 
(GPS) [23-27] and mesh adaptive direct search (MADS) [28-29] methods that are also tested 
here for their performance and suitability. All the aforementioned algorithms share a set of 
common characteristics: they can operate exclusively on the function values (zeroth-order or 
derivative free or direct search methods) and they were tuned to their most parsimonious 
instances to the extent that their global convergence properties were not compromised. 
Here, the term global convergence is used to mean first order convergence to a point far 
enough from an arbitrary starting point. It does not mean convergence to a point  

*x : ( ) ( )*f x f x≤ , nx∀ ∈ℜ  adhering to the terminology in the extensive review for direct 

search methods by Kolda et al. A third common characteristic is that they all call a 3-
dimentional (3-D) fibre simulation method, described and validated in [19], in order to 
evaluate the objective function. 
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The contributions made in this chapter are summarized below: 

• First reported stochastic simulation-based optimization of DCF topologies (to the best 

of the authors knowledge) 

• Pseudocode descriptions of proposed algorithms for ease of verification and/or use by 

other researchers 

• Benchmarking of several optimization algorithms with an emphasis on their statistical 

nature 

• An optimization problem description scheme that allows the incorporation of 

inhomogeneous independent variables 

• The proposal of perturbed stochastic search patterns as generalizations of the simplex 

formation pattern with possible applicability in pattern search algorithms 

• The concept of implicitly constrained optimization via perturbed pattern search 

• The proposal of the enhanced stochastically perturbed Nelder-Mead (ESPNM) method 

for implicitly constrained global optimization with simple bounds 

• The unified description of NM, NM’s stochastic forms, GPS and MADS methods based 

on the pattern search concept 

• Mostly globally (as opposed to mostly locally in [21]) optimized DCF designs with an 

emphasis on manufacturability and modular design 

The next section describes a set of optimization schemes on relatively low dimensions and 
compares NM, NM’s stochastic variants (simple sampling Monte Carlo techniques), GA, 
GPS and MADS methods. Section 3 focuses on optimization schemes and algorithms in 
higher dimensions, introduces the perturbed patterns for simple and importance sampling 
Monte Carlo optimization and compares the locally introduced algorithms. The simulation 
parameters as well as the settings of each algorithm are given in section 4 where the 
optimization results for DCFs with polymer as well as air outer cladding are also discussed. 
Finally, section 5 concludes this chapter. 

2. Bound-constrained zeroth-order optimization algorithms 

The optimization problem considered in this chapter is  

 ( )minf
∈P Ω

P , { }f : nℜ →ℜ∪ ∞  (1) 

 where, ( ) ( ),f abs totP= −P P , (2) 

P  is a point in nℜ , n  is the number of variables and Ω  is the bounded function domain. 

Equation (2) gives the objective function which maps a DCF topology to the corresponding 
negative total absorbed pump power value [19]. The current notation partly adheres to that 
of [23] by assuming that  

 { }:n l u= ∈ℜ ≤ ≤Ω P P  where { }{ },
n

l u∈ ℜ∪ ±∞ . (3) 

The optimization domain Ω  constitutes a declaration of the computational bounds and 

physically meaningful function domain. It acts as a barrier when applying the optimization 

algorithm not to f  but to fΩ  where 
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( )f if

f
otherwise

⎧ ∈⎪= ⎨
∞⎪⎩

Ω

P P Ω
. (4) 

The current work attempts to solve a simulation-based optimization problem where the 
objective function can be evaluated to only a few significant figures. This observation along 
with the noise that may be present in the computed function values or the expense of these 
computations render the calculation of derivatives impossible or impractical. Hence there is 
a need to treat the optimization problem with direct search methods. 
The GA, GPS and MADS methods are implemented here via the commercially available 
‘genetic algorithm and direct search toolbox’ within the MATLAB technical computing 
environment. The amount of subjective evaluation of the aforementioned algorithms was 
kept to a minimum by carefully tuning their parameters so that both global convergence and 
low computational cost are served in a well balanced way. Moreover, directly comparable 
sets of optimizations were performed by each method in order to gain statistical insight into 
the benefits of each algorithm and build intuition into their performance for a more objective 
judgment. 

The NM simplicial search method has been comprehensively studied theoretically [30-32], 

extensively applied mostly in chemistry but also in optics [33-34], criticized for its 

inadequacies [35], remedied [36], enhanced [37,38] and even stochastically incorporated [39]. 

However, all theoretical improvements have led to a reduction in its computational 

efficiency. The main strength of the original algorithm is that when it succeeds it offers the 

best efficiency indicating that the most successful modifications of the simplex descent 

concept, with applications in computationally intensive problems, are expected to be those 

that maintain the number of function evaluations required to a minimum. Due to NM’s 

susceptibility to different interpretations and the need to clearly and concisely describe the 

NM-based methods proposed here, its current interpretation is crystallized in algorithm NM 

and associated subalgorithms NM_SimplexGener, FuncEval, SmxAssessm and NM_Step. 

The later  follows the modern practice examined by Lagarias [30] and is described in section 

3 as a subset of subalgorithm ESPNM_Step introduced there. Algorithm NM shows 

distinctively its two main operations being the generation of the initial simplex ( 0S ) along 

orthogonal directions around the start point (at line 3) and the line search procedure 

recursively executed (at line 10) by calling NM_Step during an iteration (while loop: lines 8-

12). The descent path is governed by the descent coefficient set {reflection, expansion, 

contraction, shrinkage} assigned in line 6. Line 2 of algorithm NM implies that the 

generation of the initial simplex (a polytope in nℜ  with 1n +  vertices - the minimum 

statistical information required to capture first order information) is essentially a pattern 

search operation along all n -directions denoted by the column vectors of the n n×  pattern 

matrix ( NMΞ ) which in this case is practically the identity matrix ( NM n n×≡Ξ I ). The initial 

simplex is generated by the subalgorithm NM_SimplexGener with respect to the start point 

and vector M  where the mesh sizes of the all independent variables are stored. In this way, 

the simultaneous optimization of inhomogeneous variables (of different physical meaning, 

units, mesh size) is practically implemented. An example is the case where the diameter and 

refractive index of an embedded hole are simultaneously optimized. Essentially, this is the 

integration of a parametric optimization procedure into a more robust non-parametric 

optimization scheme.  
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An important implication of subalgorithm NM_SimplexGener is that it should form a 

nondegenerate initial ( 0j = ) simplex. That is, 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1 1det , , ,

vol 0
!

j j j j j j
n n n n

j
n

+ + +− − −
= >

P P P P P P
S

A
 (5) 

The satisfaction of inequality (5) is important in order to conserve the numerical integrity of 

the ‘flexible polytope’ when descending in nℜ  and avoid convergence to a non-minimizer 

after collapsing one or more of its vertices on the hyperplane of others [35]. 
A simple sampling Monte Carlo approach is exercised here by means of the stochastic 
Nelder-Mead method (SNM) with the prospect to increase NM’s efficiency and probability 
to find a global minimizer in low dimensions. The SNM method is partly implemented by 
substituting line 2 in algorithm NM with  
 

 

Algorithm NM. Interpretation of the modern Nelder-Mead (NM) method: 

( )1, f , NM , , ,l l j haltσ σ⎡ ⎤ =⎣ ⎦P P M Ω  

Input: (start point 
T

1 1,1 2 ,1 ,1np p p⎡ ⎤= ⎣ ⎦P A  in 
nℜ , mesh size vector 

T

1 2 nm m m= ⎡ ⎤⎣ ⎦M A , 

stopping value for the halting criterion and optimization domain 
T

1 2 n= ⎡ ⎤⎣ ⎦Ω B B BA  where 

T

,min ,max 1, 2 , ,|i i i i np p =⎡ ⎤= ⎣ ⎦B …  (bounds)). Output: [optimal point, corresponding function value, 

standard deviation of { }1, 2 , , 1;f |i i n i h= + ≠…  after the last iteration]. 

