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1. Introduction     

The development of foundational technologies such as de novo DNA synthesis, milestone 
experiments such as the computational re-design of enzymes, the opportunity to widely 
recombine zinc fingers to re-program DNA-binding site specificity and the availability of 
well-studied model regulatory system for the design of engineering-inspired molecular 
devices provide a very powerful knowledge and technology basis for building novel 
biological entities (Heinemann and Panke, 2006). Synthetic biology is to engineer artificial 
biological systems to investigate natural biological phenomena and for a variety of 
applications. Synthetic biology will revolutionize how we conceptualize and approach the 
engineering of biological systems. The vision and applications of this emerging field will 
influence many other scientific and engineering disciplines, as well as affect various aspects 
of daily life and society (Andrianantoandro et al., 2006). Synthetic biology builds living 
machines from the off-the-shelf chemical ingredients, utilizing many of the same strategies 
that electrical engineers employ to make computer chips (Tucker & Zilinskas, 2006). The 
main goal of the nascent field of synthetic biology is to design and construct biological 
systems with the desired behavior (Alon, 2003; Alon, 2007; Andrianantoandro et al., 2006; 
Church, 2005; Endy, 2005; Hasty et al., 2002; Heinemann & Panke, 2006; Kobayashi et al., 
2004; Pleiss, 2006; Tucker & Zilinskas, 2006). By a set of powerful techniques for the 
automated synthesis of DNA molecules and their assembly into genes and microbial 
genomes, synthetic biology envisions the redesign of natural biological systems for greater 
efficiency as well as the construction of functional “genetic circuit” and metabolic pathways 
for practical purposes (Andrianantoandro, et al., 2006; Ferber, 2004; Forster & Church, 2007; 
Gardner, et al., 2000; Heinemann & Panke, 2006; Isaacs, et al., 2006; Maeda & Sano, 2006; 
Tucker & Parker, 2000). Synthetic biology is foreseen to have important applications in 
biotechnology and medicine (Andrianantoandro et al., 2006). 
Though the engineering of networks of inter-regulating genes, so-called synthetic gene 
networks, has demonstrated the feasibility of synthetic biology (Gardner et al., 2000), the 
design of gene networks is still a difficult problem and most of the newly designed gene 
networks cannot work properly. These design failures are mainly due to intrinsic 
perturbations such as gene expression noises, splicing, mutation, uncertain initial states and 
disturbances such as changing extra-cellular environments, and interactions with cellular 
context. Therefore, how to design a robust synthetic gene network, which could tolerate 
uncertain initial conditions, attenuate the effect of all disturbances and function properly on 
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the host cell, will be an important topic for synthetic biology (Alon, 2003; Alon, 2007; 
Andrianantoandro et al., 2006; Batt et al., 2007; Church, 2005; Endy, 2005; Goulian, 2004; 
Hasty et al., 2002; Heinemann & Panke, 2006; Kaznessis, 2006; Kaznessis, 2007; Kitano, 2002; 
Kitano, 2004; Kobayashi et al., 2004; Pleiss, 2006; Salis & Kaznessis, 2006; Tucker & Zilinskas, 
2006). Previously, sensitivity analysis has been used for analysis of the dynamic properties 
of gene networks either in qualitative simulations of coarse-grained models or in extensive 
numerical simulations of nonlinear differential equation models or stochastic dynamic 
models (de Jong, 2002; Szallasi et al., 2006). For applications in synthetic biology, these 
approaches are not satisfying. The local sensitivity analysis can provide only a partial 
description of all possible behaviors of a nonlinear gene network. In particular, it cannot 
guarantee that a synthetic gene network behaves as expected for all uncertain initial 
conditions and disturbances. Moreover, obtaining all convergences of states and parameters 
by extensive numerical simulations quickly becomes computationally intractable when the 
size of the synthetic network grows (Batt et al., 2007). 
An approach has recently been developed using semidefinite programming to partition the 
parameter spaces of polynomial differential equation models into so-called feasible and 
infeasible regions (Kuepfer et al., 2007). Following that, a robustness analysis and tuning 
approach of synthetic networks was proposed to provide a means to assess the robustness 
of the expected behavior of a synthetic gene network in spite of parameter variations (Batt et 
al., 2007). This approach has the capability to search for parameter sets for which a given 
property is satisfied through a publicly available tool called RoVerGeNe. Several gene 
circuit design networks have been introduced to implement or delete some circuits from an 
existing gene network so as to modify its structure for improving its robust stability or 
filtering ability (Chen et al., 2008b; Chen & Chen, 2008; Chen & Wu, 2008). However, robust 
synthetic gene network design is a different topic. It needs to design a complete man-made 
gene network to be inserted into a host cell. Therefore, the synthetic gene networks should 
be designed with enough robustness to tolerate uncertain initial conditions and to resist all 
possible disturbances on the host cell so that they can function properly in a desired steady 
state. This is a so-called robust regulation design that can achieve a desired steady state of 
synthetic gene networks despite uncertain initial conditions and disturbances on the host 
cell. Recently, robust synthetic gene network design has been developed from the robust 
stabilization method (Chen & Wu, 2009) and minimax method (Chen, et al., 2009). 
In this study, a robust regulation design of synthetic gene network is proposed to achieve a 
desired steady state in spite of uncertain initial conditions, parameter variations and 
disturbances on the host cell. Because most information of these uncertain factors on the 
host cell is unavailable, in order to attenuate their detrimental effects, their worst-case effect 
should be considered by the designer in the regulation design procedure from the worst 
regulation error perspective. The worst-case effect of all possible initial conditions and 
disturbances on the regulation error to a desired steady state is minimized for the robust 
synthetic gene networks, i.e., the proposed robust synthetic gene network is designed from 
the minimax regulation error perspective. The minimax design scheme is a simple robust 
synthetic gene network design method because we do not need the precise information of 
the initial conditions, parameter variations and disturbances on the host cell, which are not 
easy to measure in the design procedure. This minimax regulation design problem for 
robust synthetic gene networks could be transformed to an equivalent dynamic game 
problem (Basar & Olsder, 1999; Chen et al., 2002). Dynamic game methods have been widely 
applied to many fields of robust engineering design problems with external disturbances. 
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Recently, the application of dynamic game theory has been used for robust model matching 
control of immune systems under environmental disturbances (Chen et al., 2008a). A robust 
drug administration (control input) is designed to obtain a prescribed immune response 
under uncertain initial states and environmental disturbances. In this study, the stochastic 
game theory will be used for robust synthetic gene network design so that the engineered 
gene network can work properly under uncertain initial conditions and environmental 
disturbances on the host cell. The uncertain initial states and disturbances are considered as 
a player doing his best to deteriorate the regulation performance from the worst-case point 
of view, while the system parameters to be designed are considered as another player 
optimizing the regulation performance under the worst-case deterioration of a former 
player. Since the synthetic gene networks are highly nonlinear, it is not easy to solve the 
robust synthetic gene network design problem directly by the nonlinear dynamic game 
method directly. Recently, fuzzy systems have been employed to efficiently approximate 
nonlinear dynamic systems to solve the nonlinear control problem (Chen et al., 1999; Chen et 
al., 2000; Hwang, 2004; Li et al., 2004; Lian et al., 2001; Takagi & Sugeno, 1985). A Takagi-
Sugeno (T-S) fuzzy model (Takagi & Sugeno, 1985) is proposed to interpolate several 
linearized genetic networks at different operating points to approximate the nonlinear gene 
network via some smooth fuzzy membership functions. Then with the help of the fuzzy 
approximation method, a fuzzy dynamic game scheme (Chen et al., 2002) is developed so 
that the minimax regulation design of robust synthetic gene networks could be easily solved 
by the techniques of the linear dynamic game theory, which can be subsequently solved by a 
constrained optimization scheme via the linear matrix inequality (LMI) technique (Boyd et 
al., 1994) that can be efficiently solved by the Robust Control Toolbox in Matlab (Balas et al., 
2008). Because the fuzzy model can approximate any nonlinear system, the proposed robust 
regulation design method developed from the fuzzy stochastic game theory can be applied 
to the robust regulation design problem of any synthetic gene network that can be 
interpolated by a T-S fuzzy model. For comparison, the conventional optimal regulation 
design method without considering the effect of disturbances is also proposed for the 
synthetic gene network. Because the effect of disturbances is not attenuated efficiently, the 
optimal regulation design method of synthetic gene networks is much influenced by the 
disturbances on the host cell. Finally, an in silico example is given to illustrate the design 
procedure and to confirm the efficiency and efficacy of the proposed minimax regulation 
design method for robust synthetic gene networks.  

