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1. Introduction 

Structure-based drug design is a rational approach for drug discovery based on understanding 
of the three dimensional structural interactions between a target protein and the drug-like 
ligands. The underlying premise is that good drug-like molecules must possess structural 
and chemical features complementary to that of the target receptor, which is usually a 
protein involved in the disease process. The process first involves identification of the 
protein target that is of interest. The structure of the target protein is then determined using 
experimental procedures like NMR, X-ray crystallography or computational approaches like 
homology modeling. After determining the structure of the target, the structural knowledge 
is used to systematically search the chemical space for compounds (or ligands) that would 
bind to the protein in the desired binding mode using docking techniques. These 
compounds are scored and ranked using scoring functions that take into account factors that 
could influence the nature of the binding such as steric and electrochemical interactions, 
exposed surface area, molecular weight, etc. The challenge in the search for the desired 
ligands is the ability to accurately model and analyze the protein-ligand binding by 
understanding the structural and chemical characteristics of the protein’s binding site from 
theory, computation and experiment.  
The amount of protein-ligand structural data available in public domain and corporate 
databanks increased exponentially during the last two decades due to significant advances 
in high throughput experimental techniques and computation power. In addition, there are 
many more structures that remain undisclosed due to proprietary interests. It is expected to 
have many more X-ray crystal structures to be available in the near future due to advances 
in high-throughput techniques and other experimental sophistications. In addition, there are 
also structures that are computationally generated through docking, or similar techniques. 
A typical virtual chemical library screen could generate a library of structures containing 
thousands to millions of small molecules docked onto a target protein in silico (Lyne, 2002). 
As discussed before the key to success in the rational drug design process is the proper 
understanding of the receptor site and the mode(s) in which ligands bind to the receptor by 
leveraging the available structural data. Traditionally, this is done by making logical 
deductions after visually inspecting the protein ligand complex on a computer or sometimes 
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aided by software tools like LIGPLOT (Wallace et al., 1995) that generate two dimensional 
schematic representations of the interactions. However the traditional approach is 
impractical when the number of structures to be analyzed is very large. In such scenarios, 
there is requirement for an automated way of detecting the various interaction patterns 
between the protein and the ligand, representing them in an efficient manner such that 
different protein ligand complexes can be compared and if possible correlated with their 
actual binding constants. The interaction patterns so identified from the structural data can 
eventually help to develop virtual screening and other design tools to aid the search for new 
drugs i.e. ligands with desired characteristics.  

1.1 Structural Interaction Fingerprint (SIFt) 

Fingerprint based approaches have been developed recently in the cheminformatics domain to 
mine, analyze, organize and visualize the vast structural binding data. They involve 
representing the three dimensional protein-ligand structural binding information into a one-
dimensional vector by encoding the nature of interactions between binding site residues and 
the ligand as in Structural Interaction Fingerprint or SIFt (Deng et al., 2004; Chuaqui et al., 
2005; Singh et al., 2006). Since the binding information is encoded in a 1D fingerprint, 
advanced filtering, clustering, and machine learning methods may be applied to identify 
patterns underlying the binding data, thereby enhancing the ability to make useful 
implications that are not apparent by looking at individual structures. There are also other 
fingerprint approaches published in literature such as atom-pairs based interaction fingerprint 
(Pérez-Nueno VI et al., 2009), pharmacophore based fingerprint (Sato et al., 2010), etc. This 
chapter demonstrates the use of advanced mathematical and statistical learning techniques to 
enhance the understanding of binding interactions from fingerprints. Though the methods 
explained here are in the context of SIFt, they can be applied to other fingerprint approaches.  
A SIFt is generated from a protein-ligand complex by first identifying the key residues of the 
receptor protein, which are the residues that could potentially be involved in binding with a 
ligand. The key residues are identifying by performing a rigorous search among all known 
protein-ligand complexes of the target protein for residues that are involved in binding in at 
least one complex. The next step involves representing of each key residue by a bit pattern 
corresponding to the kind of interaction that is being made at that residue by the ligand. The 
first bit is a master bit that checks if an interaction is present at all or not. The second and 
third bits check if the interaction is with the main chain or side chain portions of the residue. 
The next four bits characterize the chemical nature of the interaction. The fourth and fifth 
bits are turned ‘on’ or ‘off’ corresponding to whether the residue is involved in a polar or 
non-polar interaction respectively, while one of the sixth and seventh bits is turned ‘on’ if 
there is a hydrogen bond interaction depending on whether the residue has a functional 
group that is an acceptor or a donor. The bit strings from all the residues are concatenated to 
form a fingerprint (called SIFt) which is a unique representation for that protein-ligand 
complex, as shown in Figure 1. 
The overall pattern of interactions in a set of structures can be represented by an interaction 
profile where each element or entry in the profile speaks about the nature of interactions of 
the entire set. A profile based on the conservation or frequency of a bit over the set of 
fingerprints was used in (Chuaqui et al., 2005). They demonstrated by comparing the 
profiles of protein complexes belonging to different kinase targets viz. p38 and CDK2, one  
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Fig. 1. An illustrative showing the SIFt methodology. (A) identify the key binding residues 
of the receptor protein in the complex. (B) represent each key residue by a bit string 
according to the kind of interaction at that residue. (C) concatenate 7-bit strings of all key 
residues to form a unique fingerprint, called SIFt. (Figure reprinted in part with permission 
from Singh J et al., 2005). 