1 : 0j =                                                                                                               // iteration index 

2 NM 1 2: n n n×= ≡⎡ ⎤⎣ ⎦Ξ ξ ξ ξ IA                                                  // initial simplex formation pattern 

3 call ( )0 1 NMNM_SimplexGener , , ,n=⎡ ⎤⎣ ⎦S P Ξ M               // nondegenerate initial simplex 

4 for each { }1,2 , , 1|i i n= +P …  call s ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω  endfor// objective function evaluations 

5 ( )1 2 1 1 1
:j n n

f f f + × +
= ⎡ ⎤⎣ ⎦F A                                                                     // initial objective matrix 

6 { } { }, , , : 1,2,1 2 ,1 2r e c s =                                            // descent coefficients standard values 

7 call ( )f , f , , , f , SmxAssessm ,h l h l j j
⎡ ⎤ =⎣ ⎦P P P S F                // current simplex ( jS ) assessment 

8 while  ( )j haltσ σ≥     // where, ( )
1 2

2

1, 2 , , 1;f f |j i i n i hσ = + ≠

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

…  (descent halting criterion) 

9 : 1j j= +                                                                                                         // increment 

10 call ( ), , NM_Step , , , , , , , , , , ,j j h l h l j jstep f f r e c s⎡ ⎤ =⎣ ⎦S F P P P Ω S F                   // NM step 

11 call ( )f , f , , , f , SmxAssessm ,h l h l
⎡ ⎤ =⎣ ⎦P P P S F                                // simplex assessment 

12 endwhile                                                                                                  // end of iteration loop 

13 return , ,l l jf σP                                                                                                           // output. 
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Subalgorithm NM_SimplexGener. NM initial simplex 
generation: 

( )0 1 NMNM_SimplexGener , , ,n=⎡ ⎤⎣ ⎦S P Ξ M  

Input: (start point 1P , NM pattern, mesh size vector and length 

of 1P ). Output: [initial simplex matrix]. 

1 for each simplex vertex in the set { }2 ,3, , 1|i i n= +P …  

2 ( )1 1:i i−= +P P M ξc  

                   //where, : ij ij ij ij
m n m n m n

a b a b
× × ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦c c  

3 endfor 

4 ( ) ( )00 1 2 1 vol 01
: |n n n+ >× +
= ⎡ ⎤⎣ ⎦ S

S P P PA                            

5 return 0S                                                             // output. 

Subalgorithm FuncEval. Objective function evaluation: 

( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω  

Input: (point in nℜ , bounds). Output: [function value]. 

1 if  i ∈P Ω  then 

2 ( ): fi if = P                               // compute (simulate)

3 else 

4 :if = +∞                  // assign a large positive value

5 endif 

6 return if                                                              //output.

Subalgorithm SmxAssessm. Simplex assessment: 

( )f , f , , , f , SmxAssessm ,h l h l
⎡ ⎤ =⎣ ⎦P P P S F  

Input: (simplex, objective matrices). Output: [worse, best 
function values, corresponding points, mean function value and 

centroid  for i h≠ ]. 

1 { }1, 2 , , 1f : max f |h i i n= += … ; assign ( )f f
|

h hh ≡ P
P  

2 { }1, 2 , , 1f : min f |l i i n= += … ; assign ( )f f
|

l ll ≡ P
P  

3 1, 2 , , 1;f : f |i i n i h= + ≠= … ; 1, 2 , , 1;: |i i n i h= + ≠=P P …  

4 return f , , f , , f ,h h l lP P P                       // output. 
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 ( )
1

2

SNM 1 2

0 0

0 0
, , ,

0 0

n n n

n

m

m

m

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Ξ ξ ξ ξ

A
A

…
B B B

A

 (6) 

where { }1,2 , ,| 1,1i i nm = ∈ −⎡ ⎤⎣ ⎦…  is a set of uniformly distributed pseudorandom numbers. A 

short description of the pseudorandom number generator used is given in section 4. SNM 

can use subalgorithm NM_SimplexGener to generate the initial simplex after substituting 

NMΞ  with SNMΞ  in the set of input arguments. During the generation of 0S  around 1P , on 

the basis of SNMΞ , a set of randomly signed orthogonal directions are searched while the 

initial mesh sizes fluctuate randomly as well (between zero and their nominal values stored 

in M ). The second and last part of the SNM implementation is to discard line 6 of algorithm 

NM and to add the following line 

 assign { } { }, , , 0.5,1 , 2,4 , 0.25,0.5 , 0.3,0.7
j

r e c s ∈ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (7) 

just before line 10. The later means that the descent coefficients are recursively set to 

uniformly distributed random values within the designated ranges. With regard to the 

modern understanding of the Nelder-Mead algorithm, the descent coefficients must satisfy 

the conditions ( )0,r∈ +∞ , ( ) ( ){ }1, ,e r∈ +∞ ∩ +∞ , [0,1]c∈  and [0,1]s∈ . According to 

Lagarias [30], the condition ( )0,r∈ +∞  is not stated explicitly in the original paper by 

Nelder and Mead but is implicit in the presentation of the original algorithm [20]. 
A significant role during an optimization is played by the corresponding optimization 
problem encoding key which orderly stores the independent variables of a fibre topology in 

a column vector (point P  in nℜ ) that is read by the fibre simulator. The construction of the 
computation grid and/or the setting of the simulation parameters involved in the 
evaluation of the objective function are then based on the information encoded in the 
coordinates of P . For fixed perimetric lines of laminas participating in a DCF cross section, 
the following encoding keys are used in this chapter: 

 ( )T

,1 ,1 ,2 ,2 , ,, , , , , , ,h h h h h N h Ny z y z y z y z=P A  (8) 

in ( )2 1N +ℜ  for an inner cladding topology embedding N -holes and a single active core. The 

first pair ( ),y z  of elements represents the coordinates of the core centroid on the cross 

section plane while each pair in the set ( ){ }, , 1,2 , ,, |h i h i i Ny z = … , appearing in P , represents the 

centroid coordinates of the i -th hole. Equation (8) encodes a fibre topology according to the 
‘Offset’ optimization scheme under which the centroid coordinates of each involved lamina 
is optimized independently. Following the same notation, the point 

 ( )T

, 1 , 1 , , 1, , , , , , , , ,h h h N h N Ny z y z y z d d=P A A  (9) 

in 3 2N+ℜ  encodes the same topology under the ‘Offset-Diameter’ scheme that, in addition to 
(8), allows the simultaneous optimization of circular hole diameters or square hole side 
lengths. Furthermore, the point  
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 ( )T

, 1 , 1 , , 1 1, , , , , , , , , , , ,h h h N h N N Ny z y z y z A A B B=P A A A  (10) 

in ( )2 2 1N +ℜ  allows, in addition to (8), the independent optimization of the horizontal and 

vertical characteristic dimension of each hole (major-minor axis of an ellipse for initially 
circular holes and length-height of a parallelepiped for initially square holes). Encoding keys 
(9) and (10) demonstrate the need for individually defined mesh sizes tailored to the 
domains within which the search for optimal values is desired. This view is reinforced by 

 ( )T

1 1 1 1 1, , , , , , , , , , , , , , ,h h h N hN N N Ny z y z y z A A B B R R=P A A A A  (11) 

that includes variables representing refractive index values. The independent variables in 
(11) are inhomogeneous not only in terms of corresponding mesh size and domain but also 

in physical meaning and units. In this case, point P  in 5 2N+ℜ  represents the ‘Offset-Major-

Minor-Index’ optimization scheme that expands (9) by including the refractive indices 

{ }1,2 , ,|i i NR = …  of dielectric holes embedded in the inner cladding. 

Four groups of thirty optimizations are executed next in each of the 10ℜ  and 18ℜ  spaces in 

order to compare the performance of SNM variants with algorithm NM and in relation to 

the dimensionality of the optimization space. To avoid fragmentation, it is thought adequate 

for the current discussion to report that all optimizations were initiated from the same start 

point. The later represents a double-clad design with a polymer outer cladding and four 

rods embedded in the inner cladding (solid-state circular dielectric holes) assumed to be 

made of CBYA alloy glass with a refractive index of 1.430 [40,19]. 

Figure 1 demonstrates the 10ℜ  sets of optimizations executed following different strategies. 

The type of search strategy is denoted by the {Initial simplex, Descent coefficients} pair 
where the letter D denotes deterministic as opposed to S denoting stochastic 
implementation. The initial circular inner cladding topology with centred core included four 
symmetrically embedded circular holes at the corners of a centred square and absorbed 

,abs totP =8.60W. Due to the high number of optimizations required, lower resolution than in 

 

  

Fig. 1. Four groups of 30 optimizations in 10ℜ  from the same starting point and under 

different optimization strategies: (a) SNM{D,D} ≡ NM (here for variable mesh size). (b) 
SNM{S,D}. (c) SNM{D,S}. (d) SNM{S,S}. 

www.intechopen.com



Global Optimization of Conventional and Holey Double-Clad Fibres by Stochastic Search   

 

361 

section 4 was used here after verifying that approximately the same trends were followed. The 
fibre was 1cm long and 126 rays carried the pump energy while the rest of the parameters 
were kept constant. The graphs along the first row of figure 1 plot the values of the total 
absorbed pump power (optimized as a function of the core and hole offsets) while those along 
the second row present the corresponding number of objective function evaluations recorded 
prior to convergence. The mean value ( μ  - dashed line) and standard deviation (σ ) of the 

plotted values is also reported in each graph. Figure 1(a) (1st column) reveals the influence of 
the mesh size random variance on the NM results. The SNM{S, D} strategy results are shown 
in figure 1(b) where the initial simplex vertices are formed stochastically while the simplex 
descent is based on deterministic coefficient values.  Figure 1(c) corresponds to the case of 
constant initial simplex (that of the first optimization in figure 1(a)) but this time the value of 
each optimization coefficient is recursively and randomly determined prior to each iteration 
during the simplex descent (SNM{D, S} strategy). Finally, figure 1(d) presents the results for 
the case where both the initial simplex and descent coefficients are randomly determined 
(SNM{S, S}). All optimizations in figure 1 were initiated from the same start point. The results 
variations observed in figures 1(b)-(d) are attributed solely to the stochastic nature of SNM 
while those in figure 1(a) originate from the mesh size variations. The best performing 

optimization strategy in 10ℜ  can be chosen on different criteria serving different applications. 

