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Iran 

1. Introduction 

This chapter presents some applications of nonstandard finite difference methods to general 

nonlinear heat transfer problems. Nonlinearity in heat transfer problems arises when  

i. Some properties in the problem are temperature dependent  

ii. Boundary conditions are described by nonlinear functions 

iii. The interface energy equation in phase change problems is nonlinear. 

Free convection and surface radiation are famous examples of nonlinear boundary 

conditions. The temperature distribution in multi phase regions is governed by various heat 

equations, for example in two phase region the temperature is governed by two different 

heat equation, one for solid phase, and the other one for liquid phase. Conservation of 

energy at a phase change interface usually yields to the nonlinear boundary condition. 

While particular problems presented in this research relates to nonlinear heat transfer in a 

thin finite rod, I fell that the methodology by which one solves these problems by 

nonstandard finite difference methods are quite general. I hope that these bits and pieces 

will be taken as both a response to a specific problem and a general method.  

It is common to model the nonlinear heat transfer problems by parabolic time dependent 

nonlinear partial differential equations. The model assumes a certain separation between 

time and space which is present in parabolic heat transfer problems. There are two 

approaches for the solution of nonlinear parabolic PDEs. One is the closed analytical form 

solution based on the separation of variables. Although the method of separation of 

variables has wide applicability, it is most often limited to linear problems. The second 

approach is numerical approach based on the discretization of the region. There are various 

approaches for performing the discretization, such as finite difference (M. Necati Ozisik et 

al., 1994; D. R. Croft & D. G. Lilly, 1977), finite element (R. W. Lewis, et al., 2005; J. M. 

Bergheau, 2010), finite volume (S. V. Patankar, 1980; H. K. Versteeg & W. Malalasekera, 

1996), and spectral methods (G. Ben-Yu, 1998; O. P. Le Maitre & O. M. Knio, 2010). Here we 

concentrate on both standard and nonstandard finite difference methods. Standard FDs are 

usually used for linear part of the problem while the nonstandard FDs are used to deal with 

nonlinearity.  Since corresponding PDEs in the heat transformation are some time 

dependent equations, in general one need to consider both discretizations in time and in the 

space. There are two typical discretization techniques in the literature. First is the semi-
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discertization scheme and the second is fully discertization formulation. In semi-

discertization, we treat the time variable t as a specific variable among the independent 

variables, i.e., for a fixed t we discretize the spatial domain and derivatives first. This 

usually yields to a system of initial value ordinary differential equations. After this stage 

any of the ODE methods and software may be used to solve the problem. Some of the well 

known methods in this context are method of lines, Euler and Runge-Kutta methods. An 

obvious process to obtain a full discretization scheme for the time dependent PDEs such as 

parabolic equations is to discretize in time the corresponding semi-discretization scheme.     

Nonlinear partial differential equations are defined as the mathematical representation of 

real world problems concerned with the determination of a solution of a function of several 

variables, which are required to satisfy a number of initial and boundary conditions. Such 

function computations are sought in diverse fields, including heat transform, fluid 

mechanics, electrical and industrial engineering, medical sciences and denoising a noisy 

image.   

Although many classical numerical algorithms such as finite difference, finite element, 

control volume, boundary element and spectral methods are given to solve linear and 

nonlinear heat transfer problems, in many applications, it is easier and desire to have 

nonstandard FD discretization for the corresponding nonlinear terms. However, traditional 

standard finite difference algorithms are not suitable for nonlinear heat transfer problems. 

In the present work we will show that the nonstandard finite difference approach is one of 

the promising approaches that can handle the nonlinearity and perform an accurate 

numerical solution to the problem.  

In the recent years many nonstandard FD models developed to solve nonlinear heat transfer 

problems. Several basic and advance questions associated with these models have 

motivated the studies presented in this chapter. 

The goal of this chapter is threefold. First we consider the nonlinear conduction problems 

and discuss the sources of nonlinearity in these problems. Second, the theoretical areas of 

interest include fundamental methods, models and algorithms for solving general nonlinear 

heat transfer problems using various implicit and explicit nonstandard finite difference 

methods is discussed. Third, we will try to present and discuss the numerical analysis for 

the corresponding models, simulations and applications of nonstandard methods that solve 