can identify the characteristic role played by the individual interactions in the overall 
binding. Interaction fingerprints and profile-based methods have been applied to virtual 
screening, library design, and the analysis of large numbers of X-ray structures to identify 
interaction patterns that may influence inhibitor potency and selectivity. The evolution of 
interaction fingerprint and profile approaches and their application to docking, scoring, and 
the analysis of ligand-receptor interactions has been comprehensively reviewed recently by 
Brewerton (Brewerton, 2008). 

1.2 Weighted interactions profile  

The original plain fingerprint is a simplified representation of protein-ligand interactions 
with all interactions being treated identical. But in reality the various possible interactions at 
different residues might have different contributions towards the overall binding. As an 
example, it is well-known that in kinases the interactions at the hinge region are critical for 
binding compared to interactions at other regions. Likewise, a hydrogen bond interaction 
could have a different impact compared to a polar or nonpolar interaction. By not capturing 
the information pertaining to the interactions differently from each other, their relative 
importance information is in effect lost. Hence the fingerprint representation is inefficient 
due to underrepresentation of significant interaction information and overrepresentation of 
insignificant interaction information. A new weighted interactions based approach called 
weighted Structural Interaction Fingerprint (wSIFt) was introduced in (Nandigam et al., 
2009) to address this inefficiency of fingerprint representation. In the wSIFt method a robust 
representation signifying the relative importance of ligand receptor interactions is captured 
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in the form of a weights vector called weighted profile, where each weight corresponds to 
the importance of that interaction in overall binding. The weighted profile incorporates  
empirically determined weights fit from inhibitor potency data. The profile weights are 
determined such that the fingerprint similarity between docked poses and the weighted 
profile is in effect a residue-specific QSAR based on the relative importance of ligand-
receptor interactions for determining potency.  
The chapter describes the wSIFt methodology developed by Nandigam et al. to determine a 
weighted profile capturing the significance of interactions. The weights are determined 
using a statistical learning technique from structural data and experimental potency data 
such that the similarity between the weighted profile and a SIFt (called wSIFt score) is 
positively correlated with its experimentally determined inhibition potency. The 
mathematical formulation to determine the weights is an optimization problem with the 
objective to be maximized being the correlation between the wSIFt score and the inhibitor 
potency. Since the objective function is complex and non-linear, and the number of variables 
(i.e. weights) to determine is very large, a stochastic optimization technique (Simulated 
Annealing) is applied. The dimensionality of SIFt interaction bits is large and the 
representation contains linearly interdependent interaction bits and hence a dimensionality 
reduction technique called Nonnegative Matrix Factorization (NMF) is combined with the 
stochastic optimization stage. The subsequent sections of the chapter describe the methods 
including the strategy of the overall algorithm, dimensionality reduction and Simulated 
Annealing, followed by results and analysis of the weights.  