The strategy that delivers acceptably optimized objective function values with minimum 
uncertainty is preferred here. It offers the smallest spread of objective function values for the 
second lowest mean number of function evaluations. 

Figure 2 presents the corresponding study in 18ℜ  where the area and the ellipticity of the 

four holes are optimized in addition to the core and hole offsets previously optimized in 
10ℜ . The four examined strategies are presented here in the same order as in figure 1. 

Strategy (b) is preferred in this case because it offered the highest mean absorption at the 

highest certainty. This comes at the cost of the maximum mean number of function 

evaluations exhibiting this time the strongest spread around their mean value. In both 10ℜ  

and 18ℜ  spaces it appears that SNM{D, S} offers the lowest number of function evaluations 

and, more importantly, a slower growth in function evaluations with increasing dimensions 

[29]. This is a highly desired feature for the optimization of expensive objective functions. 
  

  

Fig. 2. Four groups of 30 optimizations in 18ℜ  from the same starting point and under 

different optimization strategies: (a) SNM{D,D} ≡ NM. (b) SNM{S,D}. (c) SNM{D,S}. (d) 
SNM{S,S}. 
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Fig. 3. Four groups of 30 optimizations in 10ℜ  from the same starting point and driven by 

different algorithms: SNM{S,S}, GA{Np1}, GPS{Np1,2N}, MADS{Np1,2N}. 

The fittest SNM strategies are compared next with three global optimization methods 

operating in 10ℜ  and 18ℜ  in figures 3 and 4 correspondingly. Figure 3(a) plots again the 

results for algorithm SNM{S, S} while figures 3(b)-(d) report the corresponding results from 
GA, GPS and MADS methods. The detailed set-up of each method is reported in section 4. 
The expression GA{Np1} denotes that each GA optimization started with (n+1) initial 

population members  generated by random sampling of Ω . By GPS{Np1, 2N} it is meant 

that the search pattern includes 1n +  directions and that the poll pattern matrix stores 2n  

directions. GPS and MADS algorithms implement two distinct steps namely the search and 
poll. The search step can be absent or be a pattern search or any other heuristic or Monte 
Carlo method [41] or preferably a method that uses inexpensive surrogates to approximate 
the objective function [42]. The search step adopted in this work implements a pattern 
search along the directions denoted by the column vectors in the pattern matrix  

 

( )

GPS,Search GPS,Np1

1

1 0 0 1

0 1 0 1

0 0 1 1
n n× +

−⎡ ⎤
⎢ ⎥−⎢ ⎥≡ = ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Ξ Ξ

A
A

B B B B
A

. (12) 

The poll step is a compulsory pattern search that is closely linked to the convergence theory 

of pattern search algorithms [29]. The adopted poll patterns are represented by the column 

vectors in 

 GPS,Poll GPS,2N

2

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1
n n×

−⎡ ⎤
⎢ ⎥−⎢ ⎥≡ =
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Ξ Ξ

A A
A A

B B B B B B
A A

. (13) 

The GPS algorithm invokes the poll step only when the search step fails to produce a point 

in nℜ  that improves the optimal function value recorded so far. After a poll step, the mesh 

size is adapted (contracts after an unsuccessful poll and expands after a successful poll) and 
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Fig. 4. Four groups of 30 optimizations in 18ℜ  from the same starting point and driven by 

different algorithms: SNM{S,S}, GA{Np1}, GPS{Np1,2N}, MADS{Np1,2N}. 

a new iteration begins. MADS is a stochastic form of GPS. The MADS,Search MADS,Np1≡Ξ Ξ  

pattern matrix stores 1n +  randomly generated column vectors while MADS,Poll MADS,2N≡Ξ Ξ  

is generated using a random permutation of an ( )n n×  linearly independent lower 

triangular matrix. Both of the above patterns are regenerated prior to each iteration 

according to MALAB’s documentation. 
Before discussing the results in figure 3, it is informative to note that the variations in the 
GPS optimization results are due to the use of a different mesh size for each optimization 
whilst all other results exhibit variations originating from the stochastic nature of the 
corresponding algorithm. SNM, GA, GPS and MADS achieved an average objective 
improvement of 56%, 45%, 84% and 81% correspondingly. In 18ℜ  (figure 4) the 
corresponding percentages are 58%, 46%, 90% and 93%. It is obvious at this stage that GPS 
and MADS managed to find optimizers located in deeper valleys indicating global 
convergence with higher probability than GA and SNM. On the computational expense 
front in 10ℜ  the GA, GPS and MADS were correspondingly 121%, 91% and 111% more 
expensive than SNM while in 18ℜ  they were 118%, 104% and 113% more expensive than 
SNM. The GA is consistently the most expensive method. The reported results agree with 
other benchmark results [43,44] and although GA promises global convergence when 
evolving a large initial population [45], it is not preferred here due to it being unsuitable for 
the optimization of expensive functions. The above analysis indicates that in the examined 
dimensions the most efficient strategy would be to use SNM as a first stage optimization 
tool, a numerical telescope that can relatively inexpensively designate the vicinity that offers 
the highest probability to contain a global optimizer. A second stage search with the 
significantly more expensive GPS of MADS methods is then justified in the SNM designated 
subdomains. Nevertheless, and in agreement with section 4 results, the SNM method offers 
the best case efficiency when it succeeds in finding a global optimizer. 

3. Implicitly constrained zeroth-order optimization algorithms with simple 
bounds 

The stochastic forms of NM proposed in this section solve optimization problems in higher 
dimensions that are difficult to treat or incompatible with GA, GPs and MADS. In addition 
they achieve global convergence at low computational cost. The ‘Offset-Perimeter’ encoding 
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key ([21] gives a schematic representation) is used to map a variable perimetric line shape 
for each lamina comprising a fibre cross section. Under this scheme, the shape of a given 
cross section can be fully optimized but at a considerably higher computational cost. The 
dimensionality of the objective function domain increases by at least an order of magnitude 
depending on the sampling density of each lamina perimeter included in a cross section. A 

fibre topology that includes N -holes in the inner cladding is represented in 

( )12 1c h hNn n n+ + + +ℜ …
 by a single point of the form 

 
(

)
1 1

1

,1 , ,1 , 1,1 1, 1,1 1,

T

,1 , ,1 ,

, , , , , , , , , , , , , , ,

, , , , ,

c c h h

h hN

c c n c c n h h n h h n

hN hN n hN hN n

y z y y z z y y z z

y y z z

=P A A A A A

A A
 (14) 

where cn  is the number of points that sample the inner cladding perimeter and 1,2, ,|hi i Nn = …  

is the i -th hole perimetric point set population. The aforementioned encoding key includes 

the core centre coordinates but does not optimize the hole offsets. However, this is a feature 

that could be included into the coordinates set of P . 
Even for a low resolution polygonic approximation of a smooth perimeter, all the previously 
compared algorithms generate trial points that abruptly perturb a smooth start point and 
lack physical integrity and/or manufacturability. Examples of such perturbations are given 
in figures 5(a)-(c) showing typical trial points that the corresponding algorithms NM, GPS, 
MADS may generate during an optimization. Most representative trial points are those of 
the GA algorithm shown in figures 5(d), 5(e) for two different bounding configurations. It 
becomes obvious that GA scrambles randomly the start point coordinates failing to produce 
children or members of the initial population with physical integrity. Figure 5(e) suggests 
that a scheme capable of generating smooth perturbations is needed. An effort was 

 

 

Fig. 5. Trial points (or initial population members). (a) NM. (b) GPS. (c) MADS. (d) GA with 
own population, bounded within [-4,4]mm (e) GA with own population, bounded within 

the ±  50μm zone from start point. (f) GA with PNM initial population. 
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made to construct suitable constrains that would force the mapped coordinates to change in 
groups forming smooth, local and able to propagate perturbations along the perimeter of a 
lamina but it appears that this is a non-functioning approach. 
Although algorithm NM is not meant for constrained optimization it was found that it can 
be modified to perform implicitly constrained optimization. The outline of the related 
process is that after generating a suitable pattern, the vertices of the initial simplex could 
obey pattern imprinted constraints which propagate all the way to the convergence point at 
the end of a descent. The simplest implementation of the above concept is implemented via 
the perturbed Nelder-Mead (PNM) algorithm and by virtue of subalgorithms 
PNM_PattGener and PNM_SimplexGener. The former of the subalgorithms generates a 
pattern of the form 