various practical heat transfer problems.  
Nonstandard finite difference methods are an area of finite difference methods which is one 
of the fundamental topics of the subject that coup with the nonlinearity of the problem very 
well. This subject combines many mathematical concepts like ordinary and partial 
differential equations, nonlinear boundary conditions, consistency, convergence, stability 
and error analysis of the corresponding algorithms. Students are often familiar with the 
steady and time dependent ODEs with one variable before embarking on an undergraduate 
course, and in practical way will have function derivatives which they cannot express in 
numerical form. Here we must compute the solution for the nonlinear time dependent PDEs 
with one dependent and of several independent variables. From mathematical point of the 
view convergence of the solution, consistency and stability of the method has quiet 
importance, while as an engineer one might look for an efficient algorithm that works for 
many different real life problems.   
The numerical analysis and mathematical techniques considered here are some service 
industry in order to write some reliable codes to solve nonlinear heat transfer problems. The 
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theoretical analysis forms a tool to determine bounds on various kinds of errors and levels 
of stability. These error bounds form the basis of a theoretical justification for the solution 
convergence of the corresponding numerical algorithm to the actual solution of the original 
nonlinear heat transfer model. Whichever numerical algorithm is used, one should take care 
of the consistency between the nonstandard FD model and the original heat transfer 
problem. 
The chapter covers a range of topics from undergraduate work on standard finite difference 
solution to ODEs and PDEs through to recent research on nonstandard finite difference 
schemes for nonlinear heat transfer problems. The source of the standard finite difference 
work is the lecture notes for graduate students participated in my advance course in the 
numerical solution to PDEs. The notes have grown in nineteen years of teaching the subject. 
The work on nonstandard finite difference models is based partly on my own research. Part 
of this research started in the year 2000 during the time that I was in university of Pretoria, 
South Africa in the sabbatical leave from Tarbiat Modares University, Tehran, Iran. It has 
taken annual updates as new models have proposed in some of the thesis of my 
postgraduate students during the last six years. This research is enriched by the literature 
published with Mickens and his co-author during the last fifteen years.   
I am grateful to the applied mathematics department in the faculty of mathematical sciences 
at Tarbiat Modares University which has made available the technical equipment and 
environment for the research. The novel models and numerical programs have been tested, 
compared and improved using the different computers which have been installed over the 
years.  
In the next section we study general concepts introductory in the heat transfer problems. 
Then, under the assumption that there exists a solution we try to seek an efficient numerical 
solution using nonstandard FD methods. 

2. Heat transfer preliminaries 

Definition 2.1:   

In general, the process by which molecules spread from areas of high concentration, to areas 
of low concentration is called diffusion. 
In the following we give some ideas and examples representing heat convection, conduction 
and radiation. These facts or events in the real world as they are experienced by the human 
senses are three physical concepts that heat transfer problems engage one or some 
combinations of them. 

2.1 Conduction 

Conduction is the transfer of energy through matter from particle to particle. It is a heat 

transfer directly through materials, occurring when mass of material stays in place. It is the 

transfer and distribution of heat energy from atom to atom within a substance. For example, 

a spoon in a cup of hot soup becomes warmer because the heat from the soup is conducted 

along the spoon. Conduction is most effective in solids but it can happen in fluids.  

Have you ever noticed that metals tend to feel cold? They are not colder. They only feel 

colder because they conduct heat away from your hand. The human being recognizes the 

heat that is leaving his hand as cold. This makes it clear that: what identifies heat is 

temperature difference and not temperature. 
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Conduction heat transfer phenomenon is encountered in many real life problems. One may 
consider the following few examples among the broad range of conduction problems. 

• Electronic Devices Design: An electronic package is to be cooled by conduction. A heat 
sink consisting of small devices is recommended to maintain the electronic components 
below a specified temperature. How many devices of what size and material and 
configuration are necessitated? 

• Liquid in Glass Thermometer: Liquids like mercury and alcohol are used to measure 
temperature by the technique of putting the liquid in glass. Determine the minimum 
and maximum temperature that mercury and alcohol can measure by this technique of 
thermometer manufacturing. 

• Heat Loss of an Aluminum Alloy Plate: An aluminum alloy plate is suddenly quenched 
into liquid oxygen. Find the heat loss by the plate. Calculate the required time for the 
plate to reach to specific temperature.    

• Nuclear Reactor Coolant Pump: The temperature of some nuclear elements begins to 
rise, if the coolant pump fails. Determine the required time that engineers need to fix 
the pump before meltdown happens.  

• Space Vehicle Reentry Safeguard: A heat guard is used to protect a space vehicle during 
reentry. The shield ablates as it passes through the atmosphere. Specify the required 
safeguard thickness and material to protect a space vehicle during reentry. 

• Supersonic Rocket Nozzle Protection: The throat of a supersonic rocket nozzle is 
protected by inserting a porous ring at the throat. Injection of helium through the ring 
lowers the temperature and protects the nozzle. Determine the amount of helium 
needed to protect a rocket nozzle during a specified trajectory.   

2.1.1 Classical heat conduction theory (linear) 

In the case of classical heat conduction it has been demonstrated many times that if two 
parallel plates of the same area A  and different constant  temperatures 1T  and 2T  
respectively, are  separated by a small distance d , an amount of heat per unit time will pass 
from the warmer to cooler. This amount of heat is proportional to the area A , the 
temperature difference 1 2T T− , and inversely proportional to the separation distance d . 
Thus  

amount of heat per unit time  = 1 2 ,
T T

A
d

κ
−

 

where the positive factor κ the material conductivity depends only on the material between 
the two plates. This is a physical law called Newton’s low of cooling and has often been 
verified by careful experiment. Although, it is an experimental theory, it is the basis of the 
mathematical theory of classical heat conduction. This is a reason that in the classical theory 
of diffusion, Fourier’s equation relates the heat flux to temperature according to the equation: 

 ( , ) ( , ) ,q r T rτ κ τ= − ∇  (2.1) 

where ( , )q r τ  is the heat flux, τ  stands for time, r is a position vector that has heat flux 
components in the ,x y  and z directions and κ is the material conductivity. In this theory 
the medium is of macroscale and it is assumed that the heat flux vector and temperature 
gradient across a material volume occur at the same instant of time. 
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The simple linear diffusion problem in one space variable x  and time τ , for 

( , ) (0, ) (0, ),x lτ ∈ × ∞  is (J. D. Smith, 1985) 

 
2

2

T T

X
κ

τ
∂ ∂

=
∂ ∂

 (2.2) 

The non-dimensionalizing process is illustrated below with the parabolic heat conduction 

equation (2.2). 