2. Methods 

2.1 Overall approach 

The weighted profile is assumed to contain non-negative weights with values ranging 
between 0 and 1 at positions that have a 1 in at least one of the SIFts, and a value of 0 at 
positions that do not have a 1 in at least one of the SIFts (as shown in Figure. 2).  
 

SIFt 1 1 0 0 1 1 0 0 1 0 1 

SIFt 2 1 1 0 0 1 0 1 0 0 1 

SIFt 3 1 1 0 0 1 0 1 0 0 1 

SIFt 4 1 1 0 0 1 0 1 1 0 1 

SIFt 5 0 0 0 1 1 0 0 1 0 1 

W-Profile w1 w2 0 w4 w5 0 w7 w8 0 w10 

Fig. 2. Illustration of weighted profile for a set of interaction fingerprints.  

The objective is to determine the weights such that the computed weights will represent the 
significance of each interaction in contributing toward overall protein-ligand binding. This 
can be achieved by statistically learning the weights from a training set such that the 
similarity between the weighted profile and SIFt is positively correlated with the inhibition 
potency. The reasoning behind the proposed approach is that the interactions appearing 
more frequently in high potent compounds are supposedly more important, and so in order 
to boost the w-SIFt score of the high potent compounds the weights for those interactions 
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will be calculated to be higher. Likewise, interactions that appear more frequently in less 
potent compounds are supposedly less important, and so in order to decrease the w-SIFt 
score of the less potent compounds these interactions’ weights will be lower. Thus the 
overall weights in the weighted profile so determined will represent the importance 
associated with each SIFt interaction bit in the protein-ligand binding potency. The 
Tanimoto score is used here as the metric to measure the similarity between the weighted 
profile and SIFt, and for a given SIFt we call this metric the w-SIFt score. Thus a protein-
ligand complex with a higher w-SIFt score implies that it comprises of interactions 
predominantly at higher weight bit positions and so the ligand would be a strong inhibitor 
of the protein, and likewise a complex with lower w-SIFt score implies that it comprises of 
interactions mainly at lower weight bit positions and so the ligand would be a weak 
inhibitor. The proposed strategy to determine the weighted profile can be graphically 
visualized as in Figure 3. Suppose the SIFts can be represented as points in a high 
dimensional hyperspace, the desired weighted profile should be more similar to the high 
potent compounds and less similar to the low potent compounds. In other words the 
weighted profile should be as closer as possible to the high potent compounds and as 
farther as possible to the low potent compounds in the SIFt coordinate space. 
 

 
Fig. 3. Illustration of proposed weighted profile relative to the high potent and low potent 
SIFts in a hypothetical high dimensional hyperspace. 

2.2 Mathematical objective function 

Assume s  represents a SIFt in a vector form and w  represents the weighted profile. The w-
SIFt score, let us call Tw , is defined as the Tanimoto similarity between the SIFt and the 
profile. i.e.  
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Tw
⋅

=
⋅ + ⋅ − ⋅

s w

s s w w s w
. 

The weights of the profile will be determined so as to obtain a w-SIFt score that correlates 
well with the experimentally determined potencies. We constrain the weights to be positive 
since in principle they represent the significance of the corresponding interactions. The 
objective of determining the weights can be mathematically stated as follows. 

To determine w so that ( )50 ,T Log ICw ∝ − with 0.wi ≥  

i.e. find w that corresponds to a straight line fit between Tw  and ( )50Log IC−  with highest 

correlation. The Pearson’s correlation coefficient is chosen here to measure the extent of 
correlation. So, the objective function is formulated as, 

  ( , ( ))
 s.t. 0

Maximize CorrCoef T Log IC50w
w wi i

−
≥

 (1) 

where 
( )

( ) ( )
cov ,

( , )  
var var

x y
CorrCoef x y

x y
=

⋅
      

Since the objective function is complex and non-linear, and the number of variables (i.e. 
weights) to alter is very large, we apply a stochastic optimization technique  viz. Simulated 
Annealing (Kirkpatrick, Gelatt et al. 1983). The energy function for Simulated Annealing is 
defined here as the negative of the objective function defined in Equation 1.  