2. Robust synthetic gene network design via stochastic game approach 

First, for the convenience of problem description, a simple design example of a four-gene 
network in (Batt et al., 2007) is provided to give an overview of the design problem of robust 
synthetic gene networks. A more general design problem of robust synthetic gene networks 
will be given in the sequel. Let us consider a robust regulation design problem of a cascade 
loop of transcriptional inhibitions built in E. coli. (Hooshangi et al., 2005). The synthetic gene 
network is represented in Fig. 1. It consists of four genes: tetR, lacI, cI and eyfp that code 
respectively three repressor proteins, TetR, LacI and CI, and the fluorescent potein EYFP 
(enhanced yellow fluorescent protein) (Batt et al., 2007). aTc (anhydrotetracycline) is the 
input to the system. The fluorescence of the system, due to the protein EYFP, is the 
measured output. The protein CI inhibits gene eyfp. The protein TetR inhibits gene lacI. The 
protein LacI inhibits gene cI. The regulatory dynamic equations of the synthetic 
transcriptional cascade in Fig. 1 are given as follows (Batt et al., 2007). 
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with the uncertain initial conditions xtetR(0), xlacI(0), xcI(0) and xeyfp(0) in the host cell. ktetR,0, 
klacI,0, kcI,0 and keyfp,0 are basal production rates of the corresponding proteins, which are 
assumed to be given constants. klacI, kcI and keyfp are the production rate parameters while 

γtetR, γlacI, γcI and γeyfp are decay rate parameters of the corresponding proteins. The regulatory 
functions rlacI, rcI and reyfp are the Hill functions for repressors and alacI for an activator. 
The Hill function can be derived from considering the equilibrium binding of the 
transcription factor to its site on the promoter region. For a repressor, Hill function is an S-

shaped curve which can be described in the form ( )
1 ( )

r

r
nx

K

r x
β

=
+

. rβ  is the maximal 

expression level of promoter. Kr is the repression coefficient. The Hill coefficient n governs 
the steepness of the input function. For an activator, Hill function can be described in the 

form ( )
n

a
n n
a

x
a x

K x

β
=

+
. aβ  is the maximal expression level of promoter. Ka is the activation 

coefficient. n determines the steepness of the input function (Alon, 2007). w1, w2, w3 and w4 
are the disturbances of the synthetic gene network, which denote the total of environmental 
noises, modeling residuals, intrinsic parameter fluctuations in the host cell. Therefore, wi, 
i=1~4 are assumed uncertain but bounded disturbances. The synthetic gene network design 

is to specify klacI, kcI, keyfp and γtetR, γlacI, γcI, γeyfp such that the system states xtetR, xlacI, xcI and xeyfp 
can approach the desired states xd1, xd2, xd3 and xd4, respectively, in spite of uncertain initial 
conditions and disturbances. 
If a synthetic gene network consists of n genes, then equation (1) can be extended to the 
following n-gene network dynamics. 

 0 0( , , ) ( ) , (0)x k f x k g u w x xγ= + + + =$  (2) 

where the state vector x denotes the concentrations of proteins in the synthetic gene 
network. k0 denotes the vector of basal production rates of the corresponding proteins. 

f(x,k,γ) denotes the regulation vector of synthetic gene network, which is the function of 

production rate parameters k and decay rate parameters γ to be designed. g(u) denotes the 
input function to the synthetic gene network. w denotes the vector of  stochastic 
disturbances on the host cell, whose statistics may be unavailable. The initial condition x0 is 
assumed stochastic with unknown covariance. The robust synthetic gene network design is 

to select parameters k and γ from feasible ranges so that the state vector x can approach a 
desired state vector xd in spite of uncertain initial condition x(0) and disturbances w on the 
host cell. i.e., x å xd at the steady state despite uncertain x(0) and w. This is a robust 
regulation problem of synthetic gene networks, i.e., the state vector x of synthetic gene 
networks is robustly regulated to xd in the host cell. 
Let us denote the regulation error as 

 dx x x= −#  (3) 
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Then the regulation error dynamic system is given by 

 0( , , ) , (0)dx f x x k v x xγ= + + =$# # # #  (4) 

where v=k0+g(u)+w denotes the total uncertain disturbance in the regulation error system 

because these terms always fluctuate in the host cell and are not easily measured correctly. 