Work Example 1: (Involves only heat conduction) 

The solution of Eq. (2.2) gives the temperature T at a distance X from one end of a thin 

uniform wire after a time .τ  This assumes the rod is ideally heat insulated along its length 

and heat transfers at its ends. Let l  represent the length of the wire and T0 some particular 

non negative constant temperature such as the maximum or minimum temperature at zero 

time.  
Using the following dimensionless variables 

 2
0 ,    =     = ,,u T T x X tl lκτ= / / /  (2.3) 

equation (2.2) with the general boundary condition and specific initial temperature 

distribution, can be rewritten in the following dimensionless form  

 1 2

,   ( , ) (0,1) (0, );

(0, ) ,    (1, ) ,     0;  
   

( ,0) 2 ,   [0,1 / 2];

( ,0) 2(1 ),   [0,1 / 2];  

t xxu u x t

u t U u t U t

u x x x

u x x x

= ∈ × ∞⎧
⎪ = = >⎪
⎨ = ∈⎪
⎪ = − ∈⎩

 (2.4) 

where 1U  and 2U  are the dimensionless forms of 1T  and 2T , respectively. 

In other word we are seeking a numerical solution of 
2

2

u u

t x

∂ ∂
=

∂ ∂
 which satisfies  

Case I: 

i.             0 0 0 0u at x and u at x l for all t= = = = > . 

ii.             0 : 2 0 1 / 2 2(1 ) 1 / 2 1,for t u x for x and u x for x= = ≤ ≤ = − ≤ ≤  

Case II: 

iii.             0 0 0 0u at x and u at x l for all t= = = = > . 

iv.             0 : sin 0 1.for t u x for xπ= = ≤ ≤  

where (i), (iii) and (ii), (iv) are called the boundary condition and  the initial condition 

respectively. 

2.2 Convection 

Convection is the transfer of heat by the actual movement of the warmed matter. It is a heat 
transfer through moving fluid, where the fluid carries the heat from the source to 
destination. For example heat leaves the coffee cup as the currents of steam and air rise. 
Convection is the transfer of heat energy in a gas or liquid by movement of currents. It can 
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also happen in some solids, like sand. More clearly, convection is effective in gas and fluids 
but it can happen in solids too. The heat current moves with the gas and fluid in the most of 
the food cooking. Convection is responsible for making macaroni rise and fall in a pot of 
heated water. The warmer portions of the water are less dense and therefore, they rise. 
Meanwhile, the cooler portions of the water fall because they are denser. 
While heat convection and conduction require a medium to transfer energy, heat radiation 
does not. The energy travels through nothingness (vacuum) in the heat radiation.    

2.3 Radiation  

Electromagnetic waves that directly transport energy through space is called radiation. Heat 

radiation transmits by electromagnetic waves that travel best in a vacuum. It is a heat 

transfer due to emission and absorption of electromagnetic waves. It usually happens within 

the infrared/visible/ultraviolet portion of the spectrum. Some examples are: heating 

elements on top of toaster, incandescent filament heats glass bulb and sun heats earth. 

Sunlight is a form of radiation that is radiated through space to our planet without the aid of 

fluids or solids. The sun transfers heat through 93 million miles of space. There are no solids 

like a huge spoon touching the sun and our planet. Thus conduction is not responsible for 

bringing heat to Earth. Since there are no fluids like air and water in space, convection is not 

responsible for transferring the heat. Therefore, radiation brings heat to our planet. 

Heat excites the black surface of the vanes more than it heats the white surface. Black is a 

good absorber and a good radiator. Think of black as a large doorway that allows heat to 

pass through easily. In contrast, white is a poor absorber and a poor radiator of energy. 

White is like a small doorway and will not allow heat to pass easily. 

Note that heat transfer problems involve temperature distribution not just temperature. 

Heat transfer rates are determined knowing the temperature distribution. While Fourier’s 

law of conduction provides the rate of heat transfer related to heat distribution, temperature 

distribution in a medium governs with the principle of conservation of energy. 