 

2 1

3 2 1

3 2

3PNM

1

2

0 0

0

0 0

0 0 0

0 0 0

0 0 0
n n

ν ν
ν ν ν

ν ν
ν

ν
ν

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Ξ

…
…
…
…

B B B B
…
…

 (15) 

when the perturbed element group population is 3k = . Equation (15) demonstrates 

essentially the propagation of a constant disturbance involving k -elements along the length 

of the additive identity ( 1n×  zero vector). In line 1 of PNM_PattGener, the set 

{ } ( )N 1,2, ,0,1 2 |q q kν σ π =∈ …  with statistical median ( )1 2kμν ν += , follows the normal 

distribution ( )2
NN ,μ σ  where Nσ  is the predefined standard deviation of the distribution 

with a probability density function shown in the line 1 comment. It is notable that  

PNM NM≡ =Ξ Ξ I  when 1k =  and 1 2Nσ π= , indicating that PNMΞ  is a generalization of  

  

 

Algorithm PNM. The Perturbed Nelder-Mead (PNM) method: 

( )1, f , PNM , , , , ,l l j halt NM kσ σ σ⎡ ⎤ =⎣ ⎦P P Ω  

Input: (as in algorithm NM but with scalar mesh size and in addition, standard deviation of the 
normal distribution and perturbed element set population (odd positive 

integer: 2 1;k τ τ ∗= + ∈Ζ )). Output: [as in algorithm NM]. 

1                                                                                                          // same as in algorithm 
NM 

2 call ( )PNM PNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ                                          // PNM pattern 

generation 

3 call ( )0 1 PNMPNM_ SmxGener , , ,M n=⎡ ⎤⎣ ⎦S P Ξ                       // initial simplex generation 

1-13                                                                                                       // same as in algorithm 
NM 
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NMΞ . Subalgorithm PNM_SmxGener returns the initial simplex vertices as a result of the 

superposition between the start point ( 1P ) and the search directions stored in PNMΞ . The 

practical outcome is the propagation of a bell-shaped perturbation along the elements in 1P  

and is illustrated in figure 6 which assumes that 3k =  and shows clearly the n -steps of the 

perturbation propagation process which generates the initial simplex vertices 2P  to 1n+P . 

Also clearly demonstrated is that a set of vertices created at the start and the end of the 

process bare a perturbation that is abrupt at one end. This is a drawback of the described 

technique that has a small overall effect though due to the comparatively small number of 

vertices baring such a non-smooth perturbation. Soon after the start of the simplex decent, 

Subalgorithm PNM_PattGener. Perturbed Nelder-Mead (PNM) pattern generation:  

( )PNM PNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ  

Input: (number of variables, standard deviation of the normal distribution, perturbed element set 

population (odd positive integer: 2 1;k τ τ ∗= + ∈Ζ )). Output: [PNM pattern matrix]. 

1 *

T

1 2 2 1; Z
: |k k τ τν ν ν = + ∈= ⎡ ⎤⎣ ⎦N A  //where { } ( ) ( ) ( ) 12 2

1,2, , N N| 1 2 exp 2q q k qν σ π μ σ
−

=
⎡ ⎤= − −⎢ ⎥⎣ ⎦

…  

2 ( ): 1 2kε = −   // number of variables in either bell shape branch excluding the median ( μ ) 

3 for each PNM pattern-matrix column in the set { }1,2,3, ,|i i n=ξ …  

4 ( ) ( )T T
1 2: , , , 0,0, ,0i nξ ξ ξ= ≡ξ … …                     // additive identity ( 1n×  zero vector) 

5 ( ) ( )( )T

1 11 1
1

, , , , , , , , :i i i i ii i
k

ε εε εξ ξ ξ ξ ξ ξ ξ− − + +− − + −
×

⎡ ⎤
=⎢ ⎥

⎣ ⎦
NA A   // bell shaped perturbation 

6 endfor 

7 ( )PNM 1 2: , , , n n n×
=Ξ ξ ξ ξA                                                                   // PNM pattern matrix 

8 return PNMΞ                                                                                                               //output. 

Subalgorithm PNM_SmxGener. PNM initial simplex 
generation: 

( )0 1 PNMPNM_ SmxGener , , ,M n=⎡ ⎤⎣ ⎦S P Ξ  

Input: (start point 1P , PNM pattern, mesh size and length of 

1P ). Output: [initial simplex matrix]. 

1 for each simplex vertex in the set { }2,3, , 1|i i n= +P …  

2 ( )1 max, 1 1: 1i i iM ξ − −= +P P ξ  

                   // where, { }max, 1 , 1 1,2, ,max |i w i w nξ ξ− − == …  

3 endfor 

4 ( ) ( )0
0 1 2 1 vol 01

: |n n n+ >× +
= ⎡ ⎤⎣ ⎦ SS P P PA                            

5 return 0S                                                // output. 
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the abruptly perturbed vertices are naturally substituted by newly discovered and better 

performing smoothly perturbed vertices. The only damage made is the comparatively small 

reduction in the probability to capture optimal vertices right from the start of the process. 

The height of the bell shape is controlled, in subalgorithm PNM_SmxGener, via the mesh 

size M  while its full-width half-maximum is set via Nσ . The factor max1 ξ , used in line 2, 

normalizes the bell-shaped perturbation, stored in the pattern, to the maximum value of 1 in 

order to scale the perturbation height to the predefined mesh size M . A set of decoded 

initial simplex vertices is given in figure 7(a) where the start point was a cross section with 

circular inner cladding embedding an offset circular hole and an offset core. For 

completeness, figure 5(f) shows a child produced by GA after having been initiated with the 

same initial population that comprised the initial simplex vertices in PNM. Here the child’s 

features have been improved compared to figures 5(d), 5(e) but still the GA algorithm 

appears unable to generate a smooth optimizer. 

Following the proposal of SNM method in section 2, algorithm PNM naturally suggests its 

stochastic version SPNM which can be implemented by the simultaneous random 

assignment of ( M , Nσ ) and/or the simplex descent coefficients. The random assignment of 

( Nσ , M ) is implemented just before the generation of SPNMΞ  which now stores, as 

opposed to PNMΞ , a set of directions that still smoothly but this time randomly perturb the 
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Fig. 6. Illustration of the bell shape propagation in the nonrandomized initial simplex 

generation scheme for perturbed vertex elements number 3k = . Under this scheme, the 

shape of the perturbation propagates along the whole vertex in n -steps while preserving its 

shape. 
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Fig. 7. Propagation instances of a perturbation envelope. (a) PNM method. (b) ESPNM 
method stochastic envelope (1st row) and random core offsets inside a selected vertex 
(importance sampling- 2nd row). 

additive identity. Both PNM and SPNM algorithms still call the same iteration subalgorithm 

(NM_Step) as NM and SNM do. The assignment of the random M , Nσ  parameter values is 

implemented as in algorithm ESPNM (enhanced stochastically permuted NM) proposed next. 
Algorithm ESPNM enhances SPNM method by dynamically and preferentially forming the 
initial and also intermediate (during a descent) simplices as well as conditionally and 
adaptively regenerating the intermediate simplices. The implementation of ESPNM method 
is described in algorithm ESPNM and associated subalgorithms ESPNM_PattGener, 
ESPNM_SmxObjGener and ESPNM_Step. Subalgorithm ESPNM_PattGrner generates a 
simplex formation pattern of the type  
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0 0 0 0
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= ⎢ ⎥
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. (16) 
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The concept behind ESPNMΞ  is that it stores a leftmost set of direction vectors that propagate 

the perturbation envelope starting from the first element in 1P  (1st column of ESPNMΞ ) and 

stopping when the opposite end of the envelope reaches the last element ( ( )1n k⎡ ⎤− −⎣ ⎦ -th 

column ). In this way there remain 1k −  unfilled columns in ESPNMΞ  ( ( )2n k⎡ ⎤− −⎣ ⎦ -th to n -

th column) that are assigned as shown. The later, in conjunction with subalgorithm 

ESPNM_SmxObjGener, will allow the selection of the best vertex so far ( optP ) and its 

subsequent perturbation with emphasis to its most influential elements (importance 

sampling). In this case, the aforementioned influential elements are the first two chosen on 

the basis that they control the offset of the active core where the pump photons absorption 

takes place. Subalgorithm ESPNM_SmxObjGener describes the stochastic assignment of 

each perturbation propagation instance along 1P  (line 4). In addition to the simplex matrix 

it also returns the objective matrix since the simplex is generated dynamically based on the 

feedback from the function evaluations. Then it evaluates the objective function at the 

perturbed vertices and selects the fittest ( optP ) amongst them (line 8). Its final operation is to 

randomly scramble the core offset along positive directions within the optimal cross section, 

represented by the decoded optP , in search for objective improving coordinates (lines 9-13). 