Because of the uncertainty of v and (0)x# , the minimax regulation design method is an 

efficient but simple design scheme for robust synthetic gene network. The uncertainty of 

disturbance v and initial condition (0)x#  in the following minimax design can be considered 

as a player maximizing their effects on the regulation error in the following robust design 

problem of synthetic gene networks (Basar and Olsder, 1999; Chen et al., 2002). 
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[ , ] (0),
[ , ]

0

min max
(0) (0)

f

f

t T

tk k k x v T T

E x Qxdt

E v vdt x xγ γ γ
∈
∈
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∫

∫
#

# #

# #
 (5) 

where Q is the weighting matrix. In general, Q is a diagonal weighting matrix with 
Q=diag([q11, q22, … , qnn]) to denote the punishment on regulation error. If only the last state 
xn is required to be regulated to achieve the desired steady state xdn, then we can let qnn=1 
and q11=q22=…=qn-1n-1=0. [k1,k2] and [γ1,γ2] denote the allowable ranges of production rate 
vector k and decay rate vector γ, respectively. The allowable ranges are determined by the 
engineering biotechnologies of synthetic biology. k and γ to be designed can be considered 
as another player minimizing the worst-case effect of (0)x#  and v on the regulation error. If 
the disturbances v and initial condition (0)x#  are deterministic, then the expectation 
operation E[ ] in (5) could be neglected. 
The physical meaning of (5) is that the worst-case effect of uncertain (0)x#  and v on the 
regulation error x#  must be minimized from the mean energy perspective by k and γ, which 
are chosen from the allowable ranges. Therefore, for uncertain (0)x#  and v, the robust 
synthetic gene network design is to solve the minimax problem in (5) subject to the 
regulation error dynamic system in (4). This is the so-called stochastic game problem in the 
robust synthetic gene network design (Basar & Olsder, 1999). 
In general, it is not easy to solve the nonlinear stochastic game problem in (5) subject to (4) 
directly. It is always solved by a sub-minimax method. First, let the upper bound g2 of (5) be 
(Basar & Olsder, 1999; Chen et al., 2002) 
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1 2

0 2
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min max
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∫
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#
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 (6) 

We will first solve the sub-minimax problem in (6) and then decrease the upper bound g2 as 
much as possible to approach its minimax solution. In general, the minimax problem in (6) 
is equivalent to the following minimax problem (Basar & Olsder, 1999; Chen et al., 2002) 

 ( )
1 2

1 2

2 2

0[ , ]
[ , ]

min max (0) (0) , (0)
ft T T T

k k k v
E x Qx g v v dt g E x x x

γ γ γ
∈
∈

⎡ ⎤ ⎡ ⎤− ≤ ∀⎢ ⎥ ⎣ ⎦⎣ ⎦∫ # # # # #  (7) 
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where g2 is to be minimized because it is the upper bound in (6) and should be as small as 
possible to approach the minimax solution. Let us denote the cost function as 

 ( )2

0
( , , )

ft T TJ k r v E x Qx g v v dt⎡ ⎤= −⎢ ⎥⎣ ⎦∫ # #  (8) 

3. Design procedure and result 

3.1 Sub-minimax design for robust synthetic gene networks 

From the above analysis, the dynamic game problem in (6) or (7) is equivalent to finding the 

worst-case disturbance v* which maximizes J(k,γ,v) and then the minimax k* and γ* which 

minimize J(k,γ,v*) such that the minimax value J(k*,γ*,v*) is less than 2 [ (0) (0)]Tg E x x# # , i.e.  

 ( ) ( )
1 2 1 2

1 2 1 2

* * * * 2

[ , ] [ , ]
[ , ] [ , ]

, , min , , min max ( , , ) (0) (0) , (0)T

k k k k k k v
J k v J k r v J k v g E x x x

γ γ γ γ γ γ

γ γ
∈ ∈
∈ ∈

⎡ ⎤= = ≤ ∀⎣ ⎦
# # #  (9) 

Hence, if there exist k*, γ*and v* such that the minimax design problem in (9) is solved, then 
they can satisfy the minimax performance of the robust synthetic gene network design in (6) 
as well. Therefore, the first step of robust synthetic gene network design is to solve the 
following dynamic game problem: 

 ( )
1 2

1 2

[ , ]
[ , ]

min max , ,
k k k v

J k v

γ γ γ

γ
∈
∈

 (10) 

subject to the error dynamic equation in (4). Since ( )* * * 2, , [ (0) (0)]TJ k v g E x xγ ≤ # #  according to 

(9) and g2 is the upper bound of the game in (6), the sub-minimax has to make g2 as small as 

possible, too. 
From the above analysis, we obtain the following sub-minimax result for robust synthetic 
gene network design. 
Proposition 1: The sub-minimax synthetic gene network design is equivalent to solving the 

following constrained optimization for k* and γ*, 
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 (11) 

subject to the following Hamilton-Jacobi inequality (HJI) 
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with ( ) 0V x >#  and the worst-case disturbance is given by 
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∂
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Proof: see Appendix A. 
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Remark 1: 
1. From (6), g2 is the upper bound of the game. In (11), we minimize the upper bound g2 to 

achieve the sub-minimax solution for robust synthetic gene networks. 

2. The physical meaning of the constrained minimization in (11) and (12) is that we want 

to specify k* and γ* from the allowable parameter ranges such that the upper bound g2 is 

as small as possible until no positive solution ( ) 0V x >#  of HJI in (12) exists. 

At present, there exists no efficient analytic or numerical method to solve the HJI in (12) for 

nonlinear stochastic system control or filtering designs (Zhang & Chen, 2006; Zhang et al., 

2005). 