2.3.1 Stefan-Boltzmann radiation law 

If a solid with an absolute surface temperature of T  is surrounded by a gas at temperature 
T∞ , then heat transfer between the surface of the solid and the surrounding medium will 
take place primarily by means of thermal radiation if  T T∞−  is sufficiently large (P. M. 
Jordan, 2003). Mathematically, the rate of heat transfer across the solid-gas interface is given 
by the Stefan-Boltzmann radiation law 

 4 4( ) ( ),sT n A T Tκ σε ∞∂ ∂ = − −/  (2.5) 

where ( )sT n∂ ∂/  the thermal gradient at the surface of the solid is evaluated in the direction 
of the outward-pointing normal to the surface, A is radiating area and 0κ >  is the thermal 
conductivity of the solid (assumed constant). The constants ε ∈ [0,1], ( 1ε =  for ideal 
radiator while for a prefect insulator 0ε = ) and 2 4

W
8

m5.67 10  ( K )σ −≈ × /  are, respectively, 
the emissivity of the surface and the Stefan-Boltzmann constant (P. M. Jordan, 2003). 
Mathematically, the rate of heat transfer across the solid-gas interface is given by the 
Newton’s law of cooling (H. S. Carslaw & J. C. Jaeger, 1959; R. Siegel & J. H. Howell, 1972) 

 ( ) ( ),sT n hA T Tκ ∞∂ ∂ = − −/  (2.6) 

www.intechopen.com



Applications of Nonstandard Finite Difference Methods to Nonlinear Heat Transfer Problems   

 

191 

where h is the convection heat transfer coefficient and A is cooloing area.   

The applications of thermal radiation with/without conduction can be observed in a good 
number of science and engineering fields including aerospace engineering/design, power 
generation, glass manufacturing and astrophysics (R. Siegel & J. H. Howell, 1972; L. C. 
Burmeister, 1993; M. N. Ozisik, 1989; J. C. Jaeger, 1950; E. Battaner, 1996). 
In the following Work Examples we consider two problems that involve various heat 
transfer properties in a thin finite rod (A. Mohammadi & A. Malek, 2009).    

3. Nonlinear heat transfer in a finite thin wire 

3.1 Heat transfer involving both conduction and radiation 

In the following example we consider a problem that involves both conduction and 
radiation and no convection. 

Consider a very thin, homogeneous, thermally conducting solid rod of constant cross-
sectional area ,A  perimeter ,p  length l  and constant thermal diffusivity 0κ >  that 
occupies the open interval ( 0, l ) along the X - axis of a Cartesian coordinate system. That T  
the temperature distribution of the rod, is ( , )T X τ , and 0 sin( )T X lπ /  is initial temperature 
of the rod, and let the ends at 0,X l=  be maintained at the constant temperatures 1T  and 

2T  respectively and T∞  the surrounding temperature. The parabolic one-dimensional 
unsteady heat conduction model in a thin finite rod that is radiating heat across its lateral 
surface into a medium of constant temperature is the mathematical model of this physical 
system consists of the following initial boundary value problem (P. M. Jordan, 2003;  
W. Dai & S. Su, 2004) 

 

4 4
0

1 2

0

( ),   ( , ) (0, ) (0, );

(0, ) ,    ( , ) ,     0;     

( ,0) sin ( ),    (0, );  

XXT T T T X l

T T T l T

T X T X l X l

τ κ β τ
τ τ τ

π

∞⎧ = − − ∈ × ∞
⎪

= = >⎨
⎪ = ∈⎩ /

 (3.1) 

where time τ  is a non-negative variable, 0 p KAβ κσε= /  in wich K is relative thermal 
diffusivity constant and A stands for radiation area, and based on physical considerations, 
T  is assumed to be nonnegative. 

Work Example 2: (Involves heat conduction and heat radiation) 

Using the following dimensionless variables 

 
2

0

3 2
0 0

,    =     = ,

,    ,

,u T T x X t

T l p KA u T T

l lκτ

β σε ∞ ∞

=

= =

/ / /

/ /
 (3.2) 

where 0 0T >  is taken as constant, problem (3.1) can be rewritten in dimensionless form as 

follows (P. M. Jordan, 2003; W. Dai & S. Su, 2004):  

 

4 4

1 2

( ),   ( , ) (0,1) (0, );

(0, ) ,    (1, ) ,     0;      

( ,0) sin ,              (0,1);  

t xxu u u u x t

u t U u t U t

u x x x

β

π

∞⎧ = − − ∈ × ∞
⎪

= = >⎨
⎪ = ∈⎩

 (3.3) 

where 1U  and 2U  are the dimensionless forms of 1T  and 2T , respectively. 
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3.2 Heat transfer in a finite thin rod with additional convection term   
Problem (3.1) with additional convection term becomes: 

 

4 4
0 0

1 2

0

( ) ( ),  ( , ) (0, ) (0, );

(0, ) ,    ( , )= ,     0;     

( ,0) sin( ),    (0, );  

XXT T T T T T X l

T T T l T

T X T X l X l

τ κ β α τ
τ τ τ

π

∞ ∞⎧ = − − − − ∈ × ∞
⎪

= >⎨
⎪ = ∈⎩ /

 (3.4) 

where τ  the temporal is a non-negative variable, 0 ,p KAβ κσε= /  0 ,hp KA/α κ=  and 
based on physical considerations, T  is assumed to be nonnegative.  

Work Example 3: (Involve conduction, radiation and convection terms) 

Using the following dimensionless variables,  

 
2 3 2

0 0

2
0

,    =    = ,    ,

   ,    ,

,u T T x X t T l p KA

l hp KA u T T

l l

/

κτ β σε

α ∞ ∞

= =

= =

/ / / /

/
 (3.5) 

where T0 > 0 is taken as constant, problem (3.4) can be rewritten in dimensionless form as 
follows:  

 

4 4

1 2

( ) ( ),  ( , ) (0,1) (0, );

(0, ) ,    (1, ) ,     0;     

( ,0) sin ,   (0,1);  

t xxu u u u u u x t

u t U u t U t

u x x x

β α

π

∞ ∞⎧ = − − − − ∈ × ∞
⎪

= = >⎨
⎪ = ∈⎩

 (3.6) 

where U1 and U2 are the dimensionless forms of T1 and T2, respectively. 
In the following we propose six nonstandard explicit and implicit schemes for problem (3.6). 