The initial polytope generated in this way is again a numerically non-degenerate structure.  

 
Algorithm ESPNM. Enhanced stochastically perturbed Nelder-Mead (ESPNM) method: 

( )1 N, f , ESPNM , , , , , ,l l j halt mM kσ σ σ υ⎡ ⎤ =⎣ ⎦P P Ω  

Input: (as in algorithm PNM, max consecutive shrinkages(>=2)). Output: [as in algorithm NM]. 

1 : 0j =                                                                                                               // iteration index 

2 ( )ESPNM ESPNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ                // stochastically permuted pattern 

3 call ( )1 ESPNM, ESPNM_SmxObjGener , , , , ,j j M n k⎡ ⎤ =⎣ ⎦S F P Ξ Ω       // stochastic simplex 

4 : 0cυ =                                                             // consecutive shrinkages number initialization 

5 call ( )f , f , , , f , SmxAssessm ,h l h l j j
⎡ ⎤ =⎣ ⎦P P P S F               // current simplex ( jS ) assessment 

6 while  ( )j haltσ σ≥ // where, ( )
1 2

2

1,2, , 1;f f |j i i n i hσ = + ≠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

…  (descent halting criterion) 

7 : 1j j= +                                                                                                        // increment 

8 assign { } { }, , , 0.5,1 , 2,4 , 0.25,0.5 , 0.3,0.7
j

r e c s ∈ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ // random, uniformly distributed 

9 call  

( )1 ESPNM, , , ESPNM_Step , , , , , , , , , , , , , , , , , ,j j c h l h l j j c mstep f f r e c s M n kυ υ υ⎡ ⎤ =⎣ ⎦S F P P P Ω S F P Ξ       

10 call ( )f , f , , , f , SmxAssessm ,h l h l
⎡ ⎤ =⎣ ⎦P P P S F                                    // simplex assessment 

11 endwhile                                                                                                  // end of iteration loop 

12 return , ,l l jf σP                                                                                                         // output. 
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Using this technique in high dimensions means that the initial simplex is formed by a search 

process with an extra element of intelligence which is the selective collection of information 

within a subset of dimensions offering higher probability to deliver substantially optimized 

objective function values and\or second order information. In other words, a subset of 

simplex vertices record a certain space of higher interest, while keeping the coordinates in 

the rest of the dimensions frozen, adding an element of exploratory search right from the 

start of the process. The aforementioned assignment process of the initial simplex is 

graphically illustrated in figure 8 for a small number of perturbed elements 5k =  selected 

to assist the demonstration of the selective randomization concept. It is also assumed there 

that 3P  performed optimally amongst the vertices from 1P  to ( )1 1n k+ − −P  and as shown it is 

vertex 3P  that is further processed and used as the basis to assign the remaining 1k −  

vertices of the initial simplex ( 0S ).The top two elements of each of the vertices ( )1 2n k+ − −P  to 

1n+P  in figure 8 show the way the represented core centre coordinates are randomly altered 

to capture further and better focused objective function information in the sub-dimensions 

of higher probability to capture optimal objective function values. A schematic visualization 

of the above process is given in figure 7(b) where the cross sections shown  

 
Subalgorithm ESPNM_PattGener. ESPNM pattern generation:  

( )ESPNM ESPNM_PattGener , ,Nn kσ=⎡ ⎤⎣ ⎦Ξ  

Input: (number of variables, maximum standard deviation of the normal distribution and number 
of perturbed variables (odd positive integer)). Output: [EPSNM pattern matrix]. 

1 ( ): 1 2kε = −          // number of variables in either branch of the normal distribution 

2 assign { }N, 1,2, , 2 N N| 2 ,i i n εσ σ σ= − ∈⎡ ⎤⎣ ⎦…           // uniformly distributed random values 

3 for each ESPNM pattern matrix column vector in the set { }1, ,|i i nε ε ε− = + −ξ …  

4 ( ) *

T
1 2 2 1; Z

: , , , |i k kε τ τν ν ν− = + ∈=N A // { } ( ) ( )2
1,2, , N, N,| N , 0,1 2q q k i iε εν μ σ σ π= − −= ∈…     

5 ( ) ( )T T
1 2: , , , 0,0, ,0i nε ξ ξ ξ− = ≡ξ A …            // additive identity ( 1n×  zero vector) 

6 ( ) ( )( )T1 11 1
1

, , , , , , , , :i i i i i ii i
k

ε ε εε εξ ξ ξ ξ ξ ξ ξ− − + + −− − + −
×

⎡ ⎤
=⎢ ⎥

⎣ ⎦
NA A  // bell shaped perturbation 

7 endfor 

8 for each ESPNM pattern matrix columns in the set ( ) ( ){ }2 , 3 , ,|i i n k n k n= − − − −ξ …   // 1k −  

vectors 

9 ( ) ( )[ ]TT
21 0,,0,0,1,1,,,: …A == ni ξξξξ  // preferential perturbation pattern 

vectors 
10 endfor 

11 ( )ESPNM 1 2: , , , n n n×
=Ξ ξ ξ ξA                                                           // ESPNM pattern matrix 

12 return ESPNMΞ                                                                                                       // output. 
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along the first row are instances of the stochastic bell shape propagation while the second 

row shows the importance sampling process [46] which is practically a uniformly random 

search for improved core offsets in the vicinity of optP . The aforementioned process is 

invoked once by algorithm ESPNM during the initial simplex ( 0S ) generation at line 3 and 

then recursively during the line search process (simplex descent) at line 21 of subalgorithm 

ESPNM_Step. The later is executed conditionally in the vicinity of the currently best vertex 

( lP ) when subsequent shrinkages are recorded indicating descent on a problematic 

landscape (noisy, discontinuous, nonconvex with many narrow and deep basins). It is also 

executed adaptively by halving the mesh size prior each new simplex generation around the 

preserved lP  in order to accelerate convergence (ESPNM_Step line 20). This process 

resembles the mesh size contraction in GPS and MADS and places ESPNM in the class of 

methods that optimize a function by iterative processes executed on a tower of meshes [29]. 

An important aspect of the initial simplex generation at line 3 of algorithm ESPNM is to 

choose appropriate values for M  and Nσ  parameters such that the initial simplex spans an  

 
Subalgorithm ESPNM_SmxObjGener. ESPNM simplex, objective matrices generation: 

( )1 ESPNM, ESPNM_SmxObjGener , , , , ,M n k=⎡ ⎤⎣ ⎦S F P Ξ Ω  

Input: (start point 1P , ESPNM pattern ,optimization domain, mesh size, length of 1P  and 

number of perturbed variables). Output: [simplex and objective matrices]. 

1 assign ( ){ }1,2, , 1| ,i i n ka M M= − − ∈ −⎡ ⎤⎣ ⎦…  // uniformly distributed random bell-amplitude values 

2 assign ( ){ }1,2, ,2 1| ,i i km M M= − ∈ −⎡ ⎤⎣ ⎦…        // uniformly distributed random mesh size values 

3 for each simplex vertex in the set ( ) ( ){ }2,3, , 1 1|i i n k= + − −P … // perturbation propagation loop  

4 ( )1 max, 1 1: 1i i i ia ξ − −= +P P ξ                         //where, { }max, 1 , 1 1,2, ,max |i w i w nξ ξ− − == …  

5 call ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω                     // function evaluation at the simplex vertices 

6 endfor 

7 call ( )1 1FuncEval ,f =⎡ ⎤⎣ ⎦ P Ω                                    // function evaluation at the start point 

8 ( ) ( ){ }f : min f | 1,2, , 1 1opt i i n k= = + − −… ; assign ( )f f
|

opt opt
opt ≡ P

P // optimal vertex selection 

9 for each simplex vertex in the set ( ) ( ) ( ) ( ){ }1 2 , 1 3 , , 1|i i n k n k n= + − − + − − +P …  

10 ( )1, 1 1, 1 2 2 1:i i i n kmξ ξ− − − + − −= ; ( )2, 1 2, 1 2 2:i i i n kmξ ξ− − − + −=    

11 1:i opt i−= +P P ξ       // stochastic perturbation of core centre coordinates in selected optP  

12 call ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω                      // function evaluation at the perturbed optP  

13 endfor 

14 ( ) ( )1 2 1 vol 01
: |n n n+ >× +
= ⎡ ⎤⎣ ⎦ SS P P PA ; ( )1 2 1 1 1

: n n
f f f + × +

= ⎡ ⎤⎣ ⎦F A    // simplex; objective matrices  

15 return ,S F                                                                                                                 // output. 
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Fig. 8. Illustration of the selectively randomized initial simplex generation scheme for 

perturbed vertex elements number 5k = . The last four ( 1k − ) simplex vertices are versions 

of the vertex ( 3P ) that was the optimal point found. containing the core centre coordinates 

altered by the set of normally distributed pseudorandom coefficients 1 2 8{ , , , }r r r… .  

area that includes many valleys (nonconvex objective function) as opposed to forming a 

small initial simplex with all its vertices located inside a single valley. The latter will almost 

certainly result in local convergence. 
Subalgorithm ESPNM_Step implements a line search operation that guides the simplex 

when descending in nℜ . The aforementioned subalgorithm NM_Step is a subset of 

ESPNM_Step formed by removing the if-then-else-endif module (lines 19-25) after keeping 
lines 23 and 24. It includes a stronger expansion condition (line 4) and strict inequalities 
(lines 11 and 12). Also, the seven input arguments are removed as well as the last output 
argument. In previous work [21], the weaker expansion condition was used in 

NM_step( e lf f<  as in the original algorithm [20]). 