 ( )( ), 50E CorrCoef Tw Log ICw = − −  (2) 

2.3 Linear dimensionality reduction 

The dimensionality of the SIFt bits is the number of binding region residues times the 
number of interaction bits per residue. Typically this number is high, for e.g. in the case of 
P38α the number of bits in SIFt is 560 as discussed in the Dataset Generation subsection. 
Even after eliminating the zero valued bit positions the number of bit positions whose 
weights need to be determined is large. However not all the interactions at the non-zero bit 
positions are independent of each other, as there could be co-occurrences (i.e. two bits 
simultaneously ‘on’ or ‘off’) and cross-occurrences (i.e. bits that are complementary to each 
other). There could also be additional statistically significant dependencies between bit 
pairs, i.e. two bit positions positively or negatively highly correlated within the data. So a 
dimensionality reduction technique is used here to reduce if not eliminate these 
interdependencies and eventually compress the number of SIFt bits to a considerably 
smaller number without losing significant information. Thus, by doing so the number of 
weight parameters to be determined in the weighted profile is also significantly reduced. As 
the interdependencies in the SIFt are linear, we choose a linear dimensionality reduction 
technique for the data compression. The values of the SIFts in the reduced space need not be 
binary, but have to be positive.  We now only have as many weights to be determined as the 
dimension of the reduced space. After determining the weights in the lower dimensional 
space, the weights in the higher dimensional space (i.e. the original weights of the SIFts) can 
be obtained by an inverse transformation. 
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A linear dimensionality reduction technique involves transformation or rotation of the 
vector coordinate space such that the original data vector of higher dimensionality can be 
represented by another vector of lower dimensionality. Assume the original SIFt vector is 
represented as hs of dimensionality n , let  ls be its representation in a lower vector space of 
dimensionality r , and L be the dimensionality reduction transformation. Then, 

h l≈ ⋅Ls s  

Suppose the full SIFt dataset is represented as an n m×  matrix, hS  where m  is the number 
of SIFts. During linear dimensionality reduction the matrix hS is in effect factorized into two 
sub-matrices L and lS  of size n r×  and r m×  respectively i.e.  

m m m
h l

n rn m r m×× ×
≈ ⋅S L S   where ( )n m r nm+ <  

 

The matrix lS  represents the m  SIFts in the lower dimensional space.  
Dimensionality reduction techniques such as Nonnegative Matrix Factorization (NMF), 
Principal Component Analysis (PCA), and Vector Quantization (VQ) differ in the nature of 
the factor matrices. NMF involves a factorization such that the end sub-matrices are 
nonnegative. PCA involves a factorization such that the L matrix corresponds to a 
transformation into the Eigen vector coordinate system, whereas in VQ the factorization is 
such that the vectors of the transformed matrix are all unary. NMF is used here for 
dimensionality reduction of the SIFt space as the nonnegative constraint imposed in this 
method helps to preserve the underlying physical interpretation of the weights.  
Lee and Seung (Lee and Seung 1999) demonstrated that NMF involves parts based learning 
of objects, and is very effective and meaningful for dimensionality reduction in applications 
like image processing and text mining. NMF has been applied in several recent works in the 
context of computational biology and bioinformatics. Gao and Church (Gao and Church 
2005) applied NMF as an unsupervised classification method for cancer identification based 
on gene expression data, and found the method to be effective over other clustering 
techniques. Brunet et al. (Brunet et al., 2004) have also used NMF on cancer related 
microarray data. The basis vectors in their work, called meta genes, represented distinct 
molecular patterns thus enabling them to extract meaningful biological information. In Ref. 
(Kim and Tidor 2003) NMF was used on a large dataset of genome-wide expression 
measurements of yeast and was able to detect local features in the expression space that 
mapped to functional cellular subsystems. Recently, Devarajan (Devarajan 2008) provided a 
review of recent NMF applications in the context of biological informatics 
When NMF is applied to SIFts, the basis vectors represent underlying patterns of 
interactions between protein and the ligands as explained in Results section. The algorithm 
for solving NMF based on the following update rules as described by Lee and Seung (Lee 
and Seung 2001) is used here for the dimensionality reduction.  