Novel heat theory (Microscale) 

Tzou (D. Y. Tzou, 1997) has shown that if the scale in one direction is at the microscale (of 
order 0.1 micrometer) then the heat flux and temperature gradient occur in this direction at 
different times. Thus the heat conduction equations used to describe the microstructure 
thermodynamic behavior are: 

. p

T
q Q cρ

τ
∂

−∇ + =
∂

 and  ( , ) ( , ) ,Q TQ r T rτ τ κ τ τ+ = − ∇ +  

where , pcρ and Q are density, a specific heat and a heat source, Qτ and Tτ are the time lags 
of the heat flux and temperature  gradient which are positive constants. 
Now we can introduce (A. Malek & S. H. Momeni-Masuleh, 2008) the novel heat equation as: 

 

2 3 3 3
2

2 2 2 2
( ) ( )

( )

p
q q T

q

c T T T T T
T

x y z

Q
Q

ρ
τ τ τ

κ τ τ τ τ τ

τ
τ

κ

∂ ∂ ∂ ∂ ∂
+ = ∇ + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂

+
∂

 (3.7) 

Malek and Momeni-Masuleh in years 2007 and 2008 used various hybrid spectral-FD methods 
to solve Eq. (3.7) efficiently. H. Heidari and A. Malek, studied null boundary controllability for 
hyperdiffusion equation in year 2009. Heidari, H. Zwart, and Malek, in year 2010 discussed 
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controllability and stability of the 3D novel heat conduction equation in a submicroscale thin 
film. In this Chapter we consider the heat theory for macroscale objects. Thus we do not 
consider the numerical solution for Eq. (3.7) that is out of the scope of this chapter. 

4. Finite difference methods 

4.1 Standard finite difference methods 

In this section, we shall first consider two well known standard finite difference methods and 
their general discretization forms. Second, we shall introduce semi-discretization and fully 
discretization formulas. Third we will consider consistency, convergence and stability of the 
schemes. We will consider the nonlinear heat transfer problems in the next section during the 
study of nonstandard FD methods. This, as we shall see, leads to discovering some efficient 
algorithms that exists for corresponding class of nonlinear heat transfer problems.  
Among the class of standard finite difference schemes, two important and richly studied 
subclasses are explicit and implicit approaches. 

Notation 

It is useful to introduce the following difference notation for the first derivative of a function 
u  in the x  direction at discrete point j  throughout this Chapter. 

1

1

1/2 1/2

( )

( )

( )

j j
j

j j
j

j j
j

u uu
Forward Finite Difference

x x
u uu

Backward Finite Difference
x x

u uu
Central Finite Difference

x x

+

−

+ −

−∂
=

∂ Δ
−∂

=
∂ Δ

−∂
=

∂ Δ

 

The equation 
2

2

u u

t x

∂ ∂
=

∂ ∂
 may be approximated at the point ( , )i x j tΔ Δ  by the difference 

equation: 

, 1 , 1, 1 , 1 1, 1 1, , 1,

2

( 2 ) (1 )( 2 )
,

( )

i j i j i j i j i j i j i j i ju u u u u u u u

t x

θ θ+ + + + − + + −− − + + − − +
=

Δ Δ
 

for 0 1,θ≤ ≤  where , ( , )i ju u i x j t= Δ Δ  for 1,...  and 1,...,  in the i N j J x t= = −  plane. Note that 
0θ =  gives the explicit scheme and 1 /2θ =  represents the Crank-Nicolson method that is 

one of the famous implicit FD schemes. 

4.1.1 Explicit standard FD scheme ( 0θ = ) 

We calculate an explicit standard finite difference solution of the problem given in Work 
Example 1 for both Cases I and II, where the closed analytical form solutions are 

2 2

2 2
0

8 1 1
(sin )(sin )

2
n t

n

U n n x e
n

ππ π
π

∞
−

=
= ∑  and 

2

sintU e xπ π−=  respectively. 

Figs. 1, 2, 3 and 4 display the power of both numerical schemes (Explicit and Crank-
Nicolson) for the calculation of the solution for problems given in Work Example 1. 
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Finite-Difference Explicit Method

Analytical

 

Fig. 1. Standard explicit FD solution of Work Example 1, Case I. 

 

 

Fig. 2. Standard explicit FD solution of Work Example 1, Case II. 

4.1.2 Crank-Nicolson standard FD scheme ( 1 /2θ = ) 

We calculate a Crank-Nicolson implicit solution of the problem given in Work Example 1 for 
Case I and Case II. 
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Fig. 3. Crank-Nicolson implicit FD solution for Work Example 1, Case I. 

 

 

Fig. 4. Crank-Nicolson implicit FD solution of Work Example 1, Case II. 