3.2 Minimax robust synthetic gene networks via fuzzy interpolation method 

Because it is very difficult to solve the nonlinear HJI in (12), no simple approach is available 

for solving the constrained optimization problem in (11) for the minimax robust synthetic 

gene network design problem. Recently, the Takagi-Sugeno (T-S) fuzzy model has been 

widely employed (Chen et al., 1999; Chen et al., 2000; Hwang, 2004; Takagi & Sugeno, 1985) 

to approximate the nonlinear system via interpolating several linearized systems at different 

operating points so that the nonlinear Nash stochastic problem could be transformed to a 

fuzzy stochastic game problem (Chen et al., 2002). By using such approach, the HJI in (12) 

can be replaced by a set of linear matrix inequalities (LMIs). In this situation, the nonlinear 

stochastic game problem in (10) could be easily solved by the fuzzy dynamic method for the 

robust design of sub-minimax design problem.  

Suppose the nonlinear system in (4) could be approximated by a T-S fuzzy system (Takagi & 

Sugeno, 1985). The T-S fuzzy model is a piecewise interpolation of several linearized models 

through fuzzy membership functions. The fuzzy model is described by fuzzy if-then rules 

and will be employed to deal with the nonlinear stochastic game problem for robust 

synthetic gene network design under uncertain initial conditions and disturbances. The ith 

rule of fuzzy model for nonlinear systems in (4) is of the following form (Chen et al., 1999; 

Takagi & Sugeno, 1985). 

Rule i: 

If 1( )x t#  is 1iF  and …  and ( )qx t#  is iqF , 

 then ( , ) , 1,2, ,ix k x v i Lγ= + =A$# # A  (14) 

where Fij is the fuzzy set. Ai(k,γ) is constant matrix with the elements of k and γ contained in 

its entries. q is the number of premise variables and 1 , , qx x# #A  are the premise variables. The 

fuzzy system is inferred as follows (Chen et al., 1999; Chen et al., 2000; Li et al., 2004; Lian et 

al., 2001; Takagi and Sugeno, 1985) 
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where 
1
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We assume 

 ( ( )) 0i x tμ ≥#  and 
1

( ( )) 0
L

i
i

x tμ
=

>∑ #  (16) 

Therefore, we get the following fuzzy basis functions 

 ( ( )) 0ih x t ≥#  and 
1

( ( )) 1
L

i
i

h x t
=

=∑ #   (17) 

The T-S fuzzy model in (15) is to interpolate L linear systems to approximate the nonlinear 
system in (4) via the fuzzy basis functions ( ( ))ih x t# . We could specify system parameter 

Ai(k,γ) easily so that 
1

( ( )) ( , )
L

i ii
h x t k xγ

=∑ A# #  can approximate ( , , )df x x k γ+#  in (4) by the fuzzy 

identification method (Takagi and Sugeno, 1985). 
After the nonlinear system in (4) is approximated by the T-S fuzzy system in (15), the 
nonlinear dynamic game problem in (10) is replaced by solving a dynamic game problem in 
(6) subject to the fuzzy system (15). 

Proposition 2: The sub-minimax robust synthetic gene network design is to solve k* and γ* 
by the following constraint optimization 
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and the worst-case disturbance *v  is given by 

 *
2

1

1
( )

L

i
i

v h x Px
g =

= ∑ # #  (20) 

Proof: see Appendix B. 
By the fuzzy approximation, the HJI in (12) can be approximated by a set of algebraic 
inequalities in (19). By Schur complement (Boyd et al., 1994), the constrained optimization 
problem in (18)-(19) is equivalent to the following LMI-constrained optimization problem 
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subject to 
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Remark 2: 

1. The fuzzy basis functions ( )ih x#  in (15) and (17) can be replaced by other interpolation 

functions, for example, cubic spline functions. 
2. By the fuzzy approximation, the HJI in (12) of nonlinear dynamic game problem can be 

solved by Robust Control Toolbox in Matlab efficiently (Balas et al., 2008). The 
constrained optimization in (18) and (19) can be solved by decreasing g2 until there is no 

positive definite solution P > 0 in (22) with k*∈[k1,k2] and γ*∈[γ1,γ2]. 
3. In the LMI-constrained optimization in (22) for the robust synthetic gene network 

design, we do not need the statistics of initial conditions and disturbances on the host 
cell, which are not easy to be measured. Therefore, the proposed method is simple but 
robust for synthetic gene networks. 

Remark 3: 
For comparison, the conventional optimal regulation design is also proposed for synthetic 
gene networks. If the effect of external disturbances and uncertain initial conditions on the 
regulation error is not considered as (5) in the design procedure, i.e., only the following 
optimal regulation design is considered. 

 
1 2

1 2

0[ , ]
[ , ]

min
ft T

k k k
E x Qxdt

γ γ γ
∈
∈

⎡ ⎤
⎢ ⎥⎣ ⎦∫ # #  (23) 

subject to (4) 
then we obtain the following sub-optimal regulation design for synthetic gene networks. 
Proposition 3: The sub-optimal synthetic gene network design in (23) is to solve the 
following constrained optimization 

 
1 2

1 2

[ , ]
[ , ]

min ( (0))
k k k

E V x

γ γ γ
∈
∈

⎡ ⎤⎣ ⎦#  (24) 

subject to 

 
( ) 1 ( ) ( )
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d

V x V x V x
V x f x x k r x Qx

x x x

∂ ∂ ∂⎛ ⎞ ⎛ ⎞> + + + <⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

# # ## # # #
# # #

 (25) 

Proof: see Appendix C. 
Because it is not easy to solve the above HJI-constrained optimization for the sub-optimal 
regulation design in (24) and (25), the fuzzy approximation method is needed to simplify the 
design procedure. If the nonlinear error dynamic equation in (4) is represented by the fuzzy 
interpolation system in (15), then the optimal synthetic gene network design in (23) is 
equivalent to the following optimal regulation design problem. 