 
( )
( )

h lTS S
ia

ia ia h lTLS S
ia

L L←  (3) 

www.intechopen.com



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

262 

 Lia
ia Lja

j

L
∑

←  (4) 

 
( )
( )

T hL S
al

a a T lL LS
a

S L μ
μ μ

μ

←  (5) 

The update in Equation (4) is for ensuring uniqueness of the NMF submatrices. The 

convergence criterion for the algorithm is the Euclidean distance h lS LS− .  

2.4 Determining weights using Simulated Annealing 

After the NMF dimensionality reduction is completed the SIFts training data is initially 
transformed into the reduced space. Initial guess values are assigned to the weights in the 
lower r-dimensional space which are back transformed into the higher n-dimensional space 
using the equation h l= ⋅w L w . The w-SIFt score is then calculated which is used to evaluate 
the objective function in Equation 2. A new weights vector l

+ Δw w is determined and the 
objective function is reevaluated. The new weights vector is accepted if the new objective 
value is better, otherwise it is accepted with a probability exp( ( ) / ),p E E Tw new w= − −  
where T is a global parameter called the temperature which is gradually reduced to a very 
small value ~ 0 during the course of the algorithm.  
Since the weights in the higher dimension are supposed to be nonnegative, the weights in 
the lower dimension are constrained to be nonnegative. The nonnegativity constraint of the 
NMF algorithm helps to retain the nonnegative values of the SIFt data in the lower 
dimension and conversely nonnegative weights in the lower dimensions ensures 
nonnegative weights in the higher dimension. Maintaining the constraint of nonnegative 
weights in the higher dimension would have been a challenge, if other dimensionality 
reduction techniques such as Principal Component Analysis were used because of the 
possible encoding of the data to negative values in the lower dimension. Fig. 4. summarizes 
the overall workflow involving NMF dimensionality reduction stage and the determination 
of weights stage using simulated annealing. 

2.5 Dataset generation 

A dataset of P38α inhibitors whose potency (IC50) values and two-dimensional chemical 
structure have been reported in literature is considered to begin with. However, in order to 
generate SIFts for these inhibitors we should identify the accurate three-dimensional 
structure of the ligands binding into the protein which is a huge challenge. A rigorous 
search to determine the most likely binding pose of the ligand by binding energy 
minimization is not practical because of the combinatorial complexity of the conformational 
and positional search space of the ligand and the protein. The six degrees of translational 
and rotational freedom of the ligand, along with the internal conformational degrees of 
freedom of both the ligand and the protein, makes the search space extremely large. 
Consider as an example a simple system comprising a ligand with four rotatable bonds and 
six rigid body alignment parameters, the search space can be estimated as follows (Taylor et 
al., 2002): The alignment parameters are used to place the ligand relative to the protein in a  
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Fig. 4. The workflow involving dimensionality reduction and weights calculation. 

cubic active site of size 103 Å3. If the angles are considered in 10 degree increments and 
translational parameters on a 0.5 Å grid there are approximately 84 10×  rigid body degrees 
of freedom to sample, corresponding to 146 10× configurations (including the four rotatable 
torsions) to be searched. The search would take approximately 2,000,000 years of 
computational time at a rate of 10 configurations per second. So, the search process of 
docking algorithms implement some way of exploring only a partial region of the search 
domain thereby making the search implementation feasible. Molecular docking programs 
use heuristic search approaches based on molecular dynamics, monte carlo methods, genetic 
algorithms, fragment based methods, point complementarity methods, distance geometry 
methods, etc.  However since these programs are heuristic the docked structure results are 
not reliable and so need to be cross-checked by other means such as comparing with 
experimentally determined binding poses of structurally similar ligands. 
For the inhibitors above, all stable three-dimensional conformations are first generated using 
Omega program (Openeye Scientifc Software, NM) and these conformations are searched 
against known ligands of P38α using ROCS. The known ligands here are the ligands whose 
binding conformation with P38α has been confirmed experimentally and is available in the 
PDB. Only those inhibitors with a conformation closely matching with the known ligands 
are considered further for docking, whereas the remaining inhibitors are discarded because 
the resulting poses from docking cannot be verified for accuracy. Glide docking program 
(Schrodinger, NY) is used here to obtain the likely docking poses for the selected inhibitors. 