Up to this point most of our discussion has dealt with standard finite difference methods for 
solving differential equations. We have considered linear equations for which there is a 
well-designed and extensive theory. Some simple diffusion problems without nonlinear 
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terms were considered in Section 4.1. Now we must face the fact that it is usually very 
difficult, if not impossible, to find a solution of a given differential equation in a reasonably 
suitable and unambiguous form, especially if it involves the nonlinear terms. Therefore, it is 
important to consider what qualitative information can be obtained about the solutions of 
differential equation, particularly nonlinear terms, without actually solving the equations. 

4.2 Nonstandard finite difference methods 

Nonstandard finite difference methods for the numerical integration of nonlinear 
differential equations have been constructed for a wide range of nonlinear dynamical 
systems (P. M. Jordan, 2003; W. Dai & S. Su, 2004; H. S. Carslaw & J. C. Jaeger, 1959; R. 
Siegel & J. H. Howell, 1972; L. C. Burmeister, 1993). The basic rules and regulations to 
construct such schemes (R. E. Mickens, 1994), are: 
Regulation 1. To do not face numerical instabilities, the orders of the discrete derivatives 
should be equal to the orders of the corresponding derivatives appearing in the differential 
equations. 
Regulation 2. Discrete representations for derivatives must have nontrivial denominator 
functions. 
Regulation 3. Nonlinear terms should be replaced by nonlocal discrete representations. 
Regulation 4. Any particular properties that hold for the differential equation should also 
hold for the nonstandard finite difference scheme, otherwise numerical instability will 
happen. 
Positivity, boundedness, existence of special solutions and monotonicity are some properties 
of particular importance in many engineering problems that usually model with differential 
equations. Regulation number four restricts one to force the nonstandard scheme satisfying 
properties of differential equation.  
In the last two decays, several nonstandard finite difference schemes have been developed 
for solving nonlinear partial differential equations by Mickens and his co-authors. 
Particularly, Jordan and Dai considered a problem of one-dimensional unsteady heat 
conduction in a thin finite rod that is radiating heat across its lateral surface into a medium 
of constant temperature. The most fundamental modes of heat transfer are conduction and 
thermal radiation. In the former, physical contact is required for heat flow to occur and the 
heat flux is given by Fourier’s heat law. In the latter, a body may lose or gain heat without 
the need of a transport medium, the transfer of heat taking place by means of 
electromagnetic waves or photons.  
In the reminder of this Chapter, we consider twelve nonstandard implicit and explicit 
difference schemes for nonlinear heat transfer problems involving conductions and 
radiation with or without convection term. Specifically, we employ the highly successful 
nonstandard finite difference methods (A. Mohammadi, & A. Malek, 2009) to solve the 
nonlinear initial-boundary value problems in Work Examples 2 and 3 (see Section 3). We 
show that the third implicit schemes are unconditionally stable for large value of the 
equation parameters with or without convection term. It is observed that the rod reaches 
steady state sooner when it is exposed both to the radiation heat and convection. 

4.1 Explicit nonstandard FD schemes 
4.1.1 Nonstandard FD explicit schemes for Work Example 2 
In Ref. (P. M. Jordan, 2003; W. Dai & S. Su, 2004), three nonstandard explicit finite difference 
schemes for Eq. (3.3) are developed as follows:  
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where 2( ) ,r t x≡ Δ Δ/  and , ( , ),i ju u i x j t= Δ Δ  xΔ  is the grid size and tΔ  is the time 

increment. While these three schemes differ in the way of dealing with the nonlinear terms, 

truncation errors for all of them are of the order 2( )O t x⎡ ⎤Δ + Δ⎣ ⎦ . 
Equation (4.3) has better stability property than Eq. (4.1) and (4.2), ( for more details see A. 
Mohammadi, & A. Malek, 2009). This scheme satisfies the positivity condition, i.e., we can 

conclude that if , , 10 0,i j i ju u +> ⇒ >  whenever
1

2
r ≤ .  Moreover this scheme is stable for 

large values of the equation parameters comparing with the nonstandard schemes (4.1) and 
(4.2). 

4.1.2 Nonstandard FD explicit schemes for Work Example 3 

Three nonstandard explicit finite difference schemes are introduced (A. Mohammadi, & A. 

Malek, 2009) with additional convection heat transfer phenomenon as follows:  
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4.2 Implicit nonstandard FD schemes 
4.2.1 Nonstandard FD implicit schemes for Work Example 2 

Finite differencing methods can be employed to solve the system of equations and 

determine approximate temperatures at discrete time intervals and nodal points. Problem 

(3.3) is solved numerically using the non-standard Crank-Nicholson method. To provide 

accuracy, difference approximations are developed at the midpoint of the time increment.  
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A second derivative in space is evaluated by an average of two central difference equations, 
one evaluated at the present time increment j and the other at the future time increment j+1: 
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where j represents a temporal node and i represents a spatial node. 
Making these substitutions into Eq. (3.3), gives 
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In this study, three nonstandard implicit finite difference schemes are developed as follows 
(A. Mohammadi, & A. Malek, 2009) 
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and 

 
( )

( )
2 2

1, 1 , , , 1 1, 1

2 2 4
1, , , , 1,

2 2 ( )( )( )

2 2 ( ) ( ) ( )  ,

i j i j i j i j i j

i j i j i j i j i j

ru r t u u u u u ru

ru r t u u u u u u ru t u

β

β β

− + ∞ ∞ + + +

− ∞ ∞ ∞ + ∞

− + + + Δ + + − =

+ − + Δ + + + + Δ
 (4.12) 

where ( ) ,   kt t t k→ = Δ ( ) .  mx x x m→ = Δ It can be seen that the truncation errors are of the 

order 2 2( ) ( )O t x⎡ ⎤Δ + Δ⎣ ⎦ . In the Section 4.3, we prove that the scheme (4.12) is stable.  