 
1 2

1 2

0[ , ]
[ , ]

1

min

subject to ( ) ( , )

ft T

k k k

L

i i
i

E x Qxdt

x h x k x v

γ γ γ

γ

∈
∈

=

⎡ ⎤
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= +

∫

∑ A

# #

$# # #

 (26) 
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Proposition 4: The sub-optimal regulation design problem in (26) becomes how to solve the 
following constrained optimization problem 

 ( )
1 2

1 2

0
[ , ]
[ , ]

min Tr
k k k

PR

γ γ γ
∈
∈

 (27) 

subject to 

 
( , ) ( , )

0, 0, 1,2, ,
2

T
i ik P P k Q P

P i L
P I

γ γ⎡ ⎤+ +
> ≤ =⎢ ⎥

−⎢ ⎥⎣ ⎦

A A
A  (28) 

where R0 denotes the covariance matrix [ (0) (0)]TE x x# # . 
Proof: similar to the proof of Proposition 2. 

Since the effect of stochastic disturbances on x#  is not considered as (5) in the above sub-

optimal synthetic gene network design, the synthesized gene networks will be more 
sensitive to the external disturbances or other uncertain factors. They will be compared with 
the sub-minimax robust synthetic gene network in the simulation example. 
Remark 4: 
Since the effect of the disturbance v on the regulation error has not been attenuated 
efficiently on the design procedure of the sub-optimal regulation in Proposition 3 and 4, the 
disturbance will have much effect on the sub-optimal regulation design of synthetic gene 
network. This property will be discussed and compared with the proposed robust synthetic 
gene network in the design example in the following section. 
According to the analyses above, a design procedure is developed for the proposed robust 
synthetic gene network. 

※ Design Procedure: 

1. Give feasible parameter ranges [k1,k2] and [γ1,γ2] for production rate parameters k and 

decay rate parameters γ, respectively, according to the biotechnology ability. 
2. Give the desired steady state xd according to the design purpose and develop a 

regulation error dynamic (4) for a synthetic gene network. 
3. Construct a T-S fuzzy model in (15) to approximate the regulation error dynamic in (4). 

Solve the constrained optimization problem from the ranges k∈[k1,k2] and γ∈[γ1,γ2] in (21) 
and (22) for the robust synthetic gene network design k* and γ* , respectively according to the 
sub-minimax scheme or solve the constrained optimization problem in (27) and (28) for the 
sub-optimal regulation design. 

3.3 Design example in silico for the proposed robust design 

Consider the man-made synthetic gene network in the dynamic equations (1) (Batt et al., 
2007). The synthetic gene network is shown in Fig. 1. Where ktetR,0, klacI,0, kcI,0 and keyfp,0 are 
basal production rates of the corresponding proteins, which are assumed to be 5000, 587, 210 
and 3487, respectively (Batt et al., 2007; Hooshangi et al., 2005). klacI, kcI and keyfp are the 
production rate parameters while γtetR, γlacI, γcI and γeyfp are the decay rate parameters of the 
corresponding proteins in the host cell (i.e. E. coli.). In the robust synthetic gene network 

design, we should select the parameters k and γ from feasible ranges so that the state of 
synthetic gene network xi could approach a desired steady state xd,i for some biotechnical 
purpose. rlacI, rcI and reyfp are the decreasing Hill functions for regulations of repressors. alacI is 
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an increasing function since aTc is an activator. The Hill function is a S-shaped curve  
(Alon, 2007). uaTc is the input to the synthetic gene network system. We assume 
anhydrotetracycline input concentration to be a constant value 10000 (i.e. uaTc = 10000). For 
the convenience of simulation, we assume that extrinsic disturbances w1~w4  are wi=[500n1 
10000n2 100n3 100000n4]T, where ni, i=1,2,3,4 are independent Gaussian white noises with 
zero mean and unit variance. 
From the robust synthetic gene network design procedure, we give the feasible parameter 

ranges of production rate parameters k and decay rate parameters γ as follows (Batt et al., 
2007) 

 

[0.05,5]
[70,7000]

[0.01314,0.1517]
[75,8000]

[0.7617,7.2815]
[30,30000]

[0.007,0.067]

tetR
lacI

lacI
cI

cI
eyfp

eyfp

k

k

k

γ
γ
γ
γ

∈
∈

∈
∈

∈
∈

∈

 (29) 

Then we give the desired steady states of the synthetic gene network are 
xd,i=[1000,50000,300,500000]T, i=tetR, lacI, cI, eyfp. Then the regulation error dynamic 
equation in (4) is developed for the synthetic gene network. Because it is very difficult to 
solve the nonlinear HJI in (12), no simple approach is available to solve the constrained 

optimization problem in (11) for robust parameters ki* and γi*. We construct the T-S fuzzy 
model in (15) to approximate the regulation error dynamic in (4) with the regulation error 
dynamic system’s state variables as the premise variables in the following. 
Rule i: 

If 1( )x t#  is 1iF  and 2( )x t#  is 2iF  and 3( )x t#  is 3iF  and 4( )x t#  is 4iF , 

then ( , ) , 1,2, ,ix k x v i Lγ= + =A$# # A  

where the parameters Ai(k,γ) and the number of fuzzy rules is L=16. To construct the fuzzy 

model, we need to find the operating points of the regulation error dynamic system. The 

operating points for 1x#  are chosen at 11 -40x =  and 12 4040x = . Similarly, the operating 

points of 2 3 4, ,x x x# # #  are chosen at 21 -38510x = , 22 381x = , 31 -16.7x = , 32 1686x = , 

41 -441590x = , and 42 4372x = , respectively. For the convenience of design, triangle-type 

membership functions are taken for Rule 1 through Rule 16. We create two triangle-type 

membership functions for each state (see Fig. 2). 
In order to simplify the nonlinear stochastic game problem of the robust synthetic gene 
network, we just solve only the sub-minimax problem in (6) instead. With the help of fuzzy 
approximation method and LMI technique, we can easily solve the constrained optimization 
problem in (21) and (22) instead of the nonlinear constrained optimization problem in (11) 
and (12) for the minimax robust synthetic gene network design. Finally, we obtain the upper 
bound of the game in (6) g2 = 0.847536 and a common positive definite symmetric matrix P 
for (22) as follows 