Original set of SIFts, 

each of 560 bits 

Guess weights in 

lower dimension 

Calculate 

objective function

Transform weights from 

lower to high dimension. 

Re-evaluate weights to 

optimize objective 

Transform SIFts from high 

dimension to a lower 

dimension, r << 560 
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After comparing the docking results with the binding pose of the corresponding known 
ligand using SIFts, only those ligands are finally retained whose binding pose matches 
closely with that of the known ligand and hence can be considered to be accurate. More 
information regarding the generation of the accurate binding poses from the two-
dimensional inhibitor structures can be found in Nandigam  et al. The final SIFt dataset 
considered here consisted of 89 protein-ligand structures of P38α. The active site of P38α 
consists of 56 residues with each residue being represented by 10 bits, making SIFt a 560 bit 
vector.  

2.6 Cross-validating weights 

The methodology described in the previous section involves a dimensionality reduction step 
that requires knowing a priori the dimensionality of the reduced space. Since we do not 
know the exact value of the reduced dimensionality in the case of SIFts, we build weighted 
profile models based on some guess values of the reduced space dimensionality using a 
training set and validate the models on a validation set. The guess value that generates a 
weights vector model that has the least validation error is chosen as the accurate 
dimensionality of the reduced space. This is because a model with the least validation error 
would theoretically also generate the least predictive error (Hastie et al., 2003).  
Since the available SIFt dataset is small to split into separate training and validation sets, a 
five-fold cross validation method is used to generate training and test sets. The dataset of 89 
SIFts is divided into a training set (both for training and cross validation) of 80 SIFts, and a 
test set (for final testing) of 9 SIFts. The 80 SIFts are further divided into 5 training-validation 
set pairs. In the cross validation procedure, a model is built for each of the five training sets 
and is validated against its corresponding validation set. The validation error of an 
individual model is the sum of squared differences between the model prediction values 
and the experimental ( )50Log IC−  values for the validation set. The overall cross-validation 

error for a given dimensionality guess is taken as the average of validation errors of the five 
individual models constructed from the five training-validation set pairs. 
The following steps outline the 5-fold cross-validation procedure.  
1. Divide the overall dataset into five training and validation sets. 
2. Consider a set of r values.  
3. For each r , run the dimensionality reduction algorithm and then calculate five sets of 

weights corresponding to the five training sets. 
4. Validate wSIFt scores of the five validation sets calculated based on the above weights 

by comparing against the experimental potency values. 

3. Results 

The cross validation errors calculated for various guess values of dimensionality for the 
reduced space are shown in Figure 3. The results show that a value of 20 for the reduced 
dimensionality corresponds to the least overall cross validation error, implying that the 
given P38α SIFt data can be efficiently translated as a combination of 20 linearly 
independent vectors. Figure 4 shows a heat map representation of the transformation L  
which is a graphical illustration of the 20 basis vectors in terms of the original 560 bits. Each 
of these basis vectors represents an ‘interaction pattern’ which is a combination of 
individual interactions that were found to co-occur in the original SIFt data. Each entry in 
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Fig. 3. The cross validation error of models built using different values of the lower 
dimensionality in NMF.  