4.2.2 Nonstandard FD implicit schemes for Work Example 3 
Three nonstandard implicit finite difference schemes are proposed (A. Mohammadi, & A. 
Malek, 2009) with regard to convection heat transfer as follows:  
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and 
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4.3 Stability analysis for nonstandard FD implicit schems  

The questions considered in this section are mainly associated with the idea of stability of a 
solution. In the simplest form it makes it clear that: is whether small changes in the initial 
conditions (inputs) lead to small changes (stability) or to large changes (instability) in the 
computed solution (output). 

Consider the stability of the nonstandard implicit finite difference scheme (4.12) where the 
coefficients are constant values. If the boundary values at 0i =  and ,N  for  0,j >  are 
known, these ( 1)N −  equations for  1 ... 1i N= −  can be written in matrix form as  
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 (4.16)  

where  

 ( )2 2
, ,2 2 ( )( )( ) ,i j i jM r t u u u uβ ∞ ∞= + + Δ + +  (4.17)  

and 

 ( )2 2
, ,2 2 ( ) ( )i j i jQ r t u u u u uβ ∞ ∞ ∞= − + Δ + +  (4.18) 

i.e. 1 ,j j j+ = +Au Bu d  where the matrices A  and B  of order ( 1)N −  are as shown in (4.16), 

1j+u  denotes the column vector with components 1, 1 2, 1 1, 1, ,..., ,j j N ju u u+ + − +  and jd  denotes 

the column vector of known boundary values and zeros. Hence, 
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 1 ,j j j+ = +-1 -1u A Bu A d  (4.19) 

that may be expressed more conveniently as  

 1 ,j j j+ = +u Cu f  (4.20) 

in which -1C = A B  and j j= -1f A d .  

Theorem 4.1: For the scheme (4.12) norm of the error for j th time step is less than or equal 

to 
j

,0C e  where 0e  is the error of the initial values. 
Proof : Applying recursively from (4.20) leads to 

 

-1 -1 -2 -2 -1

2
2 2

...

.

j j j j j j

j- j - j -1

j j-1 j-2
0 0 1 j-1...

= + = + + =

= + + =

=

= + + + +

u Cu f C(Cu f ) f

C u Cf f

C u C f C f f

 (4.21) 

Perturb the vector of initial values 0u  to 0
∗
u . The exact solution at the j th time-row will then 

be 

 .j j -1 j-2* *
j 0 0 1 j-1= + + + ...+u C u C f C f f  (4.22) 

If the perturbation or error vector e  is defined by ,∗= −e u u  it follows by Eqs. (4.21) and 

(4.22) that 

 ( )   1... j j* *
j j j 0 0 0= - = - = , j J=e u u C u u C e  (4.23) 

Hence, for compatible matrix and vector norms, 

 
jj

j .≤ ≤0 0e C e C e  (4.24) 

Since the necessary and sufficient condition for the difference equations to be stable when 
the solution for the partial differential equation does not increase as t  increases (J. D. Smith, 
1985), is 1,≤C  in the following theorem we prove it for the scheme (4.12).  
Theorem 4.2: The following three statements for the non-standard implicit scheme (4.12) 
satisfy  
i. Matrix C in Eq. (4.20) is symmetric with real values.  

ii. 1<C    
iii. The nonstandard implicit scheme (4.12) is unconditionally stable. 

Proof (i) From matrix equation (4.16) it is obvious that matrix C  is a real tridiagonal matrix. 
Since A  and B  are both symmetric and commute, matrix C  is symmetric with real values, 
(J. D. Smith, 1985). 
Proof (ii) Since matrix C  is real and symmetric, 

2
( ) max ,s

s
ρ μ= =C C  therefore the scheme 

(4.12) will be stable when 
2

max 1,s
s

μ= ≤C  where ,sμ  for 1,..., ,s N=  are eigenvalues of 

the matrix C . On the other hand the eigenvalues of matrix C  are in the following form   
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 2 cos ( 1)
1,..., .

2 cos ( 1)
s

Q r s N
s N

M r s N

π
μ

π
⎛ ⎞+ +

= =⎜ ⎟
+ +⎝ ⎠

 (4.25) 

Thus from (4.17) and (4.18) we have 

 
2

2 cos ( 1)
( ) max 1

2 cos ( 1)s

Q r s N

M r s N

π
ρ

π
+ +

= = <
+ +

C C  for all 0.r >  (4.26) 

Now using Theorem 4.1, equation (4.24) leads to 
j

jlim lim 0.
j j→∞ →∞

≤ =0e C e  This proves 
statement (iii).  