 

 
Subalgorithm ESPNM_Step. Interpretation of the ESPNM step operation: 

( )1 ESPNM, , , ESPNM_Step , , , , , , , , , , , , , , , , , ,j j c h l h l j j c mstep f f r e c s M n kυ υ υ⎡ ⎤ =⎣ ⎦S F P P P Ω S F P Ξ  

Input: (worse, best points, centre of polytope excluding hP , bounds, highest, lowest function 

values, reflection, expansion, contraction, shrinkage coefficients, current simplex, objective 

matrices, start point 1P , ESPNM pattern, mesh size, length of 1P , number of perturbed variables, 

consecutive and max consecutive shrinkages). Output: [current simplex, objective matrices, 

operation step, consecutive shrinkages]. 
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1 ( ): 1r hr r= + −P P P ; call ( )FuncEval ,r rf =⎡ ⎤⎣ ⎦ P Ω    // calculate; evaluate reflection point 

2 if  ( )r lf f<  then 

3 ( ): 1e re e= + −P P P ; call ( )FuncEval ,e ef =⎡ ⎤⎣ ⎦ P Ω //calculate; evaluate expansion point 

4 if  ( ) ( )ANDe l e rf f f f⎡ ⎤< <⎣ ⎦  then      // stronger expansion condition (modern NM) 

5 :h e=P P  in jS ; :h ef f=  in jF ; : 'expansion'step =        // expansion operation 

6 else 

7 s :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                         // reflection 

8 endif 
9 else 

10 { }1,2, , 1;: max |m i i n i hf f = + ≠= …  

11 if  ( )r mf f≥  then 

12 if  ( )r hf f<  then 

13 :h r=P P                                             // improved hP  to be used in line 16  

14 :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                   // reflection 

15 endif 

16 ( ): 1c hc c= + −P P P ; call ( )FuncEval ,c cf =⎡ ⎤⎣ ⎦ P Ω               // contraction point 

17 if  ( )c hf f>  then 

18 ( ){ }1,2, , 1;: |i i l i n i lc = + ≠= +P P P … ; : 'shrinkage'step = ; : 1c cυ υ= +  // shrinkage 

19 if  ( )maxconsυ υ=  then 

20 1 : l=P P ; : 2M M= ; : 0cυ =            // preservation; adaptation; reset 

21 call ( )1 ESPNM, ESPNM_SmxObjGener , , , , ,j j M n k⎡ ⎤ =⎣ ⎦S F P Ξ Ω // 

           new smx 
22 else 

23 for each { }1,2, , 1;|i i n i l= + ≠P …  call ( )FuncEval ,i if =⎡ ⎤⎣ ⎦ P Ω  endfor 

24 ( )1 2 1 1 1
:j n n

f f f + × +
= ⎡ ⎤⎣ ⎦F A               // evaluation of shrunk simplex 

25 endif 
26 else 

27 :h c=P P  in jS ; :h cf f=  in jF ; : 'contraction'step =      // contraction 

28 endif 
29 else 

30 :h r=P P  in jS ; :h rf f=  in jF ; : 'reflection'step =                    // reflection 

31 endif 
32  endif 

33 return jS , jF , step , cυ                                                                                         // output. 
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Fig. 9. Four groups of 15 optimizations in 182ℜ  from the same starting point and driven by 

different algorithms: (a) SPNM{D,D} ≡ PNM. (b) ESPNM{S,D}. (c) SPNM{D,S}. (d) 
ESPNM{S,S}. 

Figure 9 presents a comparison of the algorithms proposed in this section. The {*, *} notation 
denotes {simplex generation, descent coefficients} pairs that can be either deterministically 
(D) or stochastically (S) assigned. The corresponding start point was a circular non-holey 
inner cladding with a centred core which absorbed 5.6W of pump power. The reported 
results indicate that the best performing algorithm is ESPNM{S, S} because it delivered, on 
average, the optimal function values exhibiting at the same time the lowest spread around 
their mean value. It demonstrated a 152% improvement of the mean Pabs,tot compared to the 
113% offered by PNM for a 61% increase in computation cost over PNM. 

4. Optimization results 

The inner cladding of a conventional DCF has a numerical aperture (NA) of 0.48 while the core 
NA is 0.175. The core doping density is 20,000ppm-by-volume, the launched pump power is 
100W and the fibre length is 10cm for all the optimization results presented in this section. The 
pump light has a random modal content, its energy is propagated via 288 rays in 10 time steps 
and the absorption computation grid of the active core is comprised of 100 volume elements. 
The pump light wavelength is pλ =975nm at which the Yb+3 (Er+3-Yb+3 ion system) absorption 
cross section is 24 22.1 10 m−× . The simulated fibres are single-end pumped by a 600μm 
diameter pure silica core (standard fibre bundled pump delivery fibre) and NA of 0.48 when 
pumping a fibre with polymer outer clad or it is assumed to be surrounded by an air outer 
cladding when pumping a double-clad fibre which also has an air outer cladding. This work 
focuses on a set of fibre topologies that are thoroughly optimized and computationally 
compared on a common basis that avoids confusion and develops intuition into their 
absorption trends. Although space restrictions did not allow comprehensive parametric 
optimization, a sample of parametric optimization results in 10ℜ  is presented in figure 10 
which shows a set of fairly similar optimizers exhibiting almost identical absorption 
characteristics. Algorithm NM converged to the reported shapes for different pairs of fibre 
length and pump power values correspondingly. The optimization process started from the 
same initial cross section and run under the same settings. Figure 10 demonstrates the 
generality of the optimization results reported in tables 1-4 which are approximately valid 
within the ranges [0.1, 1]W and [0.1, 1]m of pump power and fibre length correspondingly. 
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Fig. 10. Absorption performance of four convergence points resulting from optimization 
runs under different fibre length and pump power values. 

The computing platform used for the optimizations reported in this chapter, is the same as 
the platform described in reference [19]. The CPU time consumed for the objective function 
evaluation at each start point is shown in the tables of this chapter for a more informative 
presentation. The strongest influence on the recorded CPU times originates from the total 
number of scattering operations which fluctuates slightly during an optimization. The 
computational efficiency of the 3-D fibre simulation method used was compared in [19] with 
other methods reported in the literature. 
All Mote Carlo algorithms proposed in this chapter made use of the built-in MATLAB 
random number generator to produce the required sequences of uniformly distributed 
pseudorandom numbers. The built in function is based on the random number generator by 
Marsaglia and Zaman [47] which was specifically designed to produce floating point values 
and uses a lagged Fibonacci generator with a cache of 32 floating point numbers between 0 
and 1 combined with a separate, independent random integer generator based on bitwise 
logical operations. As a result, MATLAB’s built-in generator has a period of 21492 (number of 
values produced before the sequence begins to repeat itself) and can theoretically generate 
all numbers between 2-53 and 1-2-53, all with equal probability to occur. 
Figure 11 demonstrates the effort to optimize the offset of the core inside a circular (1st row 
figures) and a square (2nd row figures) inner cladding. The CPU time required for a single 
function evaluation for the circular fibre was approximately 28s on the MATLAB platform. 
Figures 11(a) and 11(e) show the corresponding pump power absorption surfaces generated 
by sampling the total absorbed pump power (Pabs,tot) calculated at 49 nodes (by moving 
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Fig. 11. Core offset optimization (in 2ℜ ) inside a circular (1st row) and a square inner-clad 

(2nd row). (a),(e) Transverse distribution of total absorbed power. (b),(f) Interpolated 
objective function surface and simplex descent path on the actual surface. (c),(g) Beam 
overlap images. (d),(h) Cumulative absorption of the initial guess (circles) and the 
convergence point (triangles). 

the core on each one) of a Cartesian grid covering a square area 4900μm2 and interpolating 

the values on a 784 nodes grid covering the same area. This information is plotted here in 

order to observe the behaviour of the referred to as the modern interpretation of the Nelder-

Mead algorithm adopted in this work. For the circular inner cladding, the ,abs totP  values 

exhibit the well known symmetrical distribution around the centre of the cross section with 

the peak appearing near the inner-to-outer cladding interface. Figure 11(b) shows the 

surface that plots the corresponding values ( ,abs totP− ) of the objective function and the path 

followed by the lowest vertex of the simplex (which is a triangle here in 2ℜ ). The descent 

started from the region of the initial guess which was the centre of the cross section 

( ), ,,c init c inity z =(0, 0)μm and the algorithm converged at the point ( ), ,,c opt c opty z =(-38, -

203)μm denoting that the optimum offset of the core from the centre is approximately at a 

distance of 69% of its radius for the considered operation point.  