 
Fig. 4. (a) Heatmap of the transformation matrix ( L ) from 560 bit-space to a lower 
dimensional space (of size 20). The panel on the right shows the numerical value range for 
the colors in the heatmap. (b) The average of all the SIFts in the entire dataset. 
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the basis vector corresponds to the importance of that particular bit in that pattern of 
interactions. Thus the basis vectors represent a meaningful combination of interactions due 
to the nonnegative restriction on the elements of L  matrix. Also, since the transformation 
matrix, L , is nonnegative we simply need to restrict our weights in the lower dimensional 
space to be positive in order to satisfy the criterion that the weights in the original 560 bit 
space should be nonnegative. 
The weight values of the weighted profile are provided as supplementary information in 
(Nandigam et al, 2009). The weights at the fingerprint positions corresponding to the contact 
bit of all the residues is shown in Figure 5. By looking at the weight values at the residue 
positions and the average SIFt values in Figure 5, it can be deduced that the weights are 
‘learnt’ based on the supposed contribution of the interactions towards potency rather than 
mere frequency of  interaction occurrence. In Figure 6(a), the w-SIFt scores of the training 
compounds, computed using the final weights model, are plotted against ( 50)Log IC−  
values. The SIFt training data is categorized into three classes (colored blue, yellow and red 
in the figure) for better illustration and subsequent box plot analysis. The points in blue, 
yellow and red correspond to highly potent, moderately potent, and least potent 
compounds respectively. Figure 6(b) is the corresponding box plot representation showing 
the mean, quantiles, and outliers of the weighted profile scores (w-SIFt scores) for the three 
classes.  
In Figure 6(c) w-SIFt scores of the 9 SIFts from final test set and the 80 SIFts from the 
training set are compared with the potencies. The w-SIFt scoring metric seems to perform 
well on the final test set too. The analysis done in Figure 6(a-b) is repeated for molecular 
weight and the docking score, in order to compare the performance of w-SIFt against other 
ligand parameters. Figure 7(a) shows the scatter plot of the molecular weight against the 

( 50)Log IC−  values, whereas Figure 7(b) is its corresponding box plot. Figure 7(c) is the 
scatter plot of –docking score against the ( 50)Log IC−  values with its respective box plot 
shown in Figure 7(d). The figures show that the molecular weight ( 0.2929R = ) and docking 
score ( 0.3415R = ) bear some correlation with the potencies though the deviation from the 
straight-line fit seems to be higher as evidenced in the respective box plots. The w-SIFt score 
definitely seems to a better metric for assessing the experimental potency of the ligand from 
the interaction fingerprint. 
 

 
Fig. 5. The weighted profile showing the contact-bit weight at each of the residues as 
determined from the algorithm. 
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Fig. 6.(a) Scatter plot of the weighted SIFt scores against ( 50)Log IC− for training data. The 
points in blue, yellow, and red correspond to the most potent, moderately potent, and least 
potent compounds. The correlation coefficient, 0.6040R = . (b) Box plots of the distribution 
of the Weighted SIFt scores with respect to potency classes. (c) Scatter plot of the weighted 
profile scores against ( 50)Log IC−  for training (in red) and testing (in yellow) compounds. 

4. Discussion 

Typical physics based or empirical scoring functions are difficult to interpret: it is often not 
possible to extract information on what residues are driving potency and which interactions 
are more dispensable. The visual interpretation of the profile weights as illustrated in the 
previous section is perhaps the most powerful feature of the weighted interaction profiles 
described in this chapter.  
The binding pocket of P38α with a ligand bound to it (PDB 1BL7) is shown in Figure 8(a), 
with the key binding residues highlighted with purple, cyan or white.  It is observed that the 
weights illustrated in Figure 5 in fact reflect the relative importance of specific interactions 
in determining the potency of the P38α inhibitors considered in this study. In Figure 8(a),  
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Fig. 7.(a) Scatter plot of the molecular weight against ( 50)Log IC− . The points in blue, 
yellow, and red correspond to the most potent, moderately potent, and least potent 
compounds. The correlation coefficient, 0.2929R = . (b) Box plots of the distribution of 
molecular weight with respect to potency classes. (c) Scatter plot of the –docking score 
against ( 50)Log IC− . The points in blue, yellow, and red correspond to the most potent, 
moderately potent, and least potent compounds. The correlation coefficient, 0.3415R = .  
(d) Box plots of the distribution of the -docking scores with respect to potency classes. 
 