0.45842 -0.0079 0.0143 -0.00068

-0.0079 0.07186 -0.000557 0.00268

0.0143 -0.000557 0.04847 0.000718

-0.00068 0.00268 0.000718 0.0578

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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with the specified robust production rate parameters * 7000lacIk = , * 4037.5cIk =  and 
* 30000eyfpk =  and robust decay rate parameters * 5tetRγ = , * 0.1517lacIγ = , * 4.0216cIγ =  and 
* 0.067eyfpγ =  of the synthetic gene network. With these design parameters, the parameters Ai 

of fuzzy model are described in Appendix D. 
Figure 3 presents the simulation result for robust synthetic gene networks by using Monte 
Carlo method with 50 rounds and with the uncertain initial values. x1(0)~x4(0) are assumed 
normal-distributed random numbers with means 5000, 8000, 2000, 10000 and standard 
deviations 500, 800, 200, 1000, respectively. As can be seen, the synthetic gene network has 
robust regulation ability to achieve the desired steady state (black dashed line) in spite of 
uncertain initial states and the disturbances on the host cell. Obviously, the robust synthetic 
gene network by the proposed sub-minimax regulation design method has robust stability 
to the uncertain initial conditions and enough filtering ability to attenuate the disturbances 
on the host cell and can approach the desired steady states. 

For comparison, we solve the sub-optimal regulation design problem in (27) and (28) for the 

specified production rate parameters * 70lacIk = , * 4037.5cIk =  and * 15015eyfpk =  and decay 

rate parameters * 2.525tetRγ = , * 0.1517lacIγ = , * 7.2815cIγ =  and * 0.067eyfpγ =  of the synthetic 

gene network. The simulation result of conventional optimal regulation design is also 

shown in Fig. 4. As can be seen, the conventional optimal regulation design of the synthetic 

gene network is more sensitive to the initial conditions and disturbances and cannot achieve 

the desired steady state under the uncertain initial conditions and disturbances. 
Remark 5: 
The experimental systems in the above example may not be fully observable. If we want to 

know whether all state variables can approach to the desired states xd, several fluorescent 

proteins (red, green and cyan colour) should be necessary to observe their protein 

expressions of all state variables in the experimental design.  

4. Discussion 

Because the initial conditions and disturbances on the host cell are uncertain, to simplify the 

design problem, a robust synthetic biology design is formulated as a stochastic game 

problem in this study. The uncertain initial conditions and disturbances due to intrinsic and 

extrinsic molecular noises on the host cell are considered as a player maximizing the 

regulation error and the design parameters are considered as another player minimizing the 

regulation error. In order to avoid solving HJI in the stochastic game theory-based design 

problem, a T-S fuzzy interpolation method is introduced to simplify the design procedure of 

robust synthetic gene networks via only solving a set of LMIs, which can be efficiently 

solved by Robust Control Toolbox in Matlab. 

In our study, we can select the weighting matrix Q=diag([q11, q22, q33, q44]) which denotes the 

punishment on the corresponding tracking error x# . If we only need to achieve a desired 

steady state xd4 (EYFP), we just assign a value to the fourth diagonal element q44 of the 

weighting matrix Q and set q11=q22= q33=0. The rest of states x1~x3 will not approach to the 

given steady state xd1~xd3 because of no any punishment. However, in this case, some 

infeasible steady states of x1, x2, and x3 may be obtained even an optimal x4 can be achieved. 

In this study, the desired steady states of x1, x2, and x3 are given because we can avoid 

obtaining infeasible steady states in x1, x2, and x3 when an optimal x4 is achieved. Further, 
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the undesired steady states of x1, x2, and x3 may also have metabolic toxicity on host cell and 

should be avoided. Since the steady states of x1~x3 are not that important, the desired steady 

states xd1~xd3 can be adjusted within feasible ranges, so that the desired steady state xd4 can 

still achieve some optimization as possible. This kind of design can avoid hampering the 

optimization of x4 when x1, x2, and x3 achieve some feasible steady states. 

 In our in silico design example, we can design the specified robust production rate 

parameters ki* and decay rate parameters γi* within the feasible parameter ranges to achieve 

the desired steady states of the synthetic gene network. As for the biological 

implementation, we could refer to standard biological parts in biological device datasheets 

to construct the genetic circuits with the fine-tuned production rate parameters ki* and decay 

rate parameters γi*. In this way, synthetic biologists can increase efficiency of gene circuit 

design through registries of biological parts and standard datasheets, which are developed 

concerned with proper packing and characterizing of ‘modular’ biological activities so that 

these biological parts or devices with some desired characteristics may be efficiently 

assembled into gene circuits (Canton, et al., 2008). 

Quantitative descriptions of devices in the form of standardized, comprehensive datasheets 

are widely used in many engineering disciplines. A datasheet is intended to allow an 

engineer to quickly determine whether the behavior of a device will meet the requirements 

of a system in which a device might be used (Canton, et al., 2008). Such a determination is 

based on a set of standard characteristics of device behavior, which are the product of 

engineering theory and experience. In the datasheets of engineering, the characteristics 

typically reported are common across a wide range of device types, such as sensors, logic 

elements and actuators. Recently, biological datasheets have been set as standards for 

characterization, manufacture and sharing of information about modular biological devices 

for a more efficient, predictable and design-driven genetic engineering science (Arkin, 2008; 

Canton, et al., 2008). Because datasheets of biological parts or devices are an embodiment of 

engineering standard for synthetic biology (Canton, et al., 2008), a good device standard 

should define sufficient information about biological parts or devices to allow the design of 

gene circuit systems with the optimal parameters. Datasheets contain a formal set of input-

output transfer functions, dynamic behaviors, compatibility, requirements and other details 

about a particular part or device (Arkin, 2008; Canton, et al., 2008). Since parameters ki are 

combinations of transcription and translation, they could be measured from the input-

output transfer functions and dynamic behaviors of biological parts or devices in biological 

device datasheets. From properly characterized input-output transfer functions and 

dynamic behaviors of parts or devices in biological device datasheets, an engineer can 

estimate the corresponding parameters of biological parts or devices. When the biological 

parts and devices in datasheets become more complete in future, we can rapidly select from 

a vast list the parts that will meet our design parameters ki. Therefore we can ensure that 

devices selected from datasheets can fit the optimal parameters and systems synthesized 

from them can satisfy the requirements of design specifications for robust synthetic gene 

networks. 