The corresponding path for the square DCF is shown in figure 11(f) on a fragment of the 

objective function surface. Here the simplex started again from the cross section centre and 

converged this time to the point ( ), ,,c opt c opty z =(-24, 126)μm where the core is situated at a 

distance from the centre that is approximately 21% of the inner cladding side length. In both 

figures it is apparent that the direct search method achieved better landscape resolutions 

and at lower computation cost than those achieved through the initial evaluation of ,abs totP  

at the grid nodes. Furthermore, figure 11(b) suggests graphically that first-order 

convergence from an arbitrary starting point (global convergence) is achieved at a point 
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optim ∈ℜP  very close to an optimizer *x  that is a stationary point of the objective function 

satisfying the second-order sufficiency condition ( ( )2
* *: 0x f x∃ ∇ >  for a differentiable 

function). The spatial distribution of ,abs totP  across the cross section plane of the circular 

DCF is also clearly followed by the lowest order standing wave that developed in the beam 

overlap image in figure 11(c). The corresponding surface for the square DCF shows the 

improved scrambling of the modes achieved by this cross section. The peak standing high 

above the rest on each surface denotes the location of the core within the inner cladding. 

Figure 11(d) shows the dramatic improvement of absorption in the offset core of the circular 

DCF which is the direct result of the simplex descent to a deep valley while figure 11(h) 

demonstrates that there is comparatively little room for improvement when offsetting the 

core within a square DCF. 
Table 1 presents the results from the simultaneous optimization of the cross section and 
refractive index performed mostly by the stochastic variants of NM at relatively low 
dimensions. The listed schemes (column 5) optimized the offset, size, shape and refractive 
index of an encompassed lamina while the shape of the inner cladding remained constant. 
These results represent a telescopic view into the considered optimization domains 
facilitated by the parsimonious nature of NM and SNM methods. All dielectric holes shown 
are assumed to be made of CBYA alloy-glass [40] apart from the row 3 optimizer 
representing an attempt to search for improved refractive index values. The increased CPU 
times recorded for the most complicated and absorbent topologies is due to the 
correspondingly larger number of scatterings occurring inside them. The optimal cross 

section in table 1 is the row 8 optimizer, found by stochastic search in 18ℜ  where the offset 

as well as ellipticity and size of four large area holes were allowed to vary independently. 
The single hole designs demonstrated high potential to achieving optimal absorption while 
when square shapes for the inner cladding or embedded holes were used, the absorption 
dropped considerably. The same was the case when air holes or hexagonal CBYA holes of 
variable offset and size were optimized (not shown). As far as the preliminary results in 
table 1 are considered, the cross sections worth to invest on in terms of computational 
expense for further optimization by the MADS method appear to be the: 

• Four elliptical holes scheme (row 8) 

• Circular hole topologies because they are easier to manufacture and showed improved 
absorption potential (row 6) after initiating a second optimization from a previous 
optimizer (row 5) 

• Single large-hole cross section due to its simplicity and good performance. 
The most promising topologies from table 1 are taken to the next level for optimization by 
MADS which promises to deliver global optimizers with higher probability but a significant 
increase in computational cost is expected. Prior to discussing the results in table 2 it is 
useful to describe the algorithmic settings of GA, MADS and GPS methods because they had 
an impact on all corresponding results. The optimizations executed by GA in section 2 

started with 1n +  members in the initial population (to match the number of vertices 

maintained by a simplex), the elite population size was set to the nearest integer of 

( )1 10n + , the cross over factor was 0.8, the migration factor was 0.2 and the migration 

interval was set to 20. With the need to make the GPS and MADS as computationally 
efficient as possible with a minimum negative impact on their global convergence 
properties, they were set up as follows. Neither complete search nor complete poll  
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Start 
point 

Opti-
mizer 

Start 
point 

,abs totP  

(W) 

Opti-
mizer 

,abs totP  

(W) 

Encoding 
scheme 

Algorithm
Optimi-
zation 
space 

Func 
Evals 

(#) 

Start 
point 

CPUt  

(s) 

25.3 63.8 Offset NM 
2ℜ  78 27.6 

63.6 69.1 
Offset-

Diameter 
SNM 
{S, S} 

5ℜ  335 65.8 

 

63.6 69.5 
Offset- 

Diameter -
index 

NM 
6ℜ  328 65.8 

57.9 64.6 Offset 
SNM 
{S, S} 

10ℜ  227 109.0 

57.9 67.0 
Offset-

Diameter 
SNM 
{S, D} 

14ℜ  304 109.0 

 

67.0 69.8 
Offset-

Diameter 
SNM 
{S, D} 

14ℜ  425 101.7 

54.4 58.6 
Offset-

Diameter 
SNM 
{S, D} 

14ℜ  306 84.7 

57.9 70.7 
Offset-Major-

Minor 
SNM 
{S, D} 

18ℜ  558 109.0 

56.2 65.0 
Offset-Major-

Minor 
SNM 
{S, D} 

18ℜ  412 91.3 

54.7 59.3 
Offset-Major-

Minor 
SNM 
{S, D} 

18ℜ  355 76.4 

Table 1. Optimization results for polymer outer-clad and holey inner-clad with NM variants. 
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Start 
point 

Opti-
mizer 

Start 
point 

,abs totP  

(W) 

Opti-
mizer 

,abs totP  

(W) 

Encoding 
scheme 

Algorithm 
Optimi-
zation 
space 

Func 
Evals 

(#) 

Start 
point 

CPUt  

(s) 

63.6 71.1 

Offset-Major-
Minor 
-Index 

 

MADS 
{Np1, 2N} 

7ℜ  112 65.8 

57.9 71.0 
Offset-

Diameter 
MADS 

{Np1, 2N} 
14ℜ  441 109.0 

69.8 69.8 
Offset-

Diameter 
MADS 

{Np1, 2N} 
14ℜ  235 97.3 

57.9 65.3 
Offset-Major-

Minor 
MADS 

{Np1, 2N} 
18ℜ  452 109.5 

Table 2. MADS optimization results for polymer outer-clad and holey inner-clad. 

operations were allowed resulting in an opportunistic style of direct search iteration that stops 
as soon as a better point has been found. Also, the first direction of search after a successful 
poll or search step is set to be the one that was successful in the previous iteration (exploratory 
search tactic). A so called tabu list that records the already visited points was maintained so 
that the expense of unnecessary function re-evaluations would be avoided. This added a tabu 
search metaheuristic element to MADS and GPS that was found to offer up to approximately 
40% reduction in function evaluations. Tabu search is not recommended for stochastic 
functions but in this case the stochastic noise was suppressed. One other setting that can 
reduce the computation expense is to accelerate the rate at which the mesh size is adapted after 
a non-successful iteration. This setting was not enabled in this work because it was found to 
significantly reduce the probability to discover a global optimizer (at a benefit of 20% 
reduction in function evaluations). The last setting, shared by all optimization methods used 
here is the minimization halting criterion. In order to achieve an equally economical 
minimization that avoids unnecessary function evaluations at the vicinity of an already well 
approximated optimizer, all halting criterions were set to stop the minimization when 
saturation in the improvement of the lowest recorded objective function value as a function of 
the number of iterations was observed. Regarding MATLAB’s ‘Genetic Algorithm and Direct 
Search Toolbox’ used to implement the GA, GPS, and MADS optimizations, it was found via 
observation that the above halting condition was satisfied for ‘Function Tolerance’ (a 
parameter compared against the cumulative change in the best function value over a number 
of iterations) values of 10-6, 10-7 and 10-4 correspondingly. In algorithm NM and all its forms 
proposed in sections 2 and 3, the saturation of the fittest function value was observed for  

 ( ) 01 10haltσ σ≅  (17) 
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where 0σ  is the standard deviation of the initial objective matrix elements excluding the 

highest value. The success of (17) depends on the standard deviation of the function values, 

stored in the initial objective matrix ( 0F ), not being too large so that the simplex will reach 

the neighbourhood of an optimizer before the condition j haltσ σ≥  is satisfied at the end of 

the j-th iteration. When the aforementioned criterion fails to halt the simplex after 
acceptably approximating an optimizer, then the descent halts after a relatively small 
number of iterations and a large improvement in the objective (row 1 in table 3, row 5 in 
table 4). Then the process is restarted using the discovered point as a new start point (row 2 
in table 3, row 6 in table 4). In this way, the inherent tendency of NM (and proposed NM-
based methods) to perform unnecessary iterations after having adequately approximated an 
optimizer was avoided. 
 