5. Numerical results 

5.1 Numerical solutions for Work Example 2 

Explicit and implicit schemes for equations (4.1)-(4.3), and (4.10)-(4.12) are numerically 
integrated. We computed and plotted the approximate solution to the problem (3.3), for 

1 2 0 U U= = and various values of 2,uβ ∞= =  6,uβ ∞= =  and 20,uβ ∞= =  where 
0.02 and 1 5001.x tΔ = Δ =  We first chose 2,uβ ∞= =  figures 5(a) and 6(a) show 

temperature profiles obtained based on three schemes for explicit models introduced by (P. 
M. Jordan, 2003; W. Dai & S. Su, 2004), and three schemes of this work, respectively. It can 
be seen from figure 6(a) that all of our schemes in figure 6(a) are stable while the scheme (1) 
in figure 5(a) of Ref. (P. M. Jordan, 2003; W. Dai & S. Su, 2004) is unstable. 
    

 

Fig. 5(a). For 2,uβ ∞= =  scheme (1) There explicit nonstandard finite difference scheme 
given by Jordan (2003) is plotted in Eq. (4.1) is not stable, while schemes (2) and (3) given in 
Eqs. (4.2) and (4.3) are stable. 

We then chose 6,uβ ∞= =  and the results were plotted in figures 5(b), 5(c) and 6(b). The 
solution obtained based on Eq. (4.1) is not convergent as shown in figure 5(b), while the 
three implicit schemes of us are stable as shown in figure 6(b). 
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Finally, 20,uβ ∞= =  it can be seen from figures 5(d) and 5(e) and figures 6(c) and 6(d) that 
neither of the solutions based on Eqs. (4.1), (4.2) and (4.10), (4.11) converge to the correct 
solution, while the schemes, in Eqs. (4.3) and (4.12) are still stable and convergent. 
 

 

Fig. 5(b). For 6,uβ ∞= =  scheme (1), given in Eq. (4.1), by Jordan (2003) does not converge. 

 

 

Fig. 5(c). For 6,uβ ∞= =  schemes (2) and (3), given in Eqs. (4.2) and (4.3), converge to the 
correct solution. 
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Fig. 5(d). For 20,uβ ∞= =  schemes (1) and (2), given in Eqs. (4.1) and (4.2), converge but do 
not converge to the correct solution. 

 

 

Fig. 5(e). For 20,uβ ∞= =  scheme (3), given in Eq. (4.3), converge to the correct solution. 
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Fig. 6(a). For 2,uβ ∞= =   three schemes given by Eqs. (4.10), (4.11) and (4.12) converge to 
the correct solution. 

 

 

Fig. 6(b). For 6,uβ ∞= =  schemes (1), (2) and (3) based on Eqs. (4.10), (4.11) and (4.12), for 
Work Example 2 are shown. All of three implicit schemes are stable. 
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Fig. 6(c). For 20,uβ ∞= =  schemes (1) and (2), given in Eqs. (4.10) and (4.11), converge but 
do not converge to the correct solution. 

 

Fig. 6(d). For 20,uβ ∞= =  scheme (3), given in Eq. (4.12) is stable and converges to the 
correct solution. 
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5.2 Numerical solutions for Work Example 3 

The approximate solutions to the problem (3.6) are computed and plotted using the finite 
difference schemes given in Eqs. (4.4)-(4.6) and (4.13)-(4.15) for t =1, 1 2U 0 U= =  with 

2,uβ ∞= =  in Work Example 2 and  2,uβ ∞= = 4α =  in Work Example 3, where 
0.02,  1 5001.x tΔ = Δ =  

Figure 7(a) shows the temporal evolution of the temperature profiles corresponding to 
initial boundary value problem (3.3) and (3.6), for 2,uβ ∞= =  and 4α = , where numerical 
results for explicit schemes are plotted. It can be seen from figure 7(a) that the solution of 
problem without convection term in scheme (1) begun to oscillate, while all of the solution 
profiles for problem (3.6) are stable. 
 

 

Fig. 7(a). For 2,uβ ∞= =  plots of explicit schemes (1), (2) and (3) with convection term 

( )4α =   and without convection term are shown. 

Figure 7(b) shows the temperature profiles corresponding to initial boundary value problem 
(3.3) and (3.6), for 2,uβ ∞= =  4α = where numerical results for implicit schemes are 
plotted. All the proposed schemes with/without convection terms are stable when implicit 
schemes are used. 
Numerical results show that solution profile for implicit schemes are unconditionally stable 
for small values as well as the large values of the equation parameters. The theoretical 
stability analysis in Section 4.3 for implicit scheme (4.13) supports our numerical 
conclusions. The theoretical stability analysis for implicit schemes (4.14) and (4.15) may be 
done in the similar way.  The convection term's effect is considered in Figs. 7(a) and 7(b) for 
explicit and implicit schemes respectively. It is shown that the schemes with convection 
term reach the steady state sooner. 
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Fig. 7(b). For 2,uβ ∞= =  implicit schemes (1), (2) and (3) with convection term ( )4α =  and 
without convection term is shown. 

Our findings suggest that Regulation 4 is a serious property for a general nonstandard finite 
difference scheme because, otherwise it leads to instability. i.e. either the scheme does not 
converge or it converges to a wrong solution. 
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