the most highly weighted residues are in purple; those with intermediate weight in cyan, 
and those least important for potency are colored white. The majority of ATP competitive 
kinase inhibitors interact with the hinge region of the kinase via at least one hydrogen bond 
(Chuaqui, Deng et al. 2005) mimicking the interactions made by the adenine moiety of ATP. 
In fact, these interactions are often used as constraints for filtering poses from docking 
experiments (Lyne, Kenny et al. 2004; Chuaqui, Deng et al. 2005). Not surprisingly, 
interactions with Met109, the key hydrogen-bonding residue in the hinge for P38α, are 
weighted heavily. In addition, Ala51 that makes hydrophobic contact with the typically 
heteroaromatic hinge binding substituents is identified as important for potency.  Another 
nearly canonical interaction observed in the majority of kinase inhibitor co-crystal structures 
is with the conserved residue Lys53.  
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Fig. 8. (a) P38α with the key residues colored according to their weights. The residues in 
purple are the most highly weighted followed by residues in cyan, and the residues in white 
are the least weighted residues. Also shown in the figure are the labels for the residues 
referred to in the Discussion section. The sugar pocket (b) and hydrophobic pocket (c) are 
identified from the w-SIFt analysis as important regions for potency. 

In addition to these highly conserved interactions, the hydrophobic pocket and sugar pocket 
regions of the ATP binding site received high weights. As is shown for example in Figure 
8(b), inhibitors with substituents interacting with sugar pocket residues demonstrated 
increased potency over unsubstituted examples. Targeting the sugar pocket is a common 
strategy in kinase inhibitor design although it is not necessary to achieve potent activity in 
many kinases. The current analysis, however, indicates that this is an important region for 
p38α inhibition. In contrast, interaction with the P-loop of the kinase is not as important. The 
hydrophobic (or selectivity) pocket shown in Figure 8(c) was the final region that was 
identified in our analysis as being critical for potency. The small Thr106 gatekeeper residue 
in P38α permits access to the hydrophobic pocket unlike in kinases with bulky gatekeeper 
residues, e.g., CDK2 (Phe) or Akt (Met). Many P38α inhibitors exploit this region with 
substituted phenyl groups that contact a cluster of hydrophobic residues lining the pocket. 
The weights determined from our analysis highlight the importance of these interactions for 
achieving potency against P38α. Finally, interactions with the hinge toward the solvent 
channel of P38α were in comparison much less important for potency. As substitution 
toward solvent is typically aimed at improving inhibitor solubility, physical properties, and 

www.intechopen.com



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

270 

selectivity (Fitzgerald, Patel et al. 2003), it is not surprising that the weights determined from 
potency alone are not high. However, inhibitors with solvent channel substituents that 
made hydrophobic contacts with Val30 did receive relatively high weights in our analysis. 
In addition to being interpretable, we have demonstrated that with an optimized set of 
target-specific weights, weighted profiles are able to rank order compounds based on 
potency. The weighted SIFt scoring function could be used as a virtual screening tool for 
mining potent compounds from chemical databases. The first step of the virtual screening 
protocol would involve docking the inhibitors against the target protein and determining 
accurate poses based on a SIFt based filter as demonstrated by Deng et al. (Deng, Chuaqui et 
al. 2004). The weighted profile and the SIFts of the docked poses are now used to compute 
the w-SIFt score, which is used as a ranking criterion.  
 

 
Fig. 9. Illustrative figure summarizing the full workflow involving determining SIFts from 
protein-ligand complexes, dimensionality reduction, weights determination, and 
interpretation of weights for better understanding of protein-ligand interactions. 

Figure 9 shows a summary of the overall algorithm starting with the generation of SIFts 
from protein-ligand structures followed by the dimensionality reduction, and calculation of 
weights using simulated annealing, The weights so determined in turn help the 
understanding of the protein-ligand interactions which eventually will be useful for 
designing more efficient virtual screening algorithms to search for better binding ligands. 
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The concept of weighting the bits in SIFt can be extended to determine other criteria such as 
selectivity of a compound towards two targets. Rather than training the weights for learning 
experimental potency values, the weights now have to be trained for learning the relative 
potencies expressed as ( )( 50)Log ICΔ −  for example. The w-SIFt scoring function however 
suffers from the shortcoming that it is entirely based on assigning potency to protein-ligand 
binding interactions and does not include terms to delineate entropic contributions. There is 
however scope to combine the concept of weighting the interactions with other important 
ligand based terms like polar surface area, molecular weight, etc that also play a critical role 
in protein-ligand binding. 
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