In order to guarantee the biological feasibility of the calculated optimal parameters, the 

ranges [k1, k2] and [γ1,γ2] of parameters should be determined by the whole parameters of 

biological parts repositories (http://partsregistry.org/) so that the optimal parameters 
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selected within these ranges to minimize g2 in equations (21) and (22) have biological 

meaning, or equivalently from the whole biological parts in biological device datasheets, we 

can find a set of biological parts whose parameters can minimize the g2 in equations (21) and 

(22) to achieve the robust optimal design of synthetic gene network. 

In synthetic gene networks, there is much uncertainty about what affects the behavior of 

biological circuitry and systems. For example, devices will perturb the cellular functions and 

there are also likely to be parasitic and unpredictable interactions among components as 

well as with the host. Since ki is a combination of promoter strength, ribosome binding site 

and degradation of the transcript, there are some variations or uncertainties on the 

parameter value ki. These variations or uncertainties of ki can be transformed to an 

equivalent uncertain disturbance wi in equation (1) from the viewpoint of mathematic 

model. The proposed robust minimax synthetic biology design method can predict the most 

robust value of ki from the perspective of stochastic game. In our robust design method, we 

don’t need the statistics of these parameter uncertainties because the proposed synthetic 

genetic network not only can achieve the desired steady state but also can tolerate the worst-

case effect due to these uncertain parameter variations and external noises on the host cell. 

For comparison, a sub-optimal regulation design for synthetic gene network is also 

developed for synthetic gene network. Because the sub-optimal regulation design cannot 

efficiently attenuate the effect of uncertain initial conditions and disturbances on the 

regulation, it is not suitable for robust synthetic gene networks with uncertain initial 

conditions and disturbances on the host cell. As seen in the example in silico, the proposed 

robust synthetic gene network can function properly in spite of uncertain initial conditions 

and disturbances on the host cell. Design of more robust and complex genetic circuits is 

foreseen to have important applications in biotechnology, medicine and biofuel production, 

and to revolutionize how we conceptualize and approach the engineering of biological 

systems (Andrianantoandro et al., 2006). Therefore, it has much potential for the robust 

synthetic gene network design in the near future. 

5. Tables and figures 

 
 

 

 

 

Fig. 1. Synthetic transcription cascade loop in silico design example. aTc represses TetR, TetR 
represses lacI, LacI represses cI, CI represses eyfp. aTc is the system input and the fluorescent 
protein EYFP is the output. 
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Fig. 2. Membership functions for four states 1 ,x#  2 ,x#  3x#  and 4x# . 

 

 

Fig. 3. The robust synthetic gene network design with uncertain initial values and the 

desired steady states [1000, 50000, 300, 500000]Tdx = . And with specified robust production 

rate parameters * 7000lacIk = , * 4037.5cIk =  and * 30000eyfpk =  while the specified robust decay 

rate parameters are * 5tetRγ = , * 0.1517lacIγ = , * 4.0216cIγ =  and * 0.067eyfpγ =  of the synthetic 

gene network. The Monte Carlo simulation method is used with 50 rounds. 
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Fig. 4. The conventional optimal regulation design with uncertain initial values and the 

desired steady states [1000, 50000, 300, 500000]Tdx = . And with specified production rate 

parameters * 70lacIk = , * 4037.5cIk =  and * 15015eyfpk =  while the specified decay rate 

parameters are * 2.525tetRγ = , * 0.1517lacIγ = , * 7.2815cIγ =  and * 0.067eyfpγ =  of the synthetic 

gene network. It is seen that the conventional optimal regulation design of the synthetic 

gene network is sensitive to the initial conditions and disturbances and cannot achieve the 

desired steady states. The Monte Carlo simulation method is used with 50 rounds. 

6. Appendixes 

6.1 Appendix A: Proof of proposition 1 

Let us consider a Lyapunov energy function ( ) 0V x ># , then the cost function in equation (8) 

is equivalent to  

        2

0

( )
( , , ) ( (0)) ( ( ))

ft T T
f
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J k v E V x V x t x Qx g v v dt

dt
γ
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By the chain rule, we get 
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Substituting (A2) into (A1), we maximize ( , , )J k vγ  by the uncertain disturbance v  

max ( , , )
v

J k vγ  
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with the worst-case disturbance *
2

1 ( )
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V x
v

xg

∂
=

∂

#
#

. 

By the inequality in (12), it is seen that ( (0))V x#  is the upper bound of (A3) i.e., the sub-

minimax problem becomes how to solve the following constrained optimization problem 
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subject to (12) and ( ) 0V x ># . 

By the fact in (9), 2 (0) (0)Tg E x x⎡ ⎤
⎣ ⎦
# #  is the upper bound of 

1 2

1 2

[ , ]
[ , ]

min max ( , , )
k k k v

J k v

γ γ γ

γ
∈
∈

. Therefore 

( (0))E V x⎡ ⎤⎣ ⎦#  in (A4) should be bounded by 2 (0) (0)Tg E x x⎡ ⎤
⎣ ⎦
# # , i.e. 2( (0)) (0) (0)TE V x g E x x⎡ ⎤≤⎡ ⎤⎣ ⎦ ⎣ ⎦

# # # . 

Therefore the suboptimal solution is to minimize its upper bound. Hence, the sub-minimax 
problem in (A4) could be replaced by  
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where 0Tr( )R  denotes the trace of 0R  and 0R  denotes the covariance of the initial condition 

(0)x#  i.e., 0 (0) (0)TR E x x⎡ ⎤= ⎣ ⎦
# # , which is independent of the choice of k  and γ . Therefore, the 

sub-minimax design problem is equivalent to solving the following constrained 

optimization 
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subject to (12) and ( ) 0V x ># . 

6.2 Appendix B: Proof of proposition 2 

We replace error dynamic system in (4) by its fuzzy interpolation system in (15). Then HJI in 
(12) can be represented by 
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Let us choose the Lyapunov function ( )V x#  as ( ) TV x x Px=# # #  for some positive definite 

symmetric matrix P  and substitute it into (B1). Then we get 

 2
1

2

1
( ) ( , ) ( , ) 0

L
T T

i i i
i

h x x P k r k r P Q PP x
g

P g I
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∑ A A# # #
  (B2) 

where the property in (17) is used. 