Start 
point 

Opti-
mizer 

Start 
point 

,abs totP  

(W) 

Opti-
mizer 

,abs totP  

(W) 

Encoding 
scheme 

Algorithm
Optimi-
zation 
space 

Func 
Evals 

(#) 

Start 
point 

CPUt  

(s) 

25.3 64.8 
Offset-

Perimeter 
ESPNM 

{S, S} 
182ℜ  727 27.6 

 

64.8 68.7 
Offset-

Perimeter 
ESPNM 

{S, S} 
182ℜ  9196 27.2 

61.5 67.2 
Offset-

Perimeter 
ESPNM 

{S, S} 
182ℜ  11662 26.1 

53.5 61.3 
Offset-

Perimeter 
ESPNM 

{S, S} 
186ℜ  10146 28.8 

63.6 69.7 
Offset-

Perimeter 
ESPNM 

{S, S} 
362ℜ  1238 65.8 

Table 3. Optimization results for polymer outer cladding with algorithm ESPNM. 

After the direct comparison of several algorithms in section 2, the MADS method was 
chosen as the most successful at lower dimensions in terms of probability to find global 
optimizers. The most distinctive topologies listed in table 1 are re-optimized in table 2 under 
MADS. The 1st row of table 2 shows the results from an attempt to optimize the same start 
point as in row 3 of table1 but this time with an added dimension. The discovered optimizer 
outperformed all optimizers from table 1 showing that an offset core topology with a single 
large hole of optimal ellipticity delivers the strongest pump absorption. Although the 
refractive index was independently varied during the optimization, the MADS algorithm 
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converged to an optimizer with the exactly the same hole refractive index, a manifestation of 
the discrete nature of pattern search. One other aspect of the MADS algorithm is that it 
demonstrates an inherent tendency to preferentially search along those directions that 
exhibit the stronger influence on the objective function values.  The results in row 4 
disappointed because although the start point was the same as in row 8 of table 1, the 
MADS algorithm converged to an optimizer in 18ℜ  that was strongly outperformed by the 
SNM found optimizer (for a higher cost though this time). This observation suggests that a 
surprisingly low number of function evaluations is a sign of local convergence. However, 
the discovered optimizer indicates that if a centred core topology is sought after then the 
design parameters of the holes can be optimized for improved absorption strength. Row 2 in 
table 2 shows a successful optimization in 14ℜ  that improved over the later suggesting that 
the optimization of the hole-ellipticity may not be justified if it is significantly more difficult 
to manufacture. An interesting result is reported in row 3 of table 2 where MADS converged 
to the start point after about 1/3 of the expected number of function evaluations. This 
behaviour of MADS was observed several times and showed that its success depends 
strongly on starting the process from a point far away from an optimizer, a property which 
is not shared by SNM as suggested by the results in row 6 of table 1. 
Remaining in the class of topologies with polymer outer cladding, table 3 presents the 
optimization of inner cladding and hole perimeters along with the core offset at high 
dimensions. The two-stage optimization (rows 1,2) of a circular inner cladding with centred 
core resulted in a cross section with a minor spiral deformation to the inner cladding perimeter 
and an offset core. Row 3 adopted a start point resembling the spiral fibre proposed by 
Kouznetsov and Moloney [48] and converged to an inner cladding shape that is a perturbed 
spiral shape with the core located closer to the centre. The optimizer in row 3 suggests that a 
spiral cross section can be further improved. Row 4 demonstrates that a square fibre has 
limited prospects for competitive improvement while row 5 shows a case of local convergence 
in 362ℜ  where a global optimization is potentially very expensive due to the high dimensions. 
Finally, table 4 presents a set of optimization attempts for double-clad topologies with air 
outer cladding. The CPU times recorded here are much higher than in the polymer outer 
cladding case because the air-clad designs support higher order modes (rays of higher 
transmission angles under the absorption model in [19]) resulting in significantly increased 
number of scattering operations on the dielectric interfaces. An interesting finding was that 
an optimized polymer hole (row 2) can be very efficient in decoupling the pump light from 
its volume. In this way the pump modes are forced to propagate inside the significantly 
reduced inner cladding volume with a dramatic effect on the increase of the pump photons 
overlap with the active core volume. This design can be used with moderate pump power 
levels though due to the low damage threshold of a polymer. However, it has been 
demonstrated that high glass-transition temperature thermoplastic polymers can be 
thermally co-drawn into micro-sized structures without cracking or delamination [49]. A 
direct comparison between MADS and ESPNM is provided by the results in rows 3 and 4 
where a dodecagon shaped inner cladding with offset core is optimized. The two algorithms 
converged to optimizers of the same absorption performance but ESPNM did so at a 
significantly lower cost. The dodecagon shape was chosen due to the small number of 
perimetric sampling points involved which did not allow MADS to generate trial points 
without physical meaning (or lacking manufacturability), contrary to the cases in figure 5. 
Furthermore, an air outer cladding may be easier to fabricate around a polygonic inner 
cladding by means of a comb of suitably shaped air holes. 
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Start 
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Opti-
mizer 

Start 
point

,abs totP  

(W) 

Opti-
mizer 

,abs totP  

(W) 

Encoding 
scheme 

Algorithm
Optimi-
zation 
space 

Func 
Evals 

(#) 

Start 
point 

CPUt  

(s) 

28.1 66.7 Offset NM 2ℜ  68 58.9 

71.3 76.3 
Offset-Major-

Minor 
-Index 

MADS 
{Np1, 2N} 

7ℜ  126 155.7 

71.3 73.4 
Offset-

Perimeter 
ESPNM 

{S, S} 
26ℜ  629 55.3 

71.3 73.4 
Offset-

Perimeter 
MADS 

{Np1, 2N} 
26ℜ  898 55.3 

28.1 71.2 
Offset-

Perimeter 
ESPNM 

{S, S} 
182ℜ  669 58.9 

71.2 73.9 
Offset-

Perimeter 
ESPNM 

{S, S} 
182ℜ  11199 60.0 

Table 4. Optimization results for air outer cladding. 

The predictions reported here may be compared to the 35% pump absorption enhancement 
reported by Baek et al [14] and to the 18% improvement measured by Jeong et al [15] for a 
circular fibre with centred core. Based on the current results, in the case of polymer coated 
DCFs, it is predicted that the optimizer in row 1 of table 2 can offer an approximate 
enhancement of 180% compared to a conventional circular DCF with centred core. Against a 
conventional circular DCF with optimally offset core (table 1, row 1 optimizer), an 
enhancement of 11% is predicted. For the air outer cladding case, assuming high power 
operation (no polymer holes), a 160% improvement (table 4, row 6 optimizer) is predicted 
against a centred circular DCF and 10% enhancement compared to the circular optimizer 
with optimally offset core. 

5. Summary 

Several stochastic algorithms based on the deterministic Nelder-Mead method were 
proposed and benchmarked against pattern search methods and a genetic algorithm. In low 
dimensions, the proposed Monte Carlo NM variants offered improved computational 
efficiency via a simple sampling approach. Implicitly constrained search combined with 
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importance sampling offered efficient global convergence in high dimensions. Smoothly 
perturbed patterns were proposed that may find theoretical support for constrained 
optimization. The fittest algorithms were applied to the cross section geometry and 
corresponding refractive index profile optimization. The identified advantages of the 
aforementioned pump absorption enhancement concept were: 

• In the case of the holey DCFs the size of the inner cladding can be scaled to accept more 
pump power without the need to increase the core size. The solid state holes can be 
correspondingly scaled to retain their pump light tapering effect into the core volume. 

• The proposed holey cross sections are compatible with the helical core concept and 
most side pumping schemes. Multi-core ribbon lasers [12] may also benefit from 
optimized solid-state holes 

• No fibre machining is needed while also compatibility with standard fibre 
manufacturing is maintained 

The main limitation may be the low fabrication tolerance implied by the complexity of most 
proposed topologies. On the front of correctly predicting their relative absorption 
performance, limitations are imposed by error levels induced by stochastic and numerical 
noise during optimization as well as simulation inaccuracies induced during function 
evaluations. 
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