It is seen that the inequalities in (19) implies (B2). Therefore, the sub-minimax design for the 

fuzzy equivalent system becomes how we solve the constrained optimization in (18) and 

(19). By substituting ( ) TV x x Px=# # #  into (13), we get the worst-case disturbances *v  in (20). 

6.3 Appendix C: Proof of proposition 3 

Again, let us consider a Lyapunov energy function ( ) 0V x ># , then the equation (23) is 

equivalent to 
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By the fact that 2 T T Ta b a a b b≤ +  for any two-vectors a  and b , we get 

1 2 1 2

1 2 1 2

0 0[ , ] [ , ]
[ , ] [ , ]

( )
min min ( (0)) ( ( )) ( , , )

f f

T
t tT T

f d
k k k k k k

V x
E x Qxdt E V x V x t x Qx f x x k

x
γ γ γ γ γ γ

γ
∈ ∈
∈ ∈

⎡ ⎛ ∂⎛ ⎞⎡ ⎤ ⎢ ⎜= − + + +⎜ ⎟⎢ ⎥ ⎜ ∂⎣ ⎦ ⎢ ⎝ ⎠⎝⎣
∫ ∫

## # # # # # #
#

1 ( ) ( ) 1

2 2

T
TV x V x

v v dt
x x

⎤⎞∂ ∂⎛ ⎞ ⎛ ⎞ ⎥⎟+ +⎜ ⎟ ⎜ ⎟ ⎟∂ ∂ ⎥⎝ ⎠ ⎝ ⎠ ⎠ ⎦

# #
# #

 

By the inequality in (25), we get the sub-optimal regulation problem as follows 

1 2 1 2

1 2 1 2

0 0[ , ] [ , ]
[ , ] [ , ]

1
min min ( (0))

2

f ft tT T

k k k k k k
E x Qxdt E V x v vdt

γ γ γ γ γ γ
∈ ∈
∈ ∈

⎡ ⎤⎡ ⎤ ≤ +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫# # #  

Since disturbance v  is independent of the choice of parameters k  and γ , and only the 

choice of ( )V x#  will influence the above minimization, the sub-optimal design becomes how 

to solve the constrained optimization problem in (24) and (25). 
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6.4 Appendix D: Parameters of the T-S fuzzy model with the specified kinetic parameters 
*k  and decay rates *γ  

1

-1.6879 -0.060601 0.11879 -0.0092833

0.38914 -0.093297 0.010249 -0.0065119

0.10826 -0.02841 -1.4996 -0.0060343

0.00097167 -0.0025457 0.0053402 -0.066832

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

2

-3.5629 -0.12704 0.25074 -0.0092833

0.20138 -0.193  0.021476 -0.0065109

0.22906 -0.11458 -3.1644 -0.0060447

0.0014069 -0.00054073 0.0071284 -0.066833

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

3

-1.5351 -0.060529 0.11879 -0.0092832

0.40408 -0.092851 0.010249 -0.0065573

-0.18285 0.0322 -1.4996 0.0041303

0.0012516 -0.0027325 -0.0017594 -0.066801

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

4

-3.2403 -0.12689 0.25074 -0.0092832

0.23298 -0.19466 0.021741 -0.0065573

-0.38598 0.039126 -3.1671 0.0041304

0.0019632 0.00067731 -0.00013562 -0.066801

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

5

-3.5287 -0.060601 0.24784 -0.0093278

0.19497 -0.093286 0.017006 0.0019312

0.22212 -0.080273 -3.1614 -0.0042428

0.001744 -0.0025529 0.0072707 -0.067233

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

6

-7.4489 -0.12704 0.52318 -0.0093278

-0.18351 -0.1982 0.095548 0.0014778

0.21344 -0.11298 -7.2861 0.00040939

-0.012439 0.0026832 -0.025864 -0.066952

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

7

-3.2061 -0.060529 0.24784 -0.0093277

0.22649 -0.092851 0.01727 0.0018016

-0.38483 -0.019544 -3.1642 0.0068314

0.0023517 -0.0027325 6.7334e-006 -0.067149

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

8

-6.768  -0.12689 0.52318 -0.0093277

-0.14191 -0.19465 -0.023172 0.0018026

-0.81178 -0.012738 -6.0679 0.0068211

0.0043172 0.00067013 0.040657 -0.06715

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  
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9

-1.6879 0.12793 -0.25078 0.019598

-0.727  -0.07319 -0.026022 -0.003619

0.10826 -0.031432 -0.80806 -0.005567

0.00097182 -0.0027504 0.0047284 -0.066801

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

10

-3.5629 0.26819 -0.52934 0.019598

-0.91465 -0.15344 -0.05495 -0.003619

0.22793 -0.094274 -1.7058 -0.005567

0.0013385 0.00063963 0.0057541 -0.066801

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

11

-1.5351 0.12778 -0.25078 0.019598

-0.71206 -0.073303 -0.026022 -0.0036189

-0.18285 0.034225 -0.80806 0.0041294

0.0012516 -0.0026058 -0.0023716 -0.066797

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

12

-3.2403 0.26787 -0.52934 0.019598

-0.88316 -0.15367 -0.054951 -0.0036189

-0.38597 0.043382 -1.7058 0.0041294

0.0019634 0.00094337 -0.0013455 -0.066797

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

13

-3.5287 0.12793 -0.52322 0.019692

-0.92106 -0.07319 -0.058507 0.0047537

0.22099 -0.083177 -1.7026 -0.0029125

0.0016756 -0.0027503 0.0059171 -0.067149

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

14

-7.4489 0.26819 -1.1045 0.019692

-1.3492 -0.15343 -0.12363 0.0047547

0.72194 -0.14614 -3.593  -0.0029229

0.018292 0.00063245 0.0083449 -0.06715

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

15

-3.2061 0.12778 -0.52322 0.019692

-0.88965 -0.073303 -0.058507 0.0047076

-0.38483 -0.01752 -1.7026 0.0073033

0.0023519 -0.0026058 -0.0011826 -0.067117

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

16

-6.768  0.26787 -1.1045 0.019692

-1.2579 -0.15367 -0.12336 0.0047076

-0.81291 -0.0083629 -3.5957 0.0073033

0.0042487 0.00094338 0.0010809 -0.067117

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